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Deep Reinforcement Learning for Cyber Security
Thanh Thi Nguyen and Vijay Janapa Reddi

Abstract—The scale of Internet-connected systems has in-
creased considerably, and these systems are being exposed to
cyber attacks more than ever. The complexity and dynamics of
cyber attacks require protecting mechanisms to be responsive,
adaptive, and large-scale. Machine learning, or more specifi-
cally deep reinforcement learning (DRL), methods have been
proposed widely to address these issues. By incorporating deep
learning into traditional RL, DRL is highly capable of solving
complex, dynamic, and especially high-dimensional cyber defense
problems. This paper presents a survey of DRL approaches
developed for cyber security. We touch on different vital as-
pects, including DRL-based security methods for cyber-physical
systems, autonomous intrusion detection techniques, and multi-
agent DRL-based game theory simulations for defense strategies
against cyber attacks. Extensive discussions and future research
directions on DRL-based cyber security are also given. We expect
that this comprehensive review provides the foundations for and
facilitates future studies on exploring the potential of emerging
DRL to cope with increasingly complex cyber security problems.

Index Terms—review, survey, cyber security, cyber defense, cy-
ber attacks, deep reinforcement learning, deep learning, Internet
of Things, IoT.

I. INTRODUCTION

INTERNET of Things (IoT) technologies have been em-
ployed broadly in many sectors such as telecommunica-

tions, transportation, manufacturing, water and power man-
agement, healthcare, education, finance, government, and even
entertainment. The convergence of various information and
communication technology (ICT) tools in the IoT has boosted
its functionalities and services to users to new levels. ICT
has witnessed a remarkable development in terms of system
design, network architecture, and intelligent devices in the last
decade. For example, ICT has been advanced with the inno-
vations of software-defined network (SDN) [1], [2], cognitive
radio network (CRN) [3], [4], cloud computing [5], (mobile)
edge caching [6], [7], and fog computing [8]. Accompanying
these developments is the increasing vulnerability to cyber
attacks, which are defined as any type of offensive maneuver
exercised by one or multiple computers to target computer
information systems, network infrastructures, or personal com-
puter devices. Cyber attacks may be instigated by economic
competitors or state-sponsored attackers. There has been thus a
critical need of the development of cyber security technologies
to mitigate and eliminate impacts of these attacks [9].

Artificial intelligence (AI), especially machine learning
(ML), has been applied to both attacking and defending
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in the cyberspace. On the attacker side, ML is utilized to
make attacks more sophisticated to pass through defense
strategies. On the cyber security side, ML is employed to
make defense strategies smarter, more robust, and higher
performance, which can adaptively prevent and reduce the
impacts or damages occurred. Among these ML applications,
unsupervised and supervised learning methods have been used
widely for intrusion detection [10]–[15], malware detection
[16]–[19], cyber-physical attacks [20], [21], and data privacy
protection [22]. In principle, unsupervised methods explore
the structure and patterns of data without using their labels
while supervised methods learn by examples based on data’s
labels. These methods, however, cannot provide dynamic and
sequential responses against cyber attacks, especially new or
deformed threats. Also, the detection and defending responses
usually take place after the attacks, when the attack details and
data become available for collecting and analyzing, and thus
proactive defense solutions are hindered. A statistical study
shows that 62% of the attacks were recognized after they have
caused significant damages to the cyber systems [23].

Reinforcement learning (RL), another branch of ML, is the
closest form of human learning because it can learn by its
own experience through exploring and exploiting the unknown
environment. RL can model an autonomous agent to take
sequential actions optimally without or with limited prior
knowledge of the environment, and thus, it is particularly
adaptable and useful in real time and adversarial environments.
RL, therefore, demonstrates excellent suitability for cyber
security applications where cyber attacks are increasingly
sophisticated, rapid, and ubiquitous [24], [25].

The recent development of deep learning has been incor-
porated into RL methods and enabled them to solve many
complex problems [26], [27]. The emergence of DRL has
witnessed great success in different fields, from video game
domain, e.g. Atari [28], [29], game of Go [30], [31], real-
time strategy game StarCraft II [32]–[35], 3D multi-player
game Quake III Arena Capture the Flag [36], and teamwork
game Dota 2 [37] to real-world applications such as robotics
[38], autonomous vehicles [39], autonomous surgery [40],
[41], biological data mining [42], and drug design [43]. An
area that recently attracts great attention of the DRL research
community is the IoT and cyber security. For example, a
DRL-based resource allocation framework that integrates net-
working, caching, and computing capabilities for smart city
applications is proposed in He et al. [44]. DRL algorithm, i.e.,
double dueling deep Q-network [45], [46], is used to solve this
problem because it involves a large state space, which consists
of the dynamic changing status of base stations, mobile edge
caching (MEC) servers and caches. The framework is devel-
oped based on the programmable control principle of SDN
and the caching capability of information-centric networking.
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Alternatively, Zhu et al. [47] explored MEC policies by
using the context awareness concept that represents the user’s
context information and traffic pattern statistics. The use of
AI technologies at the mobile network edges is advocated
to intelligently exploit operating environment and make the
right decisions regarding what, where, and how to cache
appropriate contents. To increase the caching performance, a
DRL approach, i.e., the asynchronous advantage actor-critic
algorithm [48], is used to find an optimal policy aiming to
maximize the offloading traffic.

Findings from our current survey show that applications of
DRL in cyber environments are generally categorized under
two perspectives: optimizing and enhancing the communica-
tions and networking capabilities of the IoT applications, e.g.
[49]–[56], and defending against cyber attacks. This paper fo-
cuses on the later where DRL methods are used to solve cyber
security problems with the presence of cyber attacks or threats.
Next section provides a background of DRL methods, followed
by a detailed survey of DRL applications in cyber security
in Section 3. We group these applications into three major
categories, including DRL-based security solutions for cyber-
physical systems, autonomous intrusion detection techniques,
and multi-agent DRL-based game theory for cyber security.
Section 4 concludes the paper with extensive discussions and
future research directions on DRL for cyber security.

II. DEEP REINFORCEMENT LEARNING PRELIMINARY

Different from the other popular branch of ML, i.e., su-
pervised methods learning by examples, RL characterizes
an agent by creating its own learning experiences through
interacting directly with the environment. RL is described by
concepts of state, action, and reward (Fig. 1). It is a trial and
error approach in which the agent takes action at each time
step that causes two changes: current state of the environment
is changed to a new state, and the agent receives a reward or
penalty from the environment. Given a state, the reward is a
function that can tell the agent how good or bad an action is.
Based on received rewards, the agent learns to take more good
actions and gradually filter out bad actions.

Fig. 1. Interactions between the agent and environment in RL, characterized
by state, action and reward. Based on the current state s and reward r, the
agent will take an optimal action, leading to changes of states and rewards.
The agent then receives the next state s′ and reward r′ from the environment
to determine a next action, making an iterative process of agent-environment
interactions.

A popular RL method is Q-learning whose goal is to
maximize the discounted cumulative reward based on the
Bellman equation [57]:

Q(st, at) = E[rt+1 + γrt+2 + γ2rt+3 + ...|st, at] (1)

The discount factor γ ∈ [0, 1] manages the importance levels
of future rewards. It is applied as a mathematical trick to
analyze the learning convergence. In practice, discount is
necessary because of partial observability or uncertainty of
the stochastic environment.

Q-learning needs to use a lookup table or Q-table to store
expected rewards (Q-values) of actions given a set of states.
This requires a large memory when the state and action spaces
increase. Real-world problems often involve continuous state
or action space, and therefore, Q-learning is inefficient to
solve these problems. Fortunately, deep learning has emerged
as a powerful tool that is a great complement to traditional
RL methods. With the power of function approximation and
representation learning, deep learning can learn a compact
low-dimensional representation of raw high-dimensional data
[58]. The combination of deep learning and RL was the
research direction that Google DeepMind has initiated and
pioneered. They proposed deep Q-network (DQN) with the
use of a deep neural network (DNN) to enable Q-learning to
deal with high-dimensional sensory inputs [28], [59].

Fig. 2. DQN architecture with the loss function described by L(β) = E[(r+
γmaxa′ Q(s′, a′|β′)−Q(s, a|β))2] where β and β′ are parameters of the
estimation and target deep neural networks respectively. Each action taken by
the agent will generate an experience, which consists of the current state s,
action a, reward r and next state s′. These learning experiences (samples) are
stored in the experience replay memory, which are then retrieved randomly
for a stable learning process.

Using DNNs to approximate the Q-function however is
unstable due to the correlations among the sequences of
observations and the correlations between the Q-values Q(s, a)
and the target values Q(s′, a′). Mnih et al. [28] proposed the
use of two novel techniques, i.e., experience replay memory
and target network, to address this problem (Fig. 2). On
the one hand, experience memory stores an extensive list
of learning experience tuples (s, a, r, s′), which are obtained
from interactions with the environment. The agent’s learning
process retrieves these experiences randomly to avoid the
correlations of consecutive experiences. On the other hand, the
target network is technically a copy of the estimation network,
but its parameters are frozen and only updated after a period.
For instance, the target network is updated after 10,000 updates
of the estimation network, as demonstrated in [28]. DQN has
made a breakthrough as it is the first time an RL agent can
provide a human-level performance in playing 49 Atari games
by using just raw image pixels of the game board.
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As a value-based method, DQN takes long training time
and has limitations in solving continuous action space. Value-
based methods, in general, evaluate the goodness of an action
given a state using the Q-value function. When the number of
states or actions is large or infinite, they show inefficiency or
even impracticality. Another type of RL, i.e., policy gradient
methods, has solved this problem effectively. These methods
aim to derive actions directly by learning a policy π(s, a)
that is a probability distribution over all possible actions.
Trust region policy optimization (TRPO) [60] and proximal
policy optimization (PPO) [61] are notable policy gradient
methods. The gradient estimation, however, has often suffered
a large fluctuation [62]. The combination of value-based and
policy-based methods has thus been developed to aggregate
advantages and eradicate disadvantages of these two methods.
That kind of combination has been structured in another type
of RL, i.e., actor-critic methods. This structure comprises
two components: an actor and a critic that can be both
characterized by DNNs. The actor attempts to learn a policy
by receiving feedback from the critic. This iterative process
helps the actor improve its strategy and converge to an optimal
policy. Asynchronous advantage actor-critic (A3C) is a popular
actor-critic method where its structure consists of a hierarchy
of a master learning agent (global) and individual learners
(workers) [48]. Both master agent and individual learners are
modeled by DNNs with each having two outputs: one for the
critic and another for the actor (Fig. 3). The first output is a
scalar value representing the expected reward of a given state
V (s) while the second output is a vector of values representing
a probability distribution over all possible actions π(s, a).

Fig. 3. The learning architecture of A3C, consisting of a global network
and a number of worker agents. Each worker initially resets its parameters to
those of the global network and interacts with its copy of the environment for
learning. Gradients obtained from these individual learning processes will be
used to update the global network asynchronously. This increases the learning
speed and diversifies the experience learned by the global network as the
experiences obtained by individual worker agents are independent.

The value loss function of the critic is specified by:

L1 =
∑

(R− V (s))2 (2)

where R = r+ γV (s′) is the discounted future reward. Also,
the actor is pursuing minimization of the following policy loss
function:

L2 = − log(π(a|s)) ∗A(s)− ϑH(π) (3)

where A(s) = R− V (s) is the estimated advantage function,
and H(π) is the entropy term, which handles the exploration
capability of the agent with the hyperparameter ϑ controlling
the strength of the entropy regularization. The advantage
function A(s) shows how advantageous the agent is when
it is in a particular state. The learning process of A3C is
asynchronous because each learner interacts with its separate
environment and updates the master network independently.
This process is iterated, and the master network is the one to
use when the learning is finished.

Table I summarizes comparable features of value-based,
policy-based, and actor-critic methods, and their typical ex-
ample algorithms. The following section examines the venture
of these DRL algorithms in the field of cyber security under
three broad categories: cyber-physical systems, autonomous
intrusion detection, and cyber multi-agent game theory.

III. DRL IN CYBER SECURITY: A SURVEY

A. DRL-based Security Methods for Cyber-Physical Systems

Investigations of defense methods for cyber-physical sys-
tems (CPS) against cyber attacks have received considerable
attention and interests from the cyber security research com-
munity. CPS is a mechanism controlled by computer-based
algorithms facilitated by internet integration. This mechanism
provides efficient management of distributed physical systems
via the shared network. With the rapid development of the
Internet and control technologies, CPSs have been used ex-
tensively in many areas including manufacturing [67], health
monitoring [68], [69], smart grid [70], [71], and transportation
[72]. Being exposed widely to the Internet these systems are
increasingly vulnerable to cyber attacks [73]. In 2015, hackers
attacked the control system of a steel mill in Germany by
obtaining login credentials via the use of phishing emails.
This attack caused a partial plant shutdown and resulted in
damage of millions of dollars. Likewise, there was a costly
cyber attack to a power grid in Ukraine in late December 2015
that disrupted electricity supply to a few hundred thousand end
consumers [74].

In an effort to study cyber attacks on CPS, Feng et al.
[74] characterized the cyber state dynamics by a mathematical
model:

ẋ(t) = f(t;x;u;w; θ(t; a; d));x(t0) = x0 (4)

where x,u, and w represent the physical state, control inputs
and disturbances correspondingly (see Fig. 4). In addition,
θ(t; a; d) describes cyber state at time t with a and d referring
to cyber attack and defense respectively.

The CPS defense problem is then modeled as a two-player
zero-sum game by which utilities of players are summed up
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TABLE I
SUMMARY OF FEATURES OF DRL TYPES AND THEIR NOTABLE METHODS

DRL types Value-based Policy-based Actor-critic
Features

• Compute value of action given
a state Q(s, a).

• No learned explicit policy.

• No value function is needed.
• Explicit policy is constructed.

• Actor produces policy
π(s, a).

• Critic evaluates action by
V (s).

Typical
methods • DQN [28]

• Double DQN [45]
• Dueling Q-network [46]
• Prioritized Replay DQN [63]

• TRPO [60]
• PPO [61]
• Deep Deterministic Policy Gradient (DDPG) [64]
• Distributed Distributional DDPG (D4PG) [65]

• A3C [48]
• Unsupervised Reinforcement

and Auxiliary Learning (UN-
REAL) [66]

Fig. 4. The dynamics of attack and defense in a cyber-physical system.
The physical layer is often uncertain with disturbances w while cyber attack
a directly affects the cyber layer where a defense strategy d needs to be
implemented. The dynamics of attack-defense characterized by θ(t, a, d) is
injected into the conventional physical system to develop a cyber-physical
co-modelling as presented in Eq. (4)

to zero at each time step. The defender is represented by
an actor-critic DRL algorithm. Simulation results demonstrate
that the proposed method in [74] can learn an optimal strategy
to timely and accurately defend the CPS from unknown cyber
attacks.

Applications of CPS in critical safety domains such as
autonomous automotive, chemical process, automatic pilot
avionics, and smart grid require a certain correctness level.
Akazaki et al. [75] proposed the use of DRL, i.e., double
DQN and A3C algorithms, to find falsifying inputs (coun-
terexamples) for CPS models. This allows for effective yet
automatic detection of CPS defects. Due to the infinite state
space of CPS models, conventional methods such as simulated
annealing [76] and cross entropy [77] were found inefficient.
Experimental results show the superiority of the use of DRL
algorithms against those methods in terms of the smaller
number of simulation runs. This leads to a more practical
detection process for CPS models’ defects despite the great
complexity of CPS’s software and physical systems.

Autonomous vehicles (AVs) operating in the future smart
cities require a robust processing unit of intra-vehicle sen-
sors, including camera, radar, roadside smart sensors, and
inter-vehicle beaconing. Such reliance is vulnerable to cyber-
physical attacks aiming to get control of AVs by manipulating
the sensory data and affecting the reliability of the system,
e.g., increasing accident risks or reducing the vehicular flow.
Ferdowsi et al. [78] examined the scenarios where the attackers

manage to interject faulty data to the AV’s sensor readings
while the AV (the defender) needs to deal with that problem
to control AV robustly. Specifically, the car following model
[79] is considered in which the focus is on autonomous
control of a car that follows closely another car. The defender
aims to learn the leading vehicle’s speed based on sensor
readings. The attacker’s objective is to mislead the following
vehicle to a deviation from the optimal safe spacing. The
interactions between attacker and defender are characterized
by a game-theoretic problem. The interactive game structure
and its DRL solution are diagrammed in Fig. 5. Instead of
directly deriving a solution based on the mixed-strategy Nash
equilibrium analytics, the authors proposed the use of DRL to
solve this dynamic game. Long short term memory (LSTM)
[80] is used to approximate the Q-function for both defending
and attacking agents as it can capture the temporal dynamics
of the environment.

Fig. 5. The architecture of the adversarial DRL algorithm for robust AV
control. A deep neural network (DNN) consisting of a long short term memory
(LSTM), a fully connected layer (FCL) and regression is used to learn long-
term dependencies within a large data sets, which contain the outcomes of
the players’ past interactions. The DNN can approximate the Q functions to
find optimal actions for players, i.e., AV (defender) and especially attacker,
who seeks to inject faulty data to AV sensor readings.

Autonomous systems can be vulnerable to inefficiency from
various sources such as noises in communication channels,
sensor failures, errors in sensor measurement readings, packet
errors, and especially cyber attacks. Deception attack to
autonomous systems is widespread as it is initiated by an
adversary whose effort is to inject noises to the communi-
cation channels between sensors and the command center.
This kind of attack leads to corrupted information being sent
to the command center and eventually degrades the system
performance. Gupta and Yang [81] studied to increase the
robustness of autonomous systems by allowing the system to
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learn using adversarial examples. The problem is formulated
as a zero-sum game with the players to be the command center
(observer) and the adversary. The inverted pendulum problem
from Roboschool [61] is used as a simulation environment.
The TRPO algorithm is employed to design an observer that
can reliably detect adversarial attacks in terms of measurement
corruption and automatically mitigate their effects.

B. DRL-based Intrusion Detection Systems

To detect intrusions, security experts conventionally need
to observe and examine audit data, e.g., application traces,
network traffic flow, and user command data, to differentiate
between normal and abnormal behaviors. However, the volume
of audit data surges rapidly when the network size is enlarged.
This makes manual detection difficult or even impossible. An
intrusion detection system (IDS) is a software or hardware
platform installed on host computers or network equipment to
detect and report to the administrator abnormal or malicious
activities by analysing the audit data. An active IDS may
be able to take appropriate actions immediately to reduce
impacts of the malevolent activities. Depending on different
types of audit data, IDSs are grouped into two categories:
host-based or network-based IDS. Host-based IDS typically
observes and analyses the host computer’s log files or settings
to discover anomalous behaviors. Network-based IDS relies
on a sniffer to collect transmitting packets in the network and
examines the traffic data for intrusion detection. Regardless of
the IDS type, two common methods are used: signature-based
and anomaly-based detection. Signature detection involves the
storage of patterns of known attacks and comparing charac-
teristics of possible attacks to those in the database. Anomaly
detection observes the normal behaviors of the system and
alerts the administrator if any activities are found deviated
from normality, for instance, the unexpected increase of traffic
rate, i.e., number of IP packets per second. Machine learning
techniques, including unsupervised clustering and supervised
classification methods, have been used widely to build adaptive
IDSs [82]–[86]. These methods, e.g. neural networks [87], k-
nearest neighbors [87], [88], support vector machine (SVM)
[87], [89], random forest [90] and recently deep learning
[91], [92], however are normally relied on fixed features of
existing cyber attacks so that they are deficient to detect
new or deformed attacks. The lack of prompt responses to
dynamic intrusions also leads to ineffective solutions produced
by unsupervised or supervised techniques. In this regard, RL
methods have been demonstrated effectively in various IDS
applications [93]–[96]. The following subsections review the
use of DRL methods in both host-based and network-based
IDSs.

1) Host-based IDS: As the volume of audit data and
complexity of intrusion behaviors increase, adaptive intrusion
detection models demonstrate ineffectiveness because they
can only handle temporally isolated labeled or unlabeled
data. In practice, many complex intrusions comprise temporal
sequences of dynamic behaviors. Xu and Xie [97] proposed
an RL-based IDS that can handle this problem. System call
trace data are used to feed into a Markov reward process

whose state value can be used to detect abnormal temporal
behaviors of host processes. The intrusion detection problem
is thus converted to a state value prediction task of the Markov
chains. The linear temporal difference (TD) RL algorithm [98]
is used as the state value prediction model where its outcomes
are compared with a predetermined threshold to distinguish
normal traces and attack traces. Instead of using the errors
between real values and estimated ones, TD learning algorithm
uses the differences between successive approximations to
update the state value function. Experimental results obtained
from using system call trace data show the dominance of the
proposed RL-based IDS in terms of higher accuracy and lower
computational costs compared to SVM, hidden Markov model,
and other machine learning or data mining methods. The
proposed method based on the linear basis functions, however,
has a shortcoming when sequential intrusion behaviors are
highly nonlinear. Therefore, a kernel-based RL approach using
least-squares TD [99] was suggested for intrusion detection
in [100], [101]. Relying on the kernel methods, the general-
ization capability of TD RL is enhanced, especially in high-
dimensional and nonlinear feature spaces. The kernel least-
squares TD algorithm is, therefore, able to predict anomaly
probabilities accurately, which contributes to improving the
detection performance of IDS, especially when dealing with
multi-stage cyber attacks.

2) Network-based IDS: Deokar and Hazarnis [102] pointed
out drawbacks of both anomaly-based and signature-based
detection methods. On the one hand, anomaly detection has
a high false alarm rate because it may categorize activities
which users rarely perform as an anomaly. On the other hand,
signature original multi-agent router throttling based on the
divide-and-conquer paradigm to eli detection cannot discover
new types of attacks as it uses a database of patterns of
well-known attacks. The authors, therefore, proposed an IDS
that can identify known and unknown attacks effectively by
combining features of both anomaly and signature detection
through the use of log files. The proposed IDS is based on
a collaboration of RL method, association rule learning, and
log correlation techniques. RL is used to give a reward (or
penalty) to the system when it selects log files that contain
(or do not contain) anomalies or any signs of attack. This
procedure enables the system to choose more appropriate log
files in searching for traces of attack.

One of the most difficult challenges in the current Inter-
net is dealing with the distributed denial-of-service (DDoS)
threat, which is a DoS attack but has the distributed nature,
occurring with a large traffic volume, and compromising a
large number of hosts. Malialis and Kudenko [103], [104]
initially introduced the multi-agent router throttling method
based on the SARSA algorithm [105] to address the DDoS
attacks by learning multiple agents to rate-limit or throttle
traffic towards a victim server. That method, however, has
a limited capability in terms of scalability. They therefore
further proposed the coordinated team learning design to the
original multi-agent router throttling based on the divide-
and-conquer paradigm to eliminate the mentioned drawback.
The proposed approach integrates three mechanisms, i.e.,
task decomposition, hierarchical team-based communication,
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and team rewards, involving multiple defensive nodes across
different locations to coordinately stop or reduce the flood of
DDoS attacks. A network emulator is developed based on the
work of Yau et al. [106] to evaluate throttling approaches. Sim-
ulation results show that the resilience and adaptability of the
proposed method are superior to its competing methods, i.e.,
baseline router throttling and additive-increase/multiplicative-
decrease throttling algorithms [106], in various scenarios with
different attack dynamics. The scalability of the proposed
method is successfully experimented with up to 100 RL agents,
which has a great potential to be deployed in a large internet
service provider network.

Alternatively, Bhosale et al. [107] proposed a multi-agent
intelligent system [108] using RL and influence diagram [109]
to enable quick responses against the complex attacks. Each
agent learns its policy based on local database and informa-
tion received from other agents, i.e., decisions and events.
Shamshirband et al. [110], on the other hand, introduced an
intrusion detection and prevention system for wireless sensor
networks (WSNs) based on a game theory approach and
employed a fuzzy Q-learning algorithm [111], [112] to obtain
optimal policies for the players. Sink nodes, a base station, and
an attacker constitute a three-player game where sink nodes
and base station are coordinated to derive a defense strategy
against the DDoS attacks, particularly in the application layer.
The IDS detects future attacks based on fuzzy Q-learning
algorithm that takes part in two phases: detection and defense
(Fig. 6). The game commences when the attacker sends an
overwhelming volume of flooding packets beyond a specific
threshold as a DDoS attack to a victim node in the WSN.
Using the low energy adaptive clustering hierarchy (LEACH),
which is a prominent WSN protocol [113], the performance of
the proposed method is evaluated and compared with that of
existing soft computing methods. The results show the efficacy
and viability of the proposed method in terms of detection
accuracy, energy consumption and network lifetime.

C. DRL-based Game Theory for Cyber Security

Traditional cyber security methods such as firewall, anti-
virus software, or intrusion detection are normally passive,
unilateral, and lagging behind dynamic attacks. Cyberspace
involves various cyber components, and thus, reliable cyber
security requires the consideration of interactions among these
components. Specifically, the security policy applied to a
component has a certain impact on the decisions taken by
other components. Therefore, the decision space increases
considerably, with many what-if scenarios when the system
is large. Game theory has been demonstrated effectively in
solving such large-scale problems because it can examine
many scenarios to derive the best policy for each player [114]–
[118]. The utility or payoff of a game player depends not
only on its actions but also on other players’ activities. In
other words, the efficacy of cyber defending strategies must
take into account the attacker’s strategies and other network
users’ behaviors. Game theory can model the conflict and
cooperation between intelligent decision makers, resembling
activities of cyber security problems, which involve attackers

Fig. 6. Two-phase intrusion detection and prevention system based on a game
theory approach and fuzzy Q-learning. In Phase 1, the sink node uses fuzzy
Q-learning to detect anomalies caused by the attacker to victim nodes. The
malicious information is preprocessed and checked against a threshold by the
sink node before passing to Phase 2 where the base station also employs fuzzy
Q-learning to select optimal defense actions.

and defenders. This resemblance has enabled game theory to
mathematically describe and analyze the complex behaviors
of multiple competitive mechanisms. In the following, we
present game theoretic models involving multiple DRL agents
that characterize cyber security problems in different attacking
scenarios, including jamming, spoofing, malware, and attacks
in adversarial environments.

1) Jamming attacks: Jamming attacks can be considered as
a special case of DoS attacks, which are defined as any event
that diminishes or eradicates a network’s capacity to execute
its expected function [119]–[121]. Jamming is a serious attack
in networking and has attracted a great interest of researchers
who used machine learning or especially RL to address this
problem, e.g., [122]–[128]. The recent development of deep
learning has facilitated the use of DRL for jamming handling
or mitigation. Xiao et al. [129] studied security challenges
of the MEC systems and proposed an RL-based solution to
provide secure offloading to the edge nodes against jamming
attacks. MEC is a technique that allows cloud computing
functions to take place at the edge nodes of a cellular net-
work or generally of any network. This technology helps to
decrease network traffic, reduce overhead and latency when
users request to access contents that have been cached in the
edges closer to the cellular customer. MEC systems, however,
are vulnerable to cyber attacks because they are physically
located closer to users and attackers with less secure protocols
compared to cloud servers or database center. In [129], the RL
methodology is used to select the defense levels and important
parameters such as offloading rate and time, transmit channel
and power. As the network state space is large, the authors
proposed the use of DQN to handle high-dimensional data,
as illustrated in Fig. 7. DQN uses a convolutional neural
network (CNN) to approximate the Q-function that requires
high computational complexity and memory. To mitigate this
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disadvantage a transfer learning method named hotbooting
technique is used. The hotbooting method helps to initialize
weights of CNN more efficiently by using experiences that
have been learned in similar circumstances. This reduces the
learning time by avoiding random explorations at the start of
each episode. Simulation results demonstrate that the proposed
method is effective in terms of enhancing the security and
user privacy of MEC systems and it can protect the systems
in confronting with different types of smart attacks with low
overhead.

Fig. 7. Secure offloading method in MEC based on DQN with hotbooting
technique. The DQN agent’ actions are to find optimal parameters such as
offloading rate, power, and channel for the mobile device to offload the traces
to the edge node accordingly. The attackers may deploy jamming, spoofing,
DoS, or smart attacks to disrupt this process. By interacting with the edge
caching systems, the agent can evaluate the reward of the previous action and
obtain new state, enabling it to select the next optimal action.

On the other hand, Aref et al. [130] introduced a multi-
agent RL method to deal with anti-jamming communications
in wideband autonomous cognitive radios (WACRs). WACRs
are advanced radios that can sense the states of the radio
frequency spectrum and network, and autonomously optimize
its operating mode corresponding to the perceived states.
Cognitive communication protocols, however, may struggle
when there are unintentional interferences or malicious users
who attempt to interrupt reliable communications by deliber-
ate jamming. Each radio’s effort is to occupy the available
common wideband spectrum as much as possible and avoid
sweeping signal of a jammer that affects the entire spectrum
band. The multi-agent RL approach proposed in [130] learns
an optimal policy for each radio to select appropriate sub-band,
aiming to avoid jamming signals and interruptions from other
radios. Comparative studies show the significant dominance
of the proposed method against a random policy. A drawback
of the proposed method is the assumption that the jammer
uses a fixed strategy in responding to the WACRs strate-
gies, although the jammer may be able to perform adaptive
jamming with the cognitive radio technology. In [131], when
the current spectrum sub-band is interfered by a jammer, Q-
learning is used to optimally select a new sub-band that allows
uninterrupted transmission as long as possible. The reward
structure of the Q-learning agent is defined as the amount of
time that the jammer or interferer takes to interfere with the
WACR transmission. Experimental results using the hardware-
in-the-loop prototype simulation show that the agent can detect
the jamming patterns and successfully learns an optimal sub-

band selection policy for jamming avoidance. The obvious
drawback of this method is the use of Q-table with a limited
number of environment states.

The access right to spectrum (or more generally resources)
is the main difference between CRNs and traditional wireless
technologies. RL in general or Q-learning has been investi-
gated to produce optimal policy for cognitive radio nodes to
interact with their radio-frequency environment [132]. Attar
et al. [133] examined RL solutions against attacks on both
CRN architectures, i.e., infrastructure-based, e.g., the IEEE
802.22 standard, and infrastructure-less, e.g., ad hoc CRN. The
adversaries may attempt to manipulate the spectrum sensing
process and cause the main sources of security threats in
infrastructure-less CRNs. The external adversary node is not
part of the CRN, but such attackers can affect the operation
of an ad hoc CRN via jamming attacks. In an infrastructure-
based CRN, an exogenous attacker can mount incumbent
emulation or perform sensor-jamming attacks. The attacker
can increase the local false-alarm probability to affect the
decision of the IEEE 802.22 base station about the availability
of a given band. A jamming attack can have both short-
term and long-term effects. Wang et al. [134] developed a
game-theoretic framework to battle against jamming in CRNs
where each radio observes the status and quality of available
channels and the strategy of jammers to make decisions
accordingly. The CRN can learn optimal channel utilization
strategy using minimax-Q learning policy [135], solving the
problems of how many channels to use for data and to
control packets along with the channel switching strategy. The
performance of minimax-Q learning represented via spectrum-
efficient throughput is superior to the myopic learning method,
which gives high priority to the immediate payoff and ignores
the environment dynamics as well as the attackers’ cognitive
capability.

In CRNs, secondary users (SUs) are obliged to avoid disrup-
tions to communications of primary users (PUs) and can only
gain access to the licensed spectrum when it is not occupied
by PUs. Jamming attacks are emergent in CRNs due to the
opportunistic access of SUs as well as the appearance of smart
jammers, which can detect the transmission strategy of SUs.
Xiao et al. [136] studied the scenarios where a smart jammer
aims to disrupt the SUs rather than PUs. The SUs and jammer,
therefore, must sense the channel to check the presence of
PUs before making their decisions. The constructed scenarios
consist of a secondary source node supported by relay nodes to
transmit data packets to secondary receiving nodes. The smart
jammer can learn quickly the frequency and transmission
power of SUs while SUs do not have full knowledge of the un-
derlying dynamic environment. The interactions between SUs
and jammer are modeled as a cooperative transmission power
control game, and the optimal strategy for SUs is derived based
on the Stackelberg equilibrium [137]. The aim of SU players
is to select appropriate transmission powers to efficiently send
data messages in the presence of jamming attacks. Jammer’s
utility gain is the SUs’ loss and vice versa. RL methods, i.e.,
Q-learning [57] and WoLF-PHC [138], are used to model
SUs as intelligent agents for coping with the smart jammer.
WoLF-PHC stands for the combination of Win or Learn Fast
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algorithm and policy hill-climbing method. It uses a varying
learning rate to foster convergence to the game equilibrium by
adjusting the learning speed [138]. Simulation results show the
improvement in the anti-jamming performance of the proposed
method in terms of the signal to interference plus noise ratio
(SINR). The optimal strategy achieved from the Stackelberg
game can minimize the damage created by the jammer in the
worst-case scenario.

Recently, Han et al. [139] introduced an anti-jamming sys-
tem for CRNs using the DQN algorithm based on a frequency-
spatial anti-jamming communication game. The game simu-
lates an environment of numerous jammers that inject jamming
signals to disturb the ongoing transmissions of SUs. The SU
should not interfere with the communications of PUs and
must defeat smart jammers. This communication system is
two-dimensional that utilizes both frequency hopping and user
mobility. The RL state is the radio environment consisting of
PUs, SUs, jammers, and serving base station/access point. The
DQN is used to derive an optimal frequency hopping policy
that determines whether the SU should leave an area of heavy
jamming or choose a channel to send signals. Experimental
results show the superiority of the DQN-based method against
the Q-learning based strategy in terms of faster convergence
rate, increased SINR, lower cost of defense, and improved
utility of the SU. DQN with the core component CNN helps
to speed the learning process of the system, which has a large
number of frequency channels, compared with the benchmark
Q-learning method.

To improve the work of Han et al. [139], Liu et al.
[140] also proposed an anti-jamming communication system
using a DRL method but having different and more ex-
tensive contributions. Specifically, Liu et al. [140] used the
raw spectrum information with temporal features, known as
spectrum waterfall [141] to characterize the environment state
rather than using the SINR and PU occupancy as in [139].
Because of this, Liu et al.’s model does not necessitate prior
knowledge about the jamming patterns and parameters of
the jammer but rather uses the local observation data. This
prevents the model from the loss of information and facilitates
its adaptability to a dynamic environment. Furthermore, Liu
et al.’s work does not assume that the jammer needs to take
the same channel-slot transmission structure with the users
as in [139]. The recursive CNN is utilized to deal with a
complex infinite environment state represented by spectrum
waterfall, which has a recursion characteristic. The model is
tested using several jamming scenarios, which include the
sweeping jamming, comb jamming, dynamic jamming, and
intelligent comb jamming. A disadvantage of both Han et al.
and Liu et al.’s methods is that they can only derive an optimal
policy for one user, which inspires a future research direction
focusing on multiple users’ scenarios.

2) Spoofing attacks: Spoofing attacks are popular in wire-
less networks where the attacker claims to be another node
using the faked identity such as media access control to gain
access to the network illegitimately. This illegal penetration
may lead to man-in-the-middle, or DoS attacks [142]. Xiao
et al. [143], [144] modeled the interactions between the
legitimate receiver and spoofers as a zero-sum authentication

game and utilized Q-learning and Dyna-Q [145] algorithms to
address the spoofing detection problem. The utility of receiver
or spoofer is computed based on the Bayesian risk, which
is the expected payoff in the spoofing detection. The receiver
aims to select the optimal test threshold in PHY-layer spoofing
detection while the spoofer needs to select an optimal attacking
frequency. To prevent collisions, spoofers are cooperative to
attack the receiver. Simulation and experimental results show
the improved performance of the proposed methods against the
benchmark method with a fixed test threshold. A disadvantage
of the proposed approaches is that both action and state spaces
are quantized into discrete levels, bounded within a specified
interval, which may lead to locally optimal solutions.

3) Malware attacks: One of the most challenging malware
of mobile devices is the zero-day attacks, which exploit
publicly unknown security vulnerabilities, and until they are
contained or mitigated, hackers might have already caused
adverse effects on computer programs, data or networks [146],
[147]. To avoid such attacks, the traces or log data produced
by the applications need to be processed in real time. With
limited computational power, battery life and radio bandwidth,
mobile devices often offload specific malware detection tasks
to security servers at the cloud for processing. The security
server with powerful computational resources and more up-
dated malware database can process the tasks quicker, more
accurately, and then send a detection report back to mobile
devices with less delay. The offloading process is, therefore,
the key factor affecting the cloud-based malware detection
performance. For example, if too many tasks are offloaded to
the cloud server, there would be radio network congestion that
can lead to long detection delay. Wan et al. [148] enhanced the
mobile offloading performance by improving the previously
proposed game model in [149]. The Q-learning approach used
in [149] to select optimal offloading rate suffers the curse
of high-dimensionality when the network size is increased,
or a large number of feasible offloading rates is available
for selection. Wan et al. [148] thus advocated the use of
hotbooting Q-learning and DQN, and showed the performance
improvement in terms of malware detection accuracy and
speed compared to the standard Q-learning. The cloud-based
malware detection approach using DQN for selecting the
offloading rate is illustrated in Fig. 8.

4) Attacks in adversarial environment: Traditional net-
works facilitate the direct communications between client ap-
plication and server where each network has its switch control
that makes the network reconfiguration task time-consuming
and inefficient. This method is also disadvantageous because
the requested data may need to be retrieved from more than
one database involving multiple servers. SDN is a next-
generation networking technology as it can reconfigure the
network adaptively. With the control being programmable
with a global view of the network architecture, SDN can
manage and optimize network resources effectively. RL has
been demonstrated broadly in the literature as a robust method
for SDN controlling, e.g., [150]–[154].

Although RL’s success in SDN controlling is abundant, the
attacker may be able to falsify the defender’s training process
if it is aware of the network control algorithm in an adversarial
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Fig. 8. Cloud-based malware detection using DQN where the stochastic
gradient descent (SGD) method is used to update weights of the CNN.
Malicious detection is performed in the cloud server with more powerful
computational resources than mobile devices. The DQN agent helps to select
optimal task offloading rates for mobile devices to avoid network congestion
and detection delay. By observing the network status and evaluating utility
based on malware detection report from the server, the agent can formulate
states and rewards, which are used to generate a sequence of optimal actions,
i.e., dynamic offloading rates.

environment. To deal with this problem, Han et al. [155]
proposed the use of adversarial RL to build an autonomous
defense system for SDN. The attacker selects important nodes
in the network to compromise, for example, nodes in the
backbone network or the target subnet. By propagating through
the network, the attacker attempts to eventually compromise
the critical server while the defender prevents the server from
being compromised and preserve as many unaffected nodes
as possible. To achieve those goals, the RL defender takes
four possible actions, consisting of “isolating”, “patching”,
“reconnecting” and “migrating”. Two types of DRL agents
are trained to model defenders, i.e., double DQN and A3C,
to select appropriate actions given different network states.
The reward is characterized based on the status of the critical
server, the number of preserved nodes, migration cost, and
the validity of the actions taken. That study considered the
scenarios where attackers can penetrate the learning process
of RL defender by flipping reward signs or manipulating states.
These causative attacks poison the defender’s training process
and cause it to perform sub-optimal actions. The adversarial
training approach is applied to reduce the impact of poisoning
attacks with its eminent performance is demonstrated via sev-
eral experiments using the popular network emulator Mininet
[156].

In an adversarial environment, the defender may not know
the private details of the attacker such as the type of at-
tack, attacking target, frequency, and location. Therefore, the
defender, for example, may allocate substantial resources to
protect an asset that is not a target of the attacker. The
defender needs to dynamically reconfigure defense strategies
to increase the complexity and cost for the intruder. Zhu et
al. [157] introduced a model where the defender and attacker
can repeatedly change the defense and attack strategies. The
defender has no prior knowledge about the attacker, such
as launched attacks and attacking policies. However, it is
aware of the attacker classes and can access to the system
utilities, which are jointly contributed by the defense and

attack activities. Two interactive RL methods are proposed for
cyber defenses in [157], namely adaptive RL and robust RL.
The adaptive RL handles attacks that have a diminishing explo-
ration rate (non-persistent attacker) while the robust RL deals
with intruders who have constant exploration rate (persistent
attacker). The interactions between defender and attacker are
illustrated via the attack and defense cycles as in Fig. 9. The
attackers and defenders do not take actions simultaneously or
but asynchronously. On the attack cycle, the attacker evaluates
previous attacks before launching a new attack if necessary.
On the defense cycle, after receiving an alert, the defender
carries out a meta-analysis on the latest attacks and calculates
the corresponding utility before deploying a new defense if
needed. An advantage of this system model is that it does
not assume any underlying model for the attacker but instead
treats attack strategies as black boxes.

Fig. 9. The defender and attacker interact via the intrusion detection system
(IDS) in an adversarial environment, involving defense and attack cycles.
Using these two cycles, a defender and an attacker can repeatedly change
their defense and attack strategies. This model can be used to study defense
strategies for a different class of attacks such as buffer over-read attacks [158]
and code reuse attacks [159].

Alternatively, Elderman et al. [160] simulated cyber security
problems in networking as a stochastic Markov game with
two agents, one attacker, and one defender, with incomplete
information and partial observability. The attacker does not
know the network topology but attempts to reach and get
access to the location that contains a valuable asset. The
defender knows the internal network but does not see the attack
types or position of intruders. This is a challenging cyber
security game because a player needs to adapt its strategy to
defeat the unobservable opponents [161]. Different algorithms,
e.g., Monte Carlo learning, Q-learning, and neural networks
are used to learn both defender and attacker. Simulation results
show that Monte Carlo learning with the softmax exploration
is the best method for learning both attacking and defending
strategies. Neural network algorithms have a limited adversar-
ial learning capability, and thus they are outperformed by Q-
learning and Monte Carlo learning techniques. This simulation
has a disadvantage that simplifies the real-world cyber security
problem into a game of only two players with only one asset.
In real practice, there can be multiple hackers simultaneously
penetrating a server that holds valuable data. Also, a network
may contain useful data in different locations instead of in a
single location as simulated.
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IV. DISCUSSIONS AND FUTURE RESEARCH DIRECTIONS

DRL has emerged over recent years as one of the most
successful methods of designing and creating human or even
superhuman AI agents. Much of these successes have relied on
the incorporation of DNNs into a framework of traditional RL
to address complex and high-dimensional sequential decision-
making problems. Applications of DRL algorithms, therefore,
have been found in various fields, including IoT and cyber
security. Computers and the Internet today play crucial roles
in many areas of our lives, e.g., entertainment, communication,
transportation, medicine, and even shopping. Lots of our
personal information and important data are stored online.
Even financial institutions, e.g., banks, mortgage companies,
and brokerage firms, run their business online. Therefore,
it is essential to have a security plan in place to prevent
hackers from accessing our computer systems. This paper has
presented a comprehensive survey of DRL methods and their
applications to cyber security problems, with notable examples
summarized in Table II.

The adversarial environment of cyber systems has instigated
various proposals of game theory models involving multiple
DRL agents. We found that this kind of application occupies
a major proportion of papers in the literature relating to DRL
for cyber security problems. Another emerging area is the
use of DRL for security solutions of cyber-physical systems.
The large-scale and complex nature of CPSs, e.g., environ-
mental monitoring networks, electrical smart grid systems,
transportation management network, and cyber manufacturing
management system, require security solutions to be respon-
sive and accurate. This has been addressed efficiently by
various DRL approaches, e.g., TRPO algorithm [81], LSTM-
Q-learning [78], double DQN, and A3C [75]. In contrast,
although there have been a large number of applications
of traditional RL methods to intrusion detection systems,
there has been a small amount of work on DRL algorithms
for this kind of application. This is probably because the
integration of deep learning and RL methods has just been
sustained very recently, i.e., in the last few years, which leaves
researchers in the cyber intrusion detection area some time lag
to catch up with. The complexity and dynamics of intrusion
detection can be addressed efficiently by representation learn-
ing and function approximation capabilities of deep learning
and optimal sequential decision making the capability of RL
collectively. There is thus a gap for future research where
DRL’s capabilities can be exploited fully to solve complex
and sophisticated cyber intrusion detection problems.

Most DRL algorithms used for cyber defense so far are
model-free methods, which are sample inefficient as they
require a large quantity of training data. These data are difficult
to obtain in real cyber security practice. Researchers generally
utilize a simulator to validate their proposed approaches, but
these simulators often do not characterize the complexity and
dynamics of real cyber space of the IoT systems fully. Model-
based DRL methods are more appropriate than model-free
methods when training data are limitedly available because,
with model-based DRL, it can be easy to collect data in a
scalable way. Exploration of model-based DRL methods or

the integration of model-based and model-free methods for
cyber defense is thus an interesting future study. For example,
function approximators can be used to learn a proxy model of
the actual high-dimensional and possibly partial observable
environment [162]–[164], which can be then employed to
deploy planning algorithms, e.g., Monte-Carlo tree search
techniques [165], to derive optimal actions. Alternatively,
model-based and model-free combination approaches, such
as model-free policy with planning capabilities [166], [167]
or model-based lookahead search [30], can be used as they
aggregate advantages of both methods. On the other hand,
current literature on applications of DRL to cyber security
often limits at discretizing the action space, which restricts the
full capability of the DRL solutions to real-world problems.
An example is the application of DRL for selecting optimal
mobile offloading rates in [148], [149] where the action space
has been discretized although a small change of the rate would
primarily affect the performance of the cloud-based malware
detection system. Investigation of methods that can deal with
continuous action space in cyber environments, e.g., policy
gradient and actor-critic algorithms, is another encouraging
research direction.

AI can help defend against cyber attacks but can also facili-
tate dangerous attacks, i.e., offensive AI. Hackers can take ad-
vantages of AI to make attacks smarter and more sophisticated
to bypass detection methods to penetrate computer systems or
networks. For example, hackers may employ algorithms to
observe normal behaviors of users and use the users’ patterns
to develop untraceable attacking strategies. Machine learning-
based systems can mimic humans to craft convincing fake
messages that are utilized to conduct large-scale phishing
attacks. Likewise, by creating highly realistic fake video or
audio messages based on AI advances (i.e., deepfakes), hackers
can spread false news in elections or manipulate financial
markets. Alternatively, attackers can poison the data pool used
for training deep learning methods (i.e., machine learning
poisoning) or attackers can manipulate the states, falsify part
of the reward signals in RL to trick the agent into taking sub-
optimal actions, resulting in the agent being compromised.
These kinds of attacks are difficult to prevent, detect, and
fight against as they are part of a battle between AI systems.
Adversarial machine learning, especially supervised methods,
have been used extensively in cyber security [168] but very few
studies have been found on using adversarial RL. Adversarial
DRL or DRL algorithms trained in various adversarial cyber
environments are worth comprehensive investigations as they
can be a solution to battle against the increasingly complex
offensive AI systems.

With the support of AI systems, cyber security experts
no longer examine a huge volume of attack data manually
to detect and defend against cyber attacks. This has many
advantages because the security teams alone cannot sustain
the volume. AI-enabled defense strategies can be automated
and deployed rapidly and efficiently but these systems alone
cannot issue creative responses when new threats are intro-
duced. Moreover, human adversaries are always behind the
cybercrime or cyber warfare. Therefore, there is a critical
need for human intellect teamed with machines for cyber
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TABLE II
SUMMARY OF TYPICAL DRL APPLICATIONS IN CYBER SECURITY

Applications Goals/Objectives Algorithms States Actions Rewards
Virtualized smart
city network
resource allocation
[44]

Optimally assign virtualized
resources to a specific user.

Double
dueling DQN

Status of the base station,
MEC server, and content
cache.

Decide which base station
is assigned to the user and
whether the requested con-
tent should be cached in the
base station. Also, determine
whether the computation task
should be offloaded to the
MEC server.

Mobile virtual network opera-
tor’s revenue computed based
on the received signal-to-
noise ratio of the wireless
access link, the computation
ability, and the cache status.

Mobile edge
caching [47]

Maximize offloading traffic. A3C Raw signals such as user re-
quests, context information,
and network conditions.

Whether to cache the cur-
rently requested content. If
yes, determine which local
content will be replaced.

The offloading traffic in each
request, i.e., the number of
contents responded by the
edge node.

Robustness-guided
falsification of CPS
[75]

Find falsifying inputs (coun-
terexamples) for CPS

Double DQN
and A3C

Defined as the output of the
system.

Choose the next input value
from a set of piecewise-
constant input signals.

Characterized by a function of
past-dependent life-long prop-
erty, output signal and time.

Security and safety
in autonomous ve-
hicle systems [78]

Maximize the robustness of
AV dynamics control to cyber-
physical attacks that inject
faulty data to sensor readings.

Q-learning
with LSTM

AV’s own position and speed
along with distance and speed
of some nearby objects, e.g.,
the leading AV.

Take appropriate speeds to
maintain safe spacing between
AVs.

Defined via a utility function
that takes into account the de-
viation from the optimal safe
spacing.

Increasing
robustness of
the autonomous
system against
adversarial attacks
[81]

Devise filtering schemes
to detect corrupted
measurements (deception
attack) and mitigate the
effects of adversarial errors.

TRPO Characterized by sensor
measurements and actuation
noises.

Determine which estimation
rule to use to generate an es-
timated state from a corrupted
state.

Defined via a function that
takes state features as inputs.

Secure offloading
in mobile edge
caching [129]

Learn a policy for a mobile
device to securely offload data
to edge nodes against jam-
ming and smart attacks.

DQN with
hotbooting
transfer
learning
technique.

Represented via a combina-
tion of user density, battery
levels, jamming strength, and
radio channel bandwidth.

Agent’s actions include
choosing an edge node,
selecting offloading rate and
time, transmit power and
channel.

Computed based on secrecy
capacity, energy consumption,
and communication
efficiency.

Anti-jamming com-
munication scheme
for CRN [139]

Derive an optimal frequency
hopping policy for CRN SUs
to defeat smart jammers based
on a frequency-spatial anti-
jamming game.

DQN that em-
ploys CNN

Consist of presence status of
PUs and SINR information
at time t − 1 received from
serving base station or access
point.

SUs take action to leave a
geographical area of heavy
jamming obstructed by smart
jammers or choose a fre-
quency channel to send sig-
nals.

Represented via a utility func-
tion based on SINR and trans-
mission cost.

Anti-jamming
communication
method [140],
improving the
previous work in
[139]

Propose a smart anti-jamming
scheme similar to [139] with
two main differences: spec-
trum waterfall is used as the
state, and jammers can have
different channel-slot trans-
mission structure with users.

DQN that
employs
recursive CNN
because of
recursion
characteristic
of spectrum
waterfall.

Using temporal and spec-
tral information, i.e., spectrum
waterfall containing both fre-
quency and time domain in-
formation of the network en-
vironment.

Agent’s action is to select a
discretized transmission fre-
quency from a predefined set.

Defined by a function involv-
ing SINR-based transmission
rate and cost for frequency
switching.

Spoofing detection
in wireless
networks [143],
[144]

Select the optimal authentica-
tion threshold.

Q-learning and
Dyna-Q

Consist of false alarm rate and
missed detection rate of the
spoofing detection at time t−
1

Action set includes the
choices of different discrete
levels of the authentication
thresholds bounded within a
specified interval.

Represented by a utility func-
tion calculated based on the
Bayesian risk, which is the
expected payoff in spoofing
detection.

Mobile offloading
for cloud-based
malware detection
[148], improving
the previous work
in [149]

Improve malware detection
accuracy and speed.

Hotbooting
Q-learning and
DQN.

Include current radio
bandwidth, previous
offloading rates of other
devices.

Select optimal offloading rate
level for each mobile device.

Represented by a utility func-
tion calculated based on the
detection accuracy, response
speed, and transmission cost.

Autonomous
defense in SDN
[155]

Tackle the poisoning attacks
that manipulate states or flip
reward signals during the
training process of RL-based
defense agents.

Double DQN
and A3C

Represented by an array of
zeros and ones showing the
state of the network (whether
a node is compromised or a
link is switched on/off). Ar-
ray length is equal to several
nodes plus several links.

Attackers learn to select a
node to compromise while a
defender can take four ac-
tions: isolate, patch, reconnect
and migrate to protect server
and preserve as many nodes as
possible.

Modelled based on the status
of the critical server, number
of preserved nodes, migration
cost and the validity of actions
taken.

defenses. The traditional human-in-the-loop model for human-
machine integration struggles to adapt quickly with cyber
defense system because autonomous agent carries out part of
the task and need to halt to wait for human’s responses before
completing the task. The modern human-on-the-loop model
would be a solution for a future human-machine teaming cyber
security system. This model allows agents to autonomously
perform the task whilst humans can monitor and intervene
operations of agents only when necessary. How to integrate hu-
man knowledge into DRL algorithms [169] under the human-
on-the-loop model for cyber defense is an interesting research

question.

As hackers utilized more and more sophisticated and large-
scale approach to attack computer systems and networks, the
defense strategies need to be more intelligent and large-scale
as well. Multi-agent DRL is a research direction that can be
explored to tackle this problem. Game theory models for cyber
security reviewed in this paper have involved multiple agents
but they are restricted at a couple of attackers and defenders
with limited communication, cooperation and coordination
among the agents. These aspects of multi-agent DRL need
to be investigated thoroughly in cyber security problems
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to enable an effective large-scale defense plan. Challenges
of multi-agent DRL itself then need to be addressed such
as non-stationarity, partial observability, and efficient multi-
agent training schemes [170]. On the other hand, the RL
methodology has been applied to deal with various cyber
attacks, e.g. jamming, spoofing, malware, DoS, DDoS, brute
force, Heartbleed, botnet, web attack, and infiltration attack.
However, recently emerged or new types of attacks have
been largely unaddressed. One of these new types is the bit-
and-piece DDoS attack. This attack injects small junk into
legitimate traffic of over a large number of IP addresses so that
it can bypass many detection methods as there is so little of it
per address. Another emerging attack, for instance, is attacking
from the computing cloud to breach systems of companies who
manage IT systems for other firms or host other firms’ data on
their servers. Alternatively, hackers can use quantum physics-
based powerful computers to crack encryption algorithms that
are currently used to protect various types of invaluable data.
Consequently, a future study on addressing these new types of
attacks is encouraged.
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