Publications by Author: Yuntian Deng

2020
T. Tambe, et al., “AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference,” arXiv preprint arXiv:1909.13271, 2020. arXiv VersionAbstract
Conventional hardware-friendly quantization methods, such as fixed-point or integer, tend to perform poorly at very low word sizes as their shrinking dynamic ranges cannot adequately capture the wide data distributions commonly seen in sequence transduction models. We present AdaptivFloat, a floating-point inspired number representation format for deep learning that dynamically maximizes and optimally clips its available dynamic range, at a layer granularity, in order to create faithful encoding of neural network parameters. AdaptivFloat consistently produces higher inference accuracies compared to block floating-point, uniform, IEEE-like float or posit encodings at very low precision (≤ 8-bit) across a diverse set of state-of-the-art neural network topologies. And notably, AdaptivFloat is seen surpassing baseline FP32 performance by up to +0.3 in BLEU score and -0.75 in word error rate at weight bit widths that are ≤ 8-bit. Experimental results on a deep neural network (DNN) hardware accelerator, exploiting AdaptivFloat logic in its computational datapath, demonstrate per-operation energy and area that is 0.9× and 1.14×, respectively, that of equivalent bit width integer-based accelerator variants.
PDF
T. Tambe, et al., “Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient Deep Learning Inference,” in 2020 57th ACM/IEEE Design Automation Conference, DAC '20, July 20-24, Virtual, San Francisco, CA, 2020, pp. 1-6. IEEE VersionAbstract
Conventional hardware-friendly quantization methods, such as fixed-point or integer, tend to perform poorly at very low precision as their shrunken dynamic ranges cannot adequately capture the wide data distributions commonly seen in sequence transduction models. We present an algorithm-hardware co-design centered around a novel floating-point inspired number format, AdaptivFloat, that dynamically maximizes and optimally clips its available dynamic range, at a layer granularity, in order to create faithful encodings of neural network parameters. AdaptivFloat consistently produces higher inference accuracies compared to block floating-point, uniform, IEEE-like float or posit encodings at low bit precision (≤8-bit) across a diverse set of state-of-the-art neural networks, exhibiting narrow to wide weight distribution. Notably, at 4-bit weight precision, only a 2.1 degradation in BLEU score is observed on the AdaptivFloat-quantized Transformer network compared to total accuracy loss when encoded in the above-mentioned prominent datatypes. Furthermore, experimental results on a deep neural network (DNN) processing element (PE), exploiting AdaptivFloat logic in its computational datapath, demonstrate per-operation energy and area that is 0.9× and 1.14×, width, respectively that of an equivalent bit NVDLA-like integer-based PE.
PDF