EMMA: A New Platform to Evaluate Hardware-based Mobile Malware Analyses

Citation:

M. Kazdagli, L. Huang, V. J. Reddi, and M. Tiwari, “EMMA: A New Platform to Evaluate Hardware-based Mobile Malware Analyses,” arXiv preprint arXiv:1603.03086, 2016.
Paper2.92 MB

Abstract:

Hardware-based malware detectors (HMDs) are a key emerging technology to build trustworthy computing platforms, especially mobile platforms. Quantifying the efficacy of HMDs against malicious adversaries is thus an important problem. The challenge lies in that real-world malware typically adapts to defenses, evades being run in experimental settings, and hides behind benign applications. Thus, realizing the potential of HMDs as a line of defense – that has a small and battery-efficient code base – requires a rigorous foundation for evaluating HMDs. To this end, we introduce EMMA—a platform to evaluate the efficacy of HMDs for mobile platforms. EMMA deconstructs malware into atomic, orthogonal actions and introduces a systematic way of pitting different HMDs against a diverse subset of malware hidden inside benign applications. EMMA drives both malware and benign programs with real user-inputs to yield an HMD’s effective operating range— i.e., the malware actions a particular HMD is capable of detecting. We show that small atomic actions, such as stealing a Contact or SMS, have surprisingly large hardware footprints, and use this insight to design HMD algorithms that are less intrusive than prior work and yet perform 24.7% better. Finally, EMMA brings up a surprising new result— obfuscation techniques used by malware to evade static analyses makes them more detectable using HMDs.

Last updated on 05/31/2019