Publications by Year: 2007

2007
V. J. Reddi, D. Connors, R. Cohn, and M. D. Smith, “Persistent Code Caching: Exploiting Code Reuse Across Executions and Applications,” in Code Generation and Optimization, 2007. CGO'07. International Symposium on, 2007, pp. 74–88. Publisher's VersionAbstract

Run-time compilation systems are challenged with the task of translating a program’s instruction stream while maintaining low overhead. While software managed code caches are utilized to amortize translation costs, they are ineffective for programs with short run times or large amounts of cold code. Such program characteristics are prevalent in real-life computing environments, ranging from Graphical User Interface (GUI) programs to large-scale applications such as database management systems. Persistent code caching addresses these issues. It is described and evaluated in an industry-strength dynamic binary instrumentation system – Pin. The proposed approach improves the intra-execution model of code reuse by storing and reusing translations across executions, thereby achieving inter-execution persistence. Dynamically linked programs leverage inter-application persistence by using persistent translations of library code generated by other programs. New translations discovered across executions are automatically accumulated into the persistent code caches, thereby improving performance over time. Inter-execution persistence improves the performance of GUI applications by nearly 90%, while inter-application persistence achieves a 59% improvement. In more specialized uses, the SPEC2K INT benchmark suite experiences a 26% improvement under dynamic binary instrumentation. Finally, a 400% speedup is achieved in translating the Oracle database in a regression testing environment.

Paper
T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri, “Shadow Profiling: Hiding Instrumentation Costs with Parallelism,” in Proceedings of the International Symposium on Code Generation and Optimization, 2007, pp. 198–208. Publisher's VersionAbstract

In profiling, a tradeoff exists between information and overhead. For example, hardware-sampling profilers incur negligible overhead, but the information they collect is consequently very coarse. Other profilers use instrumentation tools to gather temporal traces such as path profiles and hot memory streams, but they have high overhead. Runtime and feedback-directed compilation systems need detailed information to aggressively optimize, but the cost of gathering profiles can outweigh the benefits. Shadow profiling is a novel method for sampling long traces of instrumented code in parallel with normal execution, taking advantage of the trend of increasing numbers of cores. Each instrumented sample can be many millions of instructions in length. The primary goal is to incur negligible overhead, yet attain profile information that is nearly as accurate as a perfect profile.

The profiler requires no modifications to the operating system or hardware, and is tunable to allow for greater coverage or lower overhead. We evaluate the performance and accuracy of this new profiling technique for two common types of instrumentation-based profiles: interprocedural path profiling and value profiling. Overall, profiles collected using the shadow profiling framework are 94% accurate versus perfect value profiles, while incurring less than 1% overhead. Consequently, this technique increases the viability of dynamic and continuous optimization systems by hiding the high overhead of instrumentation and enabling the online collection of many types of profiles that were previously too costly.

Paper
A. Shye, et al., “Using Process-Level Redundancy to Exploit Multiple Cores for Transient Fault Tolerance,” in 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2007.Abstract

Transient faults are emerging as a critical concern in the reliability of general-purpose microprocessors. As architectural trends point towards multi-threaded multi-core designs, there is substantial interest in adapting such parallel hardware resources for transient fault tolerance. This paper proposes a software-based multi-core alternative for transient fault tolerance using process-level redundancy (PLR). PLR creates a set of redundant processes per application process and systematically compares the processes to guarantee correct execution. Redundancy at the process level allows the operating system to freely schedule the processes across all available hardware resources. PLR’s softwarecentric approach to transient fault tolerance shifts the focus from ensuring correct hardware execution to ensuring correct software execution. As a result, PLR ignores many benign faults that do not propagate to affect program correctness. A real PLR prototype for running single-threaded applications is presented and evaluated for fault coverage and performance. On a 4-way SMP machine, PLR provides improved performance over existing software transient fault tolerance techniques with 16.9% overhead for fault detection on a set of optimized SPEC2000 binaries.

Paper Presentation
A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors, “Using process-level redundancy to exploit multiple cores for transient fault tolerance,” in Dependable Systems and Networks, 2007. DSN'07. 37th Annual IEEE/IFIP International Conference on, 2007, pp. 297–306.