
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011 1429

Resilient Architectures via Collaborative Design:
Maximizing Commodity Processor Performance

in the Presence of Variations
Vijay Janapa Reddi, Member, IEEE, and David Brooks, Member, IEEE

Abstract—Unintended variations in circuit lithography and
undesirable fluctuations in circuit operating parameters such as
supply voltage and temperature are threatening the continuation
of technology scaling that microprocessor evolution relies on.
Although circuit-level solutions for some variation problems may
be possible, they are prohibitively expensive and impractical for
commodity processors, on which not only the consumer market
but also an increasing segment of the business market now
depends. Solutions at the microarchitecture level and even the
software level, on the other hand, overcome some of these circuit-
level challenges without significantly raising costs or lowering
performance. Using examples drawn from our Alarms Project
and related work, we illustrate how collaborative design that
encompasses circuits, architecture, and chip-resident software
leads to a cost-effective solution for inductive voltage noise,
sometimes called the dI/dt problem. The strategy that we use
for assuring correctness while preserving performance can be
extended to other variation problems.

Index Terms—Dynamic variation, error correction, error de-
tection, error recovery, error resiliency, hw/sw co-design, induc-
tive noise, power supply noise, reliability, resilient design, resilient
microprocessor, timing error, variation, voltage droop.

I. Introduction

THE LANDSCAPE of general-purpose microprocessor
design is changing due to variations. Historical processor

designs were driven by the goal of ever-higher performance.
Lately, energy efficiency has emerged as an even more im-
portant design principle. Unfortunately, achieving these goals
is becoming difficult in the presence of process, voltage,
and thermal variations. Nowadays, processors tolerate these
variations using guardbands or margins, trading lower power
or higher performance for operational robustness; margins
are a cheap and cost-effective solution for mass production.
But as the industry moves forward toward smaller device
feature sizes, these margins must grow, as circuit behavior
susceptibility to variations increases at reduced feature sizes.
As a consequence, building robust and thus reliable micropro-
cessors comes at the expense of decreasing overall processor

Manuscript received June 28, 2011; accepted July 13, 2011. Date of current
version September 21, 2011. This paper was recommended by Associate
Editor V. Narayanan.

V. J. Reddi is with the Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712 USA (e-mail: vj@ece.utexas.edu).

D. Brooks is with the School of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138 USA (e-mail: dbrooks@eecs.harvard.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2163635

efficiency. Mitigating this inefficiency requires costly solutions
that increase the price of a chip. Unfortunately, neither of these
solutions are practical for commodity processors that must be
optimized on a cost per unit of performance basis, not purely
on performance per CPU unit only. In other words, they must
operate under a good price-to-performance ratio.

Traditionally, designers of commodity processors have
been tackling variation-associated reliability challenges at the
circuit-level, masking the issues from the processor microar-
chitecture above and the software running on top of it.
However, as these traditional solutions are not scaling well,
future systems require adaptive processor design techniques.
The underlying microarchitecture must dynamically detect and
recover from reliability errors, or emergencies, in the field.

In this paper, we discuss an emerging collaborative machine
organization, where both hardware and software play an in-
tegral role to diminish the detrimental effects of variations.
We envision abstracting circuit-level reliability challenges to
the higher levels, the microarchitecture and software layers.
The lower layers propagate relevant information to the higher
layers, as illustrated in Fig. 1. The figure presents an overview
of the three levels and some of the information that flows
between these levels when detecting and resolving emergen-
cies. The bottom layer includes low-level hardware and circuit
blocks that signal sensed critical information such as voltage or
temperature emergencies. The microarchitectural layer collects
this sensor data, filtering it and combining it with runtime
activity history, such as the current thread and its code along
with microarchitectural state information, before passing it up
to a chip-management software layer that enables transparent
and error-free application-level software execution.

Two distinct methods exist for dealing with emergencies in
this architecture. First, the circuits and microarchitectural layer
are responsible for guaranteeing reliable operation without the
assistance of software. The software layer seeks to eliminate
these exceptional events from recurring in the future through
emergency-specific dynamic optimizations. But as a first line
of defense, the circuits and microarchitectural layer operate
independently of software to throttle circuit execution/behavior
to guarantee correctness. An advantage of this multilayered ap-
proach is that it allows the hardware to focus on guaranteeing
correct operation for the initial exceptional event, while the
software focuses on eliminating or reducing the performance
impact of the future events in the steady state.

0278-0070/$26.00 c© 2011 IEEE

1430 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 1. Abstract overview of exposing circuit-level reliability challenges to
the higher levels of execution.

The goal of such a multilevel approach is to eliminate
the penalties to performance that arise in the use of circuit
techniques and microarchitectural changes that lower power,
price, or in general attempt to optimize a design for criteria
other than performance. Toward this end, the work investigates
what it takes to design and build commodity computing
systems that achieve both high performance and low cost
today and in the future. Cost is a generic term we use as
a placeholder for whatever other design criteria that matters
beyond performance (e.g., power, packaging costs, power sup-
ply costs, and so on). A holistic, integrated, and collaborative
solution enables cost-effective processor design and operation
even in the presence of variations. By having the higher layers
influence or mitigate problems at the circuit layer, the resulting
costs and efficiencies help track future increases in sustained
performance by maintaining the price-to-performance ratio—
an important principle in the commercial sector.

In order to demonstrate that hardware and software codesign
dampen the impact of variations successfully, this paper specif-
ically examines voltage variation as a case study. Shrinking
feature size and diminishing supply voltage make circuits
more sensitive to supply voltage fluctuations within the core,
caused by workload activity changes. If left unattended, large
voltage fluctuations can lead to timing violations or even
transistor lifetime issues. Designers are faced with either
increasing the cost of the chips by engineering them so
that the hardware (including packaging and power supplies)
tolerates sustained peak execution performance under extreme
operating conditions, or foregoing such costs by lowering the
operating efficiency of the processor. The alternative we see
is to instead include hardware-based (circuit and microarchi-
tecture) throttling mechanisms that sacrifice performance but
only when operating conditions stray too far from nominal.
The approach heads in the right direction in that it provides
hardware guarantees that catastrophic events will never occur.
However, hardware-only solutions are reactive, lack global
perspective, and may be difficult to implement efficiently.
Thus, the system relies on the hardware for immediate (albeit
suboptimal) reaction to emergencies and relies on the global
view provided by the chipset level software to eliminate
repeated occurrences, which is a much more efficient and long-
term solution.

The findings and discussion in this paper are a summary of
prior work. This includes work done by others in the field,

as well as our own research efforts geared toward resilient
architecture designs in the presence of voltage variation. The
rest of this paper is structured as follows. We begin with a
brief introduction and background to parameter variations in
Section II. We discuss how industry builds robust processors
even in the presence of variations. We go onto discussing
the challenges of sustaining what the industry does today
in future nodes. Then Section III explains why dealing with
variation at higher levels of abstraction mitigates impending
challenges. In each of the sections that follow, Sections IV–VI,
we explain the importance of tolerance, avoidance, and elimi-
nation, respectively. Tolerance, avoidance, and elimination are
the principles behind the success of our system. We believe
these are generalizable constructs that can extend over to
other disciples in reliability as well. Section VII broadens our
discussion to other reliability challenges, identifying remaining
work to be done, and thus providing a path for future work
along this direction. Finally, Section VIII summarizes our
vision and concludes this paper.

II. Challenges Facing Reliable Processor Design

Technology scaling has greatly improved transistor density
over the past three decades. However, continued scaling has
begun to introduce parameter variation problems. Parameter
variations can be broadly classified into device variations
incurred due to imperfections in the manufacturing process
and environmental variations due to fluctuations in on-die
temperature and supply voltage. These variations greatly affect
the speed of circuits in a chip; delay paths may slow down
or speed up due to these variations. Consequently, they affect
manufacturing yield and runtime efficiency.

A. Variations

There are three categories of variations: process, voltage,
and thermal (PVT) variations. Process variation refers to
differences in transistor characteristics from one die to another,
within-die or even wafer-to-wafer, resulting in differences
between chips. It occurs during fabrication time because
of imperfections in lithography techniques and unevenness
in dopant injection. Post-fabrication, this variation does not
change or affect chip behavior. Therefore, it is static. Voltage
and thermal variations are more dynamic, affecting chip oper-
ation at runtime. These variations occur from execution-time
interactions between the chip and the workloads it is running.
Temperature variation arises from aggressive utilization of
certain circuit blocks, creating hot spots within the micropro-
cessor. Pronounced hot spots within a core can cause a chip to
wear out early and stop functioning correctly. Voltage variation
or voltage noise results from non-ideal power distribution. In
all cases, variations affect the worst-case delay within a circuit.
Dynamic variations also reduce the lifetime of a processor
through repeated stresses on individual components. These
emergencies must be avoided at all costs to ensure robust
processor operation.

B. Worst-Case Design

Traditionally, designers have coped with parameter varia-
tions through careful design and testing, allocating sufficiently

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1431

large margins or tolerance guardbands. Margins compromise
the peak operational capacity of a circuit to ensure reliable
and expected execution. For a processor relying on a single
reference source signal (i.e., clock signal), the clock rate
of the processor is set forth by the operational speed of
the slowest logic path. As processor features have shrunk,
parameter variations have amplified the difference between
peak and worst-case operational delay in these slowest logic
paths. Therefore, the effective clock rate is slowing down.
Consequently, the maximum performance-per-watt efficiency
we can extract from our processors suffers.

In an effort to better understand the impact of worst-case
design, here we examine voltage noise (also referred to as
dI/dt) as a specific case study. Efforts at reducing processor
power, and improving performance-per-watt, have the unfor-
tunate side effect of causing large current variations within the
processor. Clock gating is one example of such an innovation.
Roughly speaking, clock gating is promoted as a technique
for reducing the power requirements of modern processors.
Unfortunately, it involves sudden and large current transitions.
Due to parasitic inductance in the power-supply network,
these current oscillations may lead to undesirable swings in
the microprocessor’s core supply voltage. The voltage noise
problem can result in supply voltages that violate the minimum
or maximum voltage thresholds for the processor. This can
potentially cause timing problems in a microprocessor and
result in incorrect calculations [1]. Designers must take several
precautions to ensure such voltage emergencies never occur.
Current designs prevent dangerous voltage emergencies via
careful allocation of large voltage margins, placement of
decoupling capacitors, and advanced floorplanning.

1) Voltage Margins: Today’s production processors use
operating voltage margins that are nearly 20% of nominal
supply voltage [2]. However, conservative designs either lower
the operating frequency or sacrifice power efficiency. As
feature sizes shrink and nominal supply voltage scales down
gradually with limited threshold voltage scaling, circuit delay
sensitivity to margins increases with each technology node.

Fig. 2 plots peak frequency at different voltage margins
across four PTM [3] technology nodes (45 nm, 32 nm, 22 nm,
and 16 nm) based on detailed circuit-level simulations of an
11-stage ring oscillator consisting of fanout-of-4 inverters. The
plot shows that at today’s 32 nm node, a 20% voltage margin
translates to a 33% frequency degradation, and at future
technology nodes the situation gets much worse. Practical
limitations on reducing power delivery impedance combined
with large current fluctuations make margin-based solutions
unsustainable.

Trends indicate that margins will need to grow to accommo-
date worsening peak-to-peak voltage swings. Consequently, as
we go into the future, designers must increasingly compromise
peak performance for growing worst-case delays. Fig. 3 shows
the worst-case peak-to-peak swing in future generations rela-
tive to today’s 45 nm process technology. This data is based on
simulations of a Pentium 4 power delivery package model [5],
assuming nominal voltage gradually scales according to ITRS
projections from 1 V in 45 nm to 0.6 V in 11 nm [6]. To
study package response, current stimulus goes from 50 A to

Fig. 2. Worst-case margins are a growing source of processor ineffi-
ciency [4].

Fig. 3. Voltage noise is a growing problem in future process generations, as
the peak-to-peak swings are increasing [7].

100 A in 45 nm. Subsequent stimuli in newer generations
is inversely proportional to Vdd at the same power budget.
Voltage swing doubles by the 16 nm technology node. Future
processor performance and power efficiency will suffer to an
even greater extent than in today’s systems.

2) Decoupling Capacitors: To dampen peak-to-peak volt-
age swings and to keep voltage margins within some reason-
able bounds, processor designers rely on package and on-chip
decoupling capacitance. These capacitors attempt to maintain
low impedance over a range of frequencies. Bulk capacitors on
the motherboard dampen low-frequency noise, while package
capacitors target mid-frequency noise between 50 and 200
MHz that is caused by impedance in the power delivery
network. Lastly, on-chip decoupling capacitance targets high
frequency noise caused by sudden sharp changes in current
due to dynamic clock gating of idle functional units. Fig. 4
illustrates the distribution of these capacitors over the different
types of voltage droops.

Traditionally, designers have been using oxide capacitors,
but industry is making advances toward integrating deep-
trench decoupling capacitors into logic circuits. Deep-trench
capacitors provide significantly more capacitance per unit area
than oxide capacitors. However, their primary drawback is
the cost and amount of area necessary. For example, the
Alpha 21264 reports that roughly 15%–20% of the die area is
occupied by decaps [8]. Deep-trench capacitors will also add
to the cost of a chip due to the costly manufacturing process
and will exacerbate the already problematic leakage power
problem in processors.

3) Floorplanning: Modules within the processor do not
exert uniform current demands. Some modules consume sig-

1432 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 4. Sources of capacitance for the three primary types of voltage droops.

nificantly more power than others. It is critical to ensure
that such modules have a low impedance path on the power
delivery grid. Similarly, it is also important that designers do
not place high power modules that are likely to simultaneously
switch on or off close together. Such placement could lead to a
sudden large current swing in a short amount of time, causing
a voltage emergency.

It is possible to engineer a floorplan that is resistive to such
voltage noise by distributing the current demand of modules
more regularly across the processor [9]–[11]. Because modules
within the processor do not have uniform current demand,
designers can exploit this information to place high-current
modules spatially far apart from one another by pairing them
with low power modules.

Overall, margins, decoupling capacitance, and floorplanning
all help make the processor robust against voltage noise.
However, such static solutions require careful preplanning.
For instance, at present the only quantifiable methodology
that strongly establishes the amount of decoupling capacitance
required involves planning for the worst-case voltage swing.
Such pessimistic design lowers the overall operating efficiency
of the processor. The traditional means of dealing with voltage
noise discussed in this section are already being stretched to
their limits. Continued scaling trends will only make voltage
noise a more serious problem for the community to address.
As performance, power efficiency, area, and cost become more
important, new and more cost-effective solutions will become
necessary to cope with all forms of variations.

III. Resilient Architectures via

Collaborative Design

The problem with addressing emergencies using the circuit-
level techniques discussed in the previous section is that such
techniques are inflexible. The solutions that designers put in
place are not adaptable once the chip leaves the fabrication
plant. Therefore, designers make cautious and pessimistic
assumptions about the conditions under which a chip may
operate to ensure high reliability. But such conservative design
strategies lead to worst-case design that is not representative of
typical case execution. Worst-case design overly penalizes chip

Fig. 5. Cumulative distribution of voltage samples across 881 different
executions [7].

performance and power efficiency for infrequent corner cases,
rather than optimizing the chip for the typical case behavior.

Consider our case study from the previous section—worst-
case design for voltage noise. The worst-case operating voltage
margin that the industry uses today is overly conservative.
Prior work determines this from 881 benchmarking runs
on an Intel Core2 Duo, as they unintrusively sense voltage
near the silicon via isolated low-impedance processor pin
connections [7]; the processor package exposes two pins for
this purpose called VCCsense and VSSsense. On the basis of
undervolting experiments, this processor is estimated to have
a worst-case voltage margin of 14%. The experiments include
a spectrum of workload characteristics: 29 single-threaded
SPEC CPU2006 workloads, 11 Parsec [12] programs and
29×29 multiprogram workload combinations from CPU2006.
Therefore, we believe that the conclusions drawn from this
comprehensive investigation are representative of production
systems and not biased toward a favorable outcome.

Fig. 5 shows a cumulative histogram distribution of voltage
samples for the Core 2 Duo processor. The figure shows the
deviation of each voltage sample relative to the nominal supply
voltage. Each line within the graph corresponds to a run.
Runtime voltage droops are as large as 9.6% (see min. droop
marker). Therefore, the 14% worst-case margin is necessary.
However, they occur very infrequently. Most of the voltage
samples are within 4% of the nominal voltage. The typical-
case marker in Fig. 5 identifies this range. Only a small
fraction of samples (0.06%) lie beyond this typical-case region.
Therefore, it is a better design choice to tighten the worst-case
voltage margin to 4%, while providing a fail-safe guarantee
mechanism for those very infrequent large voltage swings.

A. Abstracting Circuit-Level Challenges to the Architecture

An alternative approach to worst-case design is to design
the processor for typical-case operating conditions and to add
a fail-safe hardware mechanism that guarantees correctness in
case of behavior outside of typical case conditions. Handling
emergencies using such a strategy can improve performance,
assuming the cost of using the fail-safe mechanism is not too
high. For example, using a 4% typical case voltage margin for
the Core 2 Duo processor under test in Fig. 5 would translate
to 15% improvement in clock frequency, assuming a 1.5×
voltage to frequency scaling factor [13]. As technology scaling

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1433

continues, these scaling factors will increase (see Fig. 2),
thereby offering even better performance improvements as we
tighten the voltage margin.

However, active emergency prevention is necessary if ag-
gressive operating margins are sought to push performance.
Solutions involving the processor architecture layer are better
than pure circuit techniques because architectural techniques
are more dynamic. Architecture techniques are feedback
driven, observing runtime activity to determine the appro-
priate course of action to take. Such a higher-level solution
enables the processor to dynamically adapt to execution-time
emergency activity, rather than being pessimistically penalized
through conservative assumptions at the fabrication facility.
Therefore, we would be able to operate the processor under
more typical case conditions, and as a consequence, reap better
efficiency from the chips.

To protect the chip from emergencies during operation in
the field, designers can build recovery and rollback logic into
the processor. The processor runs ahead assuming execution is
always correct, but then rolls back execution upon detecting an
error. This process is similar to branch speculation, where the
processor predicts the branch outcome and continues executing
speculatively, rolling back execution only if the prediction is
incorrect.

B. Involving the Software Layers

Although architecture-level solutions are dynamic and en-
able design for typical case operation, they lack the global
perspective of software. Software can reconfigure code running
on a chip to eliminate emergencies. It can do this because
software has global knowledge, such as what code is running
on the processor or which set of threads are coscheduled
together in a multicore chip. Therefore, in addition to innovat-
ing solutions at the architecture layer, software can mitigate
emergencies as well.

In the context of this paper, we constrain our definition
of software to those systems that operate directly below all
other code, including the operating system (OS) and the
BIOS. These software systems do not make any assumptions
about the higher-level code, nor do they rely on any external
assistance. They dynamically translate the instruction stream
online as the target software executes, thus they are completely
transparent to the conventional software stack, like OS and
application-level code. Such software systems already exist in
production environments. Examples include Transmeta’s Code
Morphing Software [14] and IBM’s DAISY [15].

Eliminating emergencies via software improves the over-
all performance of the processor. The architecture needs to
recover and roll back less frequently owing to fewer emergen-
cies. Therefore, by intermittently using the architecture layer,
and relying on the global view of software to eliminate recur-
ring emergencies, we enable smoother runtime performance.

Another reason for relying on software is that the im-
provement we observe through architecture-level solutions
is a function of emergency frequency. As technology scal-
ing trends continue, variation trends are likely to worsen,
so emergencies will be more pronounced. Therefore, more
aggressive utilization of the architecture’s dynamic fail-safe

mechanism will be necessary. Because the fail-safe mechanism
is a runtime feature, performance at execution time will
suffer if the number of emergencies increases. Software can
sustain the existence of such hardware solutions by targeting
and reducing recurring emergencies, keeping the overhead of
dynamic rollback and recovery tolerable even in future, more
emergency-prone, technology nodes.

Software is already playing a critical role in ensuring robust-
ness. Large-scale companies like Google write error-tolerant
application code [16]. Google engineers assume that hardware
failures are inevitable and write their code accordingly. System
failures do not affect their application’s correctness or quality
of service. The Google search engine automatically detects
failures via timeouts and reissues requests to other available
nodes, thus proving resilient to hardware failures.

However, compromising transparency between hardware
and the application, as Google does, is not a generalizable
solution for the mass market. Independent software vendors
(ISVs) will require that hardware is always robust. This is
especially true for backward compatibility and legacy code
reasons. In the future, we envision that microprocessor compa-
nies will ship their processors with formally verified software
that operates below the operating system. It will act as a
transparent layer that guarantees resiliency in the presence of
emergencies. Such software-assisted reliability is simply an
extension of present-day application-level reliability as in the
case of Google.

C. Alarm-Based Computing

As we have seen from the introduction of this section,
most programs experience minor voltage swings relative to the
extreme operating voltage margin. Designing the processor for
those infrequent corner cases severely penalizes the common
case. Therefore, compared to the industry-wide route, we
advocate taking a radial route to the problem of allowing
emergencies to occur. In an alarm-based computing platform,
an emergency acts as an indicator to the system, signaling it
that dangerous activity is occurring at the lowest level of the
execution engine. The alarm-based computing system tolerates
emergencies infrequently, while eliminating frequently recur-
ring emergencies using patterns in emergency behavior of a
running code. This vision is implemented in both hardware
and software. In the process of building a system, we answer
several fundamental research questions that demonstrate and
validate the contributions of our collaborative design argument,
such as the following.

1) What information should the circuit layer provide to the
microarchitecture layer?

2) How should we design the microarchitecture so that
it can tolerate emergencies gracefully without severe
penalties?

3) What information should the microarchitecture propa-
gate to the software layer?

4) What should the emergency elimination software layer
look like?

5) What techniques should the software utilize to eliminate
emergencies?

1434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 6. Our alarm-based computing system is comprised of three paradigms: tolerance, avoidance, and elimination. Various techniques that mitigate voltage
emergencies exist either at the hardware or software only layers, or that rely on both. A large body of prior work also falls into this general structure.

Fig. 6 illustrates the overall design of our system for
coping with voltage variation. The system has an emergency
detector (hardware) that triggers a fail-safe recovery unit
(hardware) to rollback execution whenever it detects an emer-
gency. The detector is simply a distributed set of voltage
sensors, monitoring for voltage emergencies. Upon detecting
a margin violation, the detector raises an alarm signaling
an emergency predictor (hardware) with activity leading up
to that emergency. The predictor quickly programs itself to
suppress recurrences of the emergency by throttling processor
activity. But if the profiler within the predictor identifies that
the emergency is occurring very frequently, perhaps because
it is in loop, then the hardware accumulates information to
guide a dynamic runtime system (software) that eliminates
recurrences of that emergency. The runtime software layer
eliminates the emergency either via code transformation (using
compiler techniques) or by invoking a thread scheduler to
coschedule the suffering thread with an alternative program.
The latter is useful in multicore systems. However, when
software is unsuccessful, the hardware emergency predictor
takes over, re-arming itself with the signature pattern to instead
predict and suppress the emergency. It acts as a low-penalty
fail-safe.

This scheme is a three-tiered approach, including tolerance,
avoidance and elimination. As we go up the layers, there is
more global knowledge of underlying activity. This knowledge
increases the system’s ability to fix emergencies effectively
and more permanently at each layer. Because these three
principles are abstract notions independent of any specific
implementation, in the following sections we present various
techniques that exist in literature at each layer. We summarize
the contributions and provide critical insights.

IV. Tolerance

Tolerating, or allowing emergencies to occur, is useful both
for tightening margins, and observing the emergency behavior
of running code. To enable this, the architecture must support
a built-in mechanism that allows voltage emergencies to occur,
but when they do, it recovers processor state and resumes
executions. By tolerating emergencies initially, we can subse-
quently learn to avoid, as well as eliminate them altogether. In
this section, we empirically understand the activity leading to

emergencies. We also discuss related work in this context and
discuss what tolerance allows us to learn about emergencies.

A. Mechanism for Allowing Emergencies

Razor [17] is one of the most well-known approaches
for tolerating variation errors in the field. It relies on a
combination of architecture and circuit techniques to detect
and recover from errors. In Razor, each pipeline stage is
shadowed by another latch that triggers after some constant
delay, such that the shadow latch always captures the correct
logic value. Razor signals an emergency when the main latch
value differs from the shadow latch, in which case execution is
replayed safely using the value from the shadow latch to ensure
forward progress. Because of this ability to detect and recover
from errors, designers can optionally reduce the supply voltage
to significantly lower power consumption, or alternatively
boost up the clock frequency for better performance, either
way maximizing performance per watt. However, Razor’s
shortcoming is that it is severely intrusive, requiring intimate
knowledge of critical path delays and changes to traditional
microarchitectural structures at the expense of burning ad-
ditional power. Moreover, it adds area and cost overheads,
making design and validation even more complicated than they
already are in today’s systems.

Alternatively, checkpoint-rollback mechanisms have been
proposed to guarantee fail-safe execution. Checkpoint-rollback
mechanisms have been proposed for handling soft errors [18]–
[20]. They support execution rollback in the presence of
an error. They are already available in existing production
systems [21], [22], and more novel applications of this general-
purpose hardware are continuously emerging [20], [23]–[27].
Extending their service to voltage noise is yet another addition.

General purpose checkpoint recovery is good from a
reusability standpoint. However, the cost of relying only on
coarse-grained checkpoint recovery is prohibitively expensive.
Therefore, tolerating emergencies is not always possible. Even
assuming optimistic checkpointing intervals (between 100 and
1000 cycles), traditional checkpoint-recovery schemes trans-
late to unacceptable performance penalties [28]. Therefore, it
is only feasible to rely on this mechanism infrequently.

Gupta et al. [28] proposed an alternative recovery scheme
to more effectively handle voltage emergencies. Their im-
plicit checkpointing scheme tolerates all voltage emergencies

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1435

Fig. 7. Snapshot of art from the CPU2000 benchmark suite over 430 cycles.
The snapshot illustrates how microarchitectural event induced pipeline stalling
and resonance activity can lead to emergencies (indicated using arrows) [32].

by buffering commits until it is confirmed that no voltage
emergencies have occurred while the buffered sequence was
in flight. While shown to be effective, implicit checkpointing
is specialized to a specific style of processor design (i.e., out-
of-order superscalar execution).

Similar to Razor, such a scheme is intrusive and forces
changes to predesigned and validated microarchitectural struc-
tures, thus requiring additional design, testing, and revalidation
of prior logic blocks. General-purpose design considerations
are important because we are targeting the commodity proces-
sor market segment, where the cost of a processor can have
implications on market share.

B. Learning from Emergencies

To be able to avoid and eliminate emergencies, we need to
find leading indicators of dangerous voltage fluctuations. Prior
work considers several microarchitectural parameters, such as
the number of entries in the reorder buffer, the instruction fetch
queue, and the load/store queue, along with microarchitectural
events such as cache misses and pipeline flushes [29]. On the
basis of their findings, here we summarize the perturbation
effects of microarchitectural events on processor activity using
real program examples and show they can lead to voltage
emergencies. We also discuss patterns in activity that allow
us to not only identify emergencies uniquely, but also predict
their recurring occurrences [29]–[31].

First, we discuss the effect of individual microarchitectural
events on current and voltage. Fig. 7 shows a snapshot of
pipeline activity for benchmark art from SPEC CPU2000 over
430 cycles. Microarchitectural events for the cache and branch
predictor are illustrated along with current and voltage activity
of the processor. In the pipeline stall part of the figure, we
observe an L2 cache miss (illustrated by a vertical bar in
the L2 Miss sub-graph). During the time it takes to service
the L2 miss, pipeline activity ramps down, as seen in the
current profile (marker 1). However, after the L2 miss data is
available, functional units become busy and there is a sudden
increase in current activity (marker 2). This steep increase in
current causes the voltage to temporarily dip below the voltage
margin (marker 3) because of parasitic inductance in the power
delivery subsystem.

Fig. 8. Distribution of processor events and operations that cause voltage
emergencies in the CPU2000 suite [33].

Additionally, microarchitectural events that cause periodic
high-current and low-current activity can cause a resonance
buildup of voltage, if the period coincides with the resonance
frequency of the power delivery subsystem. The resonance
portion of Fig. 7 illustrates multiple pipeline flush events
occurring in close proximity to one another. Pipeline flush
events cause a sudden decrease in activity and are followed
by a rush of activity as instructions are rapidly issued along the
correct program. The close distribution of these events leads to
a resonating effect that results in rapid fluctuations in current.
These successive fluctuations not only cause the voltage to
swing, but also progressively increase in amplitude from one
event to another (markers 4, 5, and 6).

Associating a specific microarchitectural event with an
emergency requires us to apply our knowledge of how microar-
chitectural events affect processor activity. Identifying the root
cause of an emergency is not as simple as merely looking at the
most recent microarchitectural event prior to the emergency.
Consider the emergency at marker 5, which occurs slightly
past an L2 miss event. Unlike the L2 miss event under pipeline
stall, this L2 miss event is not responsible for the emergency.
L2 miss events take a few hundred cycles to complete, and
instructions pending on that data are not issued until the event
completes. Therefore, the burst of current activity does not
correspond to this pending L2 event; rather, it corresponds to
the pipeline flush preceding the L2 event.

Prior work devised an algorithm to identify root causes [29].
The algorithm scans recent processor events in a fixed-priority
order looking for event completion times that coincide with
the time of the emergency. It scans down the list of L2
misses, translation lookaside buffer (TLB) misses, pipeline
flushes, L1 misses, and long latency operations, in that or-
der. To show the strength of the relationship between these
processor events/operations and emergencies, Fig. 8 shows
the percentage of emergencies caused by different root causes
for the SPEC CPU2000 benchmark suite. A majority of the
emergencies are caused by pipeline flushes and L2 misses.
The uncharacterized 14% is due to emergencies that cannot be
uniquely attributed to a single root cause, such as the resonance
case illustrated in Fig. 7.

Whether an event at a particular location causes an emer-
gency may depend on activity just before and after the
event. Even a small loop like that in Fig. 9(b), extracted
from benchmark gcc of SPEC CPU20006, can have behavior
phases with markedly different activity patterns. Fig. 9(a) is
a snapshot of activity within that loop over 880 cycles. It

1436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 9. (a) Voltage emergencies are associated with recurring activity (phases
A, B, and C) over 880 cycles. The numbers next to the vertical bars in the flush
graph correspond to the basic block number in (b) containing the mispredicted
branch. (b) Emergency-prone loop from function init regs in gcc from
CPU20006 benchmark suite. Its activity snapshot is shown in (a) [4].

shows three repeating phases of the loop. Phase A uses paths
1 → 4 and 1 → 2 → 4, while phase B uses only path
1 → 2 → 3 → 4. The issue rate of phase A is relatively
low, while that of phase B is quite high. The flush events
labeled 1 are caused by branch mispredictions at the end
of basic block 1. Those events in phase B, where the issue
rate is high, always cause emergencies. Those same events
in phase A never do. Therefore, tracking program flow and
microarchitectural events yields a proxy for the activity leading
to emergencies. Our findings are similar for events in Phase
C that correspond to events in Phase A.

V. Avoidance

In addition to tolerating emergencies, researchers have pro-
posed means for avoiding emergencies by using heuristics
that predict emergencies. When a prediction is made and an
emergency is impending, the predictor triggers an actuation
mechanism that throttles machine execution, allowing proces-
sor voltage to smoothly recover back to nominal conditions. In
this way, these predictors avoid emergencies. Some schemes
use simple heuristics, such as a threshold crossing, while oth-
ers use history, including microarchitectural and program state,
to anticipate emergencies. Here we describe these schemes, ad-
dressing their limitations and feasibility, starting from simpler
and moving toward more complex schemes.

A. Sensor-Based Schemes

A number of throttling mechanisms have been proposed to
dampen sudden current swings, including frequency throttling,
pipeline freezing, pipeline firing, issue ramping, and changing
the number of the available memory ports [34]–[37]. These
typical sensor-based proposals rely on a tight feedback loop
like that shown in Fig. 10(a). The loop includes a sensor that
tries to detect impending emergencies and a throttling actuator
that tries to avoid them. The sensor relies on a soft current or
voltage threshold as a “canary,” or a predictor. Crossing that
threshold means that voltage is approaching its lower margin,
so the actuator predictively turns on throttling until the crisis
is past.

However, such mechanisms require a tight feedback loop
that detects an imminent violation and then activates a throt-
tling mechanism to avoid the violation. The detectors are
either current sensors or voltage sensors that trigger when a
soft threshold is crossed, indicating a violation is likely to
occur. The behavior of the feedback loop is determined by
two parameters, the setting of the soft threshold level and
the delays around the feedback loop. Unfortunately, choosing
those parameters to accommodate reduced operating margins
is thwarted by correctness failures and/or performance penal-
ties.

Fig. 10(b) illustrates the use of a soft threshold to throttle
execution and prevent an emergency. The graph shows voltage
waveforms with and without sensor-based throttling (throttled
execution and uncorrected execution, respectively). The solid
horizontal line marked aggressive soft threshold indicates the
threshold at which a voltage sensor starts to take action to
prevent an emergency. Setting the soft threshold aggressively
(i.e., close to the lower operating margin) requires a very fast
reaction by the sensor and actuation system. Failure to respond
quickly enough results in a voltage emergency. In Fig. 10(b),
the voltage starts to recover under throttling, but not in time
to avoid crossing the lower operating margin.

Fig. 11(a) shows the sensitivity of sensor-based mechanisms
to feedback loop delays by plotting the number of emergencies
that go unsuppressed in our benchmark suite as a function
of sensor-loop delay times. The baseline system resembles
a Pentium 4 configuration. We assume the soft threshold to
be 3% below the nominal voltage and the lower operating
margin to be 4% below nominal. Feedback loop delays ranging
between 0 and 5 cycles would require a nearly perfect sensor.
Yet even a 2-cycle delay causes 50% of all soft threshold
crossings to violate the simulated microprocessor’s minimum
operating margin specification. This is even when we assume
all levels of decoupling capacitance (i.e., on-chip, package,
and board capacitance).

In the absence of a fail-safe mechanism to tolerate emergen-
cies, these simpler predictors are ineffective because of sensor
delays. A single emergency could lead to catastrophic core
failure. However, it is possible to leverage this simple generic
scheme by backing it up with fail-safe checkpoint recovery
mechanism. Unfortunately, because of the significantly large
number of missed emergencies, performance improvement will
poor because fail-safe recovery penalties diminish potential
gains.

To accommodate slow sensor response times and ensure
that throttling effectively prevents emergencies, sensor-based
schemes can use conservative soft thresholds. Lifting the soft
threshold away from the lower operating margin, as illustrated
by the conservative soft threshold in Fig. 10(c) gives the
throttling system more time to prevent an emergency. But
as the uncorrected execution waveform in Fig. 10(c) shows,
even in the absence of throttling, a soft threshold crossing
may not be followed by an emergency. Throttling execution in
such cases decreases performance without any compensating
benefit. The more conservative the soft threshold setting, the
greater the performance penalty. Fig. 11(b) shows that this
penalty can be quite large. Assuming an ideal sensor with no

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1437

Fig. 10. Sensor-based throttling. (a) Feedback loop is intended to detect and prevent emergencies. (b) Aggressive soft thresholds allow too little time to
prevent emergencies. (c) Conservative soft thresholds trigger unnecessary throttling [31].

Fig. 11. Implications of feedback loop delay and soft threshold settings
on correctness and performance. (a) Large percentage of emergencies are
not detected with sufficient time to prevent them due to feedback loop
delays. (b) Even assuming a 0-cycle feedback loop delay, the number of
soft threshold crossings that do not violate the minimum operating margin
(i.e., benign crossings) is so large that performance suffers due to unnecessary
throttling [31].

feedback loop delay (i.e., 0-cycle sensor delay), the percentage
of benign soft threshold crossings is between 77% and 58%
for soft thresholds ranging from 2% to 3%. So even if it were
possible to design a feedback loop with no delay, the large
performance penalties would deter architects from reducing
operating margins.

B. Event-Guided Predictors

Sensor-based predictors operate independently of program
or microarchitectural state. Such higher-level information has
the intrinsic property that it relates program/machine activity
to power supply behavior. The intuition behind this relation-
ship is that processor current draw depends on the set of
functional blocks that are active and consuming power during
each cycle. The activity of these functional blocks depends
on the set of instructions in flight through the core’s pipeline,
thus relating current draw and consequently voltage flux to
higher-level program instruction sequences.

Therefore, an alternative approach is to eliminate the feed-
back loop associated with previous proposals and instead
monitor specific microarchitectural events as indicators of
processor activity that can lead to voltage emergencies. In
essence, this predictor replaces current and voltage sensing
in Fig. 10(a) with microarchitectural event detection. Such

an event-driven mechanism triggers corrective action when
it detects certain emergency-prone events (L2 cache misses
and branch flushes, as they are the events associated with
most of the emergencies). A naive implementation might take
preventive measures at every such event (e.g., to activate a
throttling mechanism at every L2 miss). That would be overly
conservative, however; because most such events do not give
rise to emergencies, such a system lends itself to a high false-
alarm rate of 71% [33].

Instead, by tracking specific instructions associated with
events (L2 misses or pipeline flushes) that have caused emer-
gencies, and maintaining contextual information for each event
and emergency, it is possible to reduce the false rate signif-
icantly. Reacting only to events associated with emergencies
results in much less overhead than the naive implementation.
Fig. 12 shows a cumulative distribution graph plotting the
number of unique program addresses that trigger emergencies
and their contribution to the total number of emergencies
during execution. Each benchmark except for parser, gcc,
twolf, and crafty has fewer than 15 unique program addresses
that cause over 90% of runtime emergencies. Thus, the state
that an instruction-specific event-guided mechanism needs to
maintain can be stored in just a few bytes.

While there are just a few instructions, in a prior work
we demonstrated that event predictors are a poor heuristic for
whether voltage emergencies are likely in the next few clock
cycles [31]. Prediction accuracy can be poor. Single-event
prediction accuracy is only about 10%. As we discussed in
the tolerance section, the history of activity leading to voltage
emergencies is important. A single event predictor does not
capture sufficient history for accurate emergency anticipation.
Gupta et al. [33] also confirmed these results, showing that
throttling is a poor adaptation mechanism for the event-guided
scheme described in this paper.

C. Signature Predictor

To overcome the limitations of event-based predictors,
researchers have proposed a voltage emergency predictor
that identifies when emergencies are imminent and prevents
their occurrence by predicting them using signatures [31].
An emergency predictor predicts voltage emergencies using
emergency signatures and throttles machine execution to

1438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 12. Number of unique instructions causing emergencies and their cor-
responding contribution to the total number of emergencies [33].

prevent them. An emergency signature is an interleaved
sequence of control-flow events and microarchitectural events
leading up to an emergency.

A voltage emergency signature is captured when an
emergency first occurs (tolerated) by taking a snapshot
of relevant event history and storing it in the predictor.
Tolerance is an integral part of this predictor. Post emergency,
a fail-safe checkpoint-recovery mechanism rolls the machine
back to a known correct state and resumes execution.
Subsequent occurrences of the same emergency signature
cause the predictor to throttle execution and prevent the
impending emergency. By doing so, the predictor enables
aggressive timing margins to maximize performance, even
in the presence of emergencies. The cost of signature-based
throttling is fewer than ten cycles, which is much cheaper
than the thousands of cycles that it costs to rely on the
general-purpose checkpoint-recovery mechanism.

For this predictor to be effective, the predictor must an-
ticipate an emergency accurately and do so with sufficient
lead time for throttling to take effect. Signatures predict
emergencies with an average accuracy of 93% across the
entire spectrum of CPU2006 benchmarks, as illustrated via
the 0-cycle lead time bar in Fig. 13. A lead time of 0 cycles
optimistically assumes there is no delay to actuate throttling
to prevent an emergency, thus representing an ideal scenario.
However, real systems require non-zero lead times to account
for circuit delays, as we discussed in the previous section. As
lead time increases, Fig. 13 shows that accuracy degrades just
slightly from 93%. Even with 16 cycles of lead time, which
is ample time to predict and prevent an emergency, accuracy
remains high at 90%.

Throttling cannot prevent all emergencies, even if prediction
accuracy is high. In such cases, the fail-safe checkpoint-
recovery mechanism recovers processor state, albeit at much
higher penalty. But the authors find that the number of such
emergencies is only 1% of all emergencies that occur without
throttling. Therefore, the associated total recovery penalty is
very low in our quantitative analysis.

An aggressive reduction in operating voltage margins trans-
lates to higher performance or better energy efficiency. How-
ever, benefits are offset to some degree because of throttling
penalties to prevent emergencies and checkpoint-recovery roll-

Fig. 13. Prediction accuracy of a signature-based predictor is high even
when predicting cycles ahead of time [31].

Fig. 14. Signature-based predictor enables substantial gains using an aggres-
sive 4% voltage margin [38].

backs to train the predictor. In simulations of a representative
superscalar microprocessor in which fluctuations beyond 4%
of nominal voltage are treated as voltage emergencies, a
signature-based predictors shows great promise. Based on a
1.5× relationship between voltage and frequency at the PTM
32 nm node [3], we observe an ideal performance gain of
14.2% using an oracle throttling scheme (see Fig. 14). By
comparison, the voltage emergency predictor comes to within
0.7 percentage points of the ideal scheme, assuming infinite
or unbounded resources to implement the predictor. But even
under strict physical resource constraints, an intelligent bloom
filter-based predictor ranging in size between 4 kB and 32 kB
delivers substantial gains.

An added benefit of signature-based emergency prediction
is that the predictor does not require fine tuning based on
specifics of the microarchitecture nor the power delivery
subsystem, as is the case with sensor-based predictors. The
current and voltage activity within a microprocessor are
products of machine utilization that are specific to running
workload dynamic demands. Capturing that activity in
the form of emergency signatures allows the predictor to
dynamically adapt to the emergency-prone behavior patterns
resulting from the processor’s interactions with the power
delivery subsystem without having to be preconfigured to
reflect the characteristics of either.

VI. Elimination

Software can eliminate emergencies altogether. Joseph et
al. [35] pointed out that the most problematic processor current
profiles include successive periods of high and low processor
activity. It is when these high and low durations approach
the resonant frequency of the power-supply network that the
problem becomes more serious. Joseph et al. demonstrated this
by developing an artificial application that was hand tuned to
simulate periods of high and low activity that matched the

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1439

Fig. 15. (a) dI/dt stressmark. (b) Voltage swing of the dI/dt stressmark
versus peak swings at resonance [35].

resonant frequency of the processor’s power-supply network.
This synthetic benchmark, shown in Fig. 15(a), contains only
a single loop body, yet it consistently causes voltage swings
dangerously large enough to violate the minimum voltage
margin [as shown in Fig. 15(b)]. The loop body oscillates
between very low current activity (because divt produces
long stalls) and high current activity (in which dependent
instructions store divt result to memory, reread it, and restore
it to registers). This software code loop provides motivation
for software-based solutions because if such loops exist in real
applications, it is logical to apply a permanent solution at the
application level, thereby limiting the performance penalty of
activating control hardware. Such cases have been found in
real programs [39].

Software has a much more global view of execution than
the hardware does. For instance, it knows what threads are
running on a chip, and it can also know the instructions
that a program is executing. By relating emergencies to such
high-level information, software can relieve the hardware of
repeatedly taking action to ensure correctness, be it via either
tolerance or avoidance. As an example, consider Fig. 16.
It shows the number of distinct instructions responsible for
emergencies, and the total number of emergencies they cause
over the lifetime of a program across three different benchmark
suites. In each case, only a few hundred instructions on average
are responsible for hundreds of thousands of emergencies. So,
a few emergency-prone code regions are responsible for almost
the whole emergency problem. Prior hardware techniques must
enable their mechanisms at least once per dynamic emergency.
Software, in turn, can exploit the fact that there are so few
emergency-prone locations, and that emergency-prone behav-
ior is so repetitive. By using the history of activity that leads
to emergencies at these locations, compilers can intelligently
reshape code to eliminate recurring emergencies altogether.

Fig. 16. Few hundred static program locations cause hundreds of thousands
of emergencies.

Fig. 17. Worst-case droop increases during multithreaded and multiprogram
execution compared to single-thread execution.

In the context of multicore systems, intelligently schedul-
ing threads to dampen voltage swings is likely to become
important. As the number of cores sharing a power supply
source increases, the absolutely peak-to-peak voltage swings
may also increase due to interfering microarchitectural activity
across hardware contexts. Fig. 17 quantitatively confirms this
likelihood using data gathered on a Core 2 Duo processor. The
figure shows the magnitude of the worst-case voltage droop is
larger during multithreaded and multiprogram execution than
during single-threaded execution. Therefore, in this section we
also discuss thread scheduling for voltage noise.

A. Compiler Techniques

We claim that the hardware-based solutions work well for
intermittent voltage emergencies, but a loop incurring repeated
voltage deviations is best handled by a compiler. Consider a
frequently executing loop that experiences recurring emergen-
cies during every iteration of the loop simply because the pro-
gram is taking the same error-prone code path every iteration.
Hardware would repeatedly tolerate, or throttle execution to
ensure correctness to avoid or tolerate that emergency. But
an intelligent software piece, like a compiler, is capable of
performing fine-grained instruction-level tweaks to eliminate
the emergency. A compiler typically has several options when
choosing the order of instructions, and many of the options
result in equally performing software. Therefore, in the case of
this voltage emergency-prone loop, the compiler can rearrange
instructions along the problematic code path to avoid recurring
emergency activity without impacting performance.

Currently, production static compilers do not account for
voltage fluctuations when scheduling instruction sequences.
While techniques can and have been developed to produce

1440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

power-efficient code by the static compiler, it would be diffi-
cult to extend these static optimizations to solve the voltage
noise problem. There is a lack of comprehensive understanding
about instruction sequences that result in voltage fluctuations.

However, Toburen [40] and Yun and Kim [41] made some
initial progress in this direction. Toburen’s approach builds
an instruction schedule that limits processor power dissipation
during each cycle. The power-aware scheduler places as many
instructions as possible in a given VLIW instruction bundle un-
til a given power threshold is reached. Often, high-energy in-
structions are not scheduled together because they can result in
large and sudden current spikes. Such instructions are instead
dispersed slightly from one another by exploiting scheduling
slack, which is typically available if the compiler produces
sufficiently large enough code regions. In this manner, the
compiler generates a uniform dI/dt curve that decreases the
processor’s average peak power consumption each cycle. Sim-
ilarly, Yun and Kim proposed a power-aware modulo schedul-
ing algorithm for high-performance VLIW processors. Their
proposed algorithm reduces both the step power (the effect that
causes voltage noise) and peak power by constructing a more
balanced parallel schedule that does not sacrifice performance.

Even if static compiler algorithms were developed for locat-
ing potentially dangerous instruction sequences, the decision
on whether or not to intervene would depend on characteristics
of the underlying power-supply network and the operating
voltage range of the target processor, which typically are
not known at static compile time. Therefore, these static
optimizations are not easily retargetable across different com-
binations of platform and application. Finally, static techniques
may not avoid all voltage emergencies, because many of the
emergencies occur because of dynamic instruction sequencing,
which is difficult to predict prior to program execution.

Dynamic optimization systems [42] are well suited for
emergency-specific code transformations, especially in sce-
narios like “90% of the execution time is spent in 10%
of the code.” Fig. 16 shows similar behavior with respect
to emergencies. By operating in a lazy optimization mode,
the dynamic optimizer can wait until it is informed by the
hardware of a voltage emergency (after the hardware activates
control mechanisms to eliminate the emergency), and it can
then reoptimize and cache a version of the code that exhibits
more voltage stability. In the ideal case, only one iteration of
a power-virus loop would require hardware intervention, and
the remaining iterations would be executed from the software-
based dynamically-optimized code cache. Because this scheme
dynamically discovers emergency hot spots, it is more robust
for wide-scale deployment. Hazelwood and Brooks [30] were
the first to introduce the idea of a dynamic compiler-driven
strategy to eliminate a large fraction of emergencies.

A compiler-based issue rate staggering technique has been
shown to be effective at eliminating emergencies [43]. The
technique reduces emergencies by applying transformations
such as rescheduling existing code or injecting new code into
the dynamic instruction stream of a program. The runtime
code rescheduler uses the root-cause identification algorithm
discussed in the tolerance section to decide the kind of
code transformation that is best suited for eliminating a

specific type of emergency (e.g., pipeline flush, L2 miss).
The rescheduler combines this information with control
flow extracted from voltage emergency signatures to apply
transformations only along certain program paths (when
possible) to eliminate the emergency.

Fig. 9(a) illustrates that voltage emergencies depend on the
issue rate of the machine. Therefore, slowing the issue rate of
the machine at the appropriate point can prevent voltage emer-
gencies. One can achieve the same goal in software by altering
the program code that gives rise to emergencies at execution
time, and can do so without large performance penalties. The
compiler technique that the authors propose exploits pipeline
delays by rescheduling instructions to decrease the issue
rate close to the root-cause instruction. Pipeline delays exist
because of NOP instructions or read-after-write (RAW), write-
after-read (WAR), or write-after-write (WAW) dependencies
between instructions. Hardware optimization techniques like
register renaming in a superscalar machines can optimize away
WAR and WAW dependencies, so a RAW dependence is the
only kind that forces the hardware to execute in sequential
order. The compiler tries to exploit RAW dependencies that
already exist in the program to slow the issue rate by placing
the dependent instructions close to one another.

1) NOP Injection: A simple way for the compiler to slow
the pipeline is to insert NOP instructions specified in the
instruction set architecture into the dynamic instruction stream
of a program. However, modern processors discard NOP
instructions at the decode stage. Therefore, the instruction
does not affect the issue rate of the machine. Instead of real
NOPs, the compiler can generate a sequence of instructions
containing RAW dependencies that have no effect. Because
these pseudo-NOP instructions perform no useful work, this
approach often degrades performance.

2) Code Rescheduling: A better way to smooth processor
activity is to exploit RAW dependencies already existing in the
original control flow graph of the program. This constrains the
burst of activity when the machine resumes execution after the
stall, which prevents the emergency. Whether the compiler can
successfully move instructions to create a sequence of RAW
dependencies depends on whether moving the code violates
either control dependencies or data dependencies. From a high
level, the compiler’s instruction scheduler does not break data
dependencies, but it works around control dependencies by
cloning the required instructions and moving them around the
control flow graph such that the original program semantics
are still maintained.

Fig. 18 shows how the issue-rate smoothing technique
works. The plot shows a slice of program activity corre-
sponding to a loop within benchmark Sieve from the Java
Grande suite. Fig. 18(a) shows that data dependence on a long-
latency operation stalls all processor activity, so the current
profile goes flat (marker 1). When the operation completes,
the issue rate increases rapidly (marker 2) as several dependent
instructions are successively released to functional units. This
activity increases draw (marker 3), and as a result the voltage
dips below the lower margin (marker 4).

Fig. 18(b) shows activity after the reschedule transforms
the code slightly to reduce the issue rate. Because dependent

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1441

Fig. 18. 50-cycle execution snapshot of Sieve from the Java Grande bench-
mark suite. (a) Pipeline stall on a long latency operation triggers an emergency
(indicated by an arrow) as the issue rate ramps up sharply once the operation
completes. (b) Code rescheduling slows the issue rate just enough to prevent
the emergency illustrated in (a).

instructions are packed more tightly, the issue rate in Fig. 18(b)
does not spike as high as in Fig. 18(a) (marker 5). As a
result, the processor now draws current less aggressively. The
gradient at marker 6 is less steep compared to marker 3. There-
fore, the original emergency at marker 4 is now permanently
eliminated (marker 7).

Using this one issue-rate constraining technique, the com-
piler removes over 62% of all emergencies across the Java
Grande suite. On average, only 20% of all root causes had to
be rescheduled because they contribute to a large percentage
(over 98%) of all emergencies. These results indicate that
issue-rate smoothing works well for isolated emergencies like
the cases illustrated in Figs. 18(a) and 7.

However, there are caveats to code rescheduling. Code
rescheduling work best on in-order processors where machine
behavior is predictable at the compiler-level. Out-of-order
superscalar processors can render such compiler-level tech-
niques ineffective because of low level hardware instruction
scheduling. However, prior work indicates that making the
RAW dependence chain as long as the issue width of the
machine can overcome this hurdle effectively [44].

3) Other Techniques: Several other well-known compiler
algorithms could also be applied to this problem [29], [30].
For example, when a static compiler schedules instructions, it
often has several options for scheduling an instruction without
affecting application performance. Thus, the compiler may
inadvertently create regions of high and low processor activity
simply due to its predefined settings for scheduling instructions
in the event of a performance tie. By recognizing these sched-
ule slips, a dynamic optimizer can later apply code motion
to move instructions from high-processor to low-processor
utilization regions. This can result in the removal of a voltage
emergency without degrading the runtime performance of the
application.

As we mentioned earlier, Joseph et al. [35] described a dI/dt

stressmark that can, through a single-loop body of alternating
periods of high and low activity, consistently cause voltage
emergencies. In the stressmark, low activity is generated by
a sequence of long-running sequential divide operations, and

Fig. 19. Effect of compiler-guided software pipelining on a dI/dt stress-
mark. After software pipelining the system does not experience recurring large
voltage swings.

high activity is generated by a sequence of parallel operations
that stress the functional units and on-chip memory hierarchy.

It is possible to leverage existing compiler optimizations
to smooth out these periods of high and low activity
dynamically. A widely used compiler algorithm for increasing
the instruction-level parallelism of cyclic code is software
pipelining. By unrolling loops and overlapping the execution
of instruction sequences from several loop iterations, the
instructions can be scheduled more tightly. Typically, the
result of software pipelining is that n-iterations of a loop will
be combined to form one larger loop iteration. The nature
of the software pipelining algorithm has two interesting side
effects. First, the technique allows high-activity periods in
one loop iteration to be combined with low-activity periods
of the next loop iteration, potentially leading to a more stable
sequence of instructions that will often complete faster than
the original sequences. Second, by changing the amount
of work done in a loop iteration, periods of high and low
activity that fall on the resonant frequency will be disrupted.
Fig. 19 depicts the result of applying software pipelining
to the loop body of the dI/dt stressmark. By unrolling the
loop body once, and therefore lengthening the period of low
activity originally resulting from three subsequent divide
operations, the stressmark shifts off of the resonant frequency.
This reduces the resulting voltage fluctuations and eliminates
numerous invocations of the fail-safe hardware.

B. Thread Scheduling

As the number of cores per processor continue to increase,
and cores continue to share the same power supply source,
increasingly one core can either constructively or destructively
interfere with other cores, leading to more or less voltage
noise. Fig. 20 illustrates an example of destructive interference,
where the noise when two cores within a Core 2 Duo processor
are simultaneously active is smaller than the noise during
single-core execution. The figure also illustrates constructive
interference, which is just the opposite. The figure shows
aggregate droop activity where both cores, sharing a common
power source, are simultaneously running two instances of
473.astar. The x-axis of the graph refers to the start time
offset between the two programs. In other words, the graph is
a convolution of two execution windows.

Interfering microarchitectural activity across cores, such
as pipeline flushes and cache misses, is the root cause of

1442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 20. In multicore systems we observe voltage noise interference [7].

Fig. 21. Root cause of constructive and destructive interference in multicore
systems is because of interfering microarchitectural activity [7].

constructive and destructive interference. We can confirm this
effect by simultaneously running microbenchmarks on each
processor core and capturing the net effect or the magnitude
of the peak-to-peak voltage swing across the entire chip. The
heatmap in Fig. 21 represents the interference on a Core 2 Duo
processor. Both cores are subject to different microarchitec-
tural activity: L1 (only) and L2 cache misses, TLB misses,
branch mispredictions (BR) and exceptions (EXCP). The
magnitudes of the chip-wide voltage swings are normalized
relative to an idling machine. The y-axis corresponds to mi-
croarchitectural activity on Core 0 and the x-axis corresponds
to activity on Core 1. Depending on the pair of events, we
observe that the magnitude of the voltage swing changes.

In such a multicore scenario, a software solution larger than
a compiler becomes necessary. Virtual machine monitors or
operating systems become appealing, as these systems see
and control all threads executing on the underlying hardware.
They can therefore decide (based on runtime feedback from
hardware) if the running set of threads are collaborative from
a voltage noise perspective or not.

Scheduling of threads has been an important topic of study
in symmetric or chip multiprocessors. Prior work demonstrates
that threads can hurt each other’s performance by destruc-
tively interfering with one another [45]–[51]. For instance,
scheduling two cache intensive programs together is bad,
because the cache resource becomes a bottleneck and both
programs suffer. Similar to a processor’s cache, processor
supply voltage is a shared resource as well. In a resilient
architecture design, where a fail-safe mechanism provides
hardware guarantees, thread interference across cores could
cause system-wide performance degradation, as cores tied to
the same power plane are likely to share a single recovery
unit. Consequently, thread scheduling is on the critical path
for performance improvement, similar to cache contention.

Because multiple cores in most commodity modern proces-
sors share the power supply, threads could interfere with one

Fig. 22. Evidence that scheduling for voltage noise is different from schedul-
ing for performance. Modified version from [7].

another in a manner leading to frequent emergencies. A noise-
aware thread scheduler can schedule threads intelligently to
minimize the number of emergencies [7]. When activity on one
core suddenly stalls, voltage swings due to a sharp and large
drop in current draw. However, by maintaining continuous
current-drawing activity on an adjacent core also connected
to the same power supply, thread scheduling dampens the
magnitude of that current swing. In this way, scheduling can
prevent an emergency when either core stalls [52].

Coscheduling threads to reduce voltage emergencies differs
from scheduling for performance. Recall that voltage swings
occur primarily because of fluctuations in activity due to stalls.
Although scheduling for performance includes eliminating
stalls, that same metric does not necessarily guarantee fewer
emergencies. Because of this explicit scheduling, voltage noise
is necessary. To prove this point, Reddi et al. evaluated differ-
ent operating system scheduling policies, measuring emergen-
cies over the course of a batch job schedule consisting of 50
random jobs. For this selected set of programs, they evaluate a
range of scheduling policies, from random selection (random)
to maximum performance [instructions per cycle (IPC)] as
well as a custom policy for minimizing emergencies (droop).

In Fig. 22, they show performance in terms of IPC versus
droops observed over the course of the batch job schedule.
Both the y-axis and x-axis of the graph are normalized to
SPECrate, which assumes two instances of the same program
are running together at the same time. Each marker in the
graph is one batch simulation, and they ran 100 random
simulations.

The four quadrants in Fig. 22 (Q1 through Q4) help us draw
different conclusions from their analysis. Ideally, we want re-
sults in quadrant Q1, which indicates that the scheduling policy
lowers emergencies, in addition to improving performance.
Quadrant Q2 is good, but only from a performance standpoint.
Q2 suffers from an increase in emergencies. Results in Q3
are bad, since performance degrades and emergencies go up.
Lastly, results in Q4 imply a reduction in emergencies at the
expense of some performance.

By today’s standards, our random simulation is represen-
tative of production operating systems. The POSIX 2010
policies include simple policies, such as round robin and
first-in, first-out, which are effectively random in behavior.
From observing data in Fig. 22 we can conclude that random
schedules lead to more voltage emergencies. Additionally,
there are no guarantees about performance.

By comparison, a performance-centric scheduler achieves
best performance, as expected. However, such a scheduler is

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1443

unaware of voltage emergency activity occurring as a result
of its scheduling decisions. In Fig. 22 the IPC marker is in
quadrant Q2, indicating that on aggregate more emergencies
occur than our baseline. Although improving performance im-
plicitly leads to fewer execution stalls, this data indicates that
reducing stalls alone is insufficient to reduce emergencies in a
multicore system. Interactions across threads (or cores) impact
the amount of voltage noise we observe. Therefore, a noise-
aware scheduler is necessary. Consider the droop metric, or
noise-aware scheduling, whose data point resides in quadrant
Q4. The noise-aware scheduler focuses on emergency activity
and can therefore minimize emergencies across all 50 jobs.

VII. Broader Impact

The general paradigm of dealing with exceptional con-
ditions via hardware-guaranteed operation and software as-
sistance will be applicable to many areas beyond voltage
emergencies. For example, one could imagine the ideas and
constructs that we presented in this paper also applying to
thread deadlock and denial-of-service protection, hard and
soft-error prevention, and bus contention in multiple-core
microprocessors. As we look to microprocessors in the 5-year
to 10-year time frame, we expect that many of these issues, in
addition to PVT emergencies, will be pressing design issues
that can be addressed with the multilayer design paradigm
described in this paper. In the following first subsection, we de-
scribe the importance of thinking beyond just processor power
and performance. Cost is an important factor. In the section
that follows, we elaborate new opportunities for optimization
that are enabled at the software layer by transitioning to a
collaborative hardware and software resilient architecture.

A. Price-to-Performance Ratio

The need for collaborative hardware and software effort is
now more important than ever before. The design of general-
purpose microprocessors has long been primarily driven by
the goal of ever-higher performance. While the industry has
been extremely successful in this endeavor, we have begun
to see the emergence of application domains, especially in
the commercial sector, where energy efficiency and the price-
to-performance ratio are considered more important design
principles than peak performance alone. It is the use of
commodity hardware in large-scale computing domains like
datacenters, where efficiency at any cost is no longer an option,
that specifically drives the need for collaborative effort. In
such computing domains, price-to-performance is considered a
more important design principle than peak performance alone.

These application domains contain enormous amounts of
request/thread-level and application-level parallelism that en-
courages application architects to build computing clusters
with large numbers of parallel commodity processors. Cheap
hardware is lending itself to applications involving high-
volume web services (e.g., search engines), biological and
physical analysis, simulations (e.g., gene sequencing), and
massively multi-player role-playing games. All these domains
are continuously striving for higher availability and better per-
formance, but with decreasing cost per system. Consequently,

for a fixed level of performance per processor, application
architects prefer processors that cost less to purchase (e.g.,
cheaper packaging) and less to run (e.g., consume less power
and produce less heat), because they can then purchase more
computing power to solve their problems faster or make their
infrastructures more available. The Google Cluster Architec-
ture that runs their popular web search engine is a perfect
example of an application where “price/performance beats
peak performance” [53]. Barroso et al. described an archi-
tecture where, for example, power reductions are extremely
desirable if they can be obtained without a corresponding loss
in performance or increase in price of the hardware.

We can no longer cavalierly sacrifice energy efficiency
or price to obtain new levels of performance. Instead, we
must identify and develop machine organizations whose result-
ing costs and efficiencies track future increases in sustained
performance rather than the more-quickly-growing (and yet
almost never achieved) peak performance. While massively
parallel application domains like datacenters offer obvious
big savings, the benefits of hardware-software collaborative
design also translate to desktop and workstation computing
domains. Datacenters and their massively parallel applications
are increasingly run on architectures built out of commodity
microprocessors. By focusing on this large segment of the mi-
croprocessor market, individuals purchasing single-processor
systems will also experience savings, albeit on a smaller scale.
However, summing these individual savings on a national scale
would yield large savings.

B. Emerging Opportunity for Software Optimization

Resilient architectures expose a new knob for tuning per-
formance and/or power efficiency at the software layer. As-
suming hardware provides a fail-safe guarantee against errors,
software can in essence think of emergencies, such as voltage
emergencies, as activity analogous to branch mispredictions or
cache misses.

Over the past several years, a large body of optimization
techniques and algorithms have emerged that specifically tar-
get microarchitectural event activity. Minimizing such activity
frequently often leads to better runtime performance, owing
to fewer execution stalls. Algorithms such as loop splitting
or loop fusion improve runtime performance by laying out
data such that there are fewer cache misses. Techniques
that perform intelligent code layout help maintain steady
instruction fetch bandwidth by reducing the number of branch
mispredictions.

Likewise, we believe that resilient architectures will open
up a new venue for code transformation explorations. As
hardware provides a fail-safe, researchers could actively en-
gage in developing new algorithms that specifically target
the frequency and occurrence of emergencies. By reducing
the number of emergencies, system performance improves,
due to fewer hardware rollbacks. There are a large number
of questions still pending answers. For instance, there are
no cost models that guide the compiler toward a particular
decision. Present-day work is driven by runtime heuristics,
similar to profile-based application tuning. A more theoretical
approach could lead to optimal results. Nevertheless, we see

1444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

this downside as an upside opportunity for long-term research
in this area.

VIII. Conclusion

Modern applications benefit from an ever-increasing amount
of performance, and thus microprocessor vendors continue
to make advances in very large scale integration (VLSI)
technology, circuits, and microarchitectures to address this
need. However, as we demonstrated in this paper, we saw a
growing gap between nominal operating conditions and peak
operating conditions in modern and future microprocessor
designs due to variations. To mitigate this effect, we described
our own investigation, combined with prior effort, to design
and build commodity computing systems that achieve both
high performance and low cost today and in the future.

We advocated an approach that relies on the hardware for
immediate suboptimal reaction to emergencies while software
eliminates repeated occurrences, which is much more efficient
and sustainable in the long-term. The work spans VLSI cir-
cuits, computer architecture, and software systems. In partic-
ular, we took a close look at voltage variation as an emerging
dominant problem. We discussed details and findings that
enable efficient hardware and software collaborative design,
specifically within this context, showing not only hardware
techniques, but also low-level software techniques to mitigate
voltage variation. There is large room for improvement at both
the architecture and software layers for innovative design and
collaboration. Such collaboration will lead to products that
yield good performance, but within reasonable costs.

References

[1] International Technology Roadmap for Semiconductors, Process Inte-
gration, Devices and Structures, 2002.

[2] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie, “Com-
parison of split-versus connected-core supplies in the POWER6 micro-
processor,” in Proc. IEEE Int. Solid State Circuits Conf., Feb. 2007, pp.
298–604.

[3] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45nm early design exploration,” IEEE Trans. Electron Devices,
vol. 53, no. 11, pp. 2816–2823, 2006.

[4] V. J. Reddi, M. S. Gupta, K. K. Rangan, S. Campanoni, G. Holloway,
M. D. Smith, G.-Y. Wei, and D. Brooks, “Voltage noise: Why its bad,
and what to do about it,” in Workshop SELSE, 2009.

[5] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks, “Under-
standing voltage variations in chip multiprocessors using a distributed
power-delivery network,” in Proc. DATE, Apr. 2007, pp. 1–6.

[6] International Technology Roadmap for Semiconductors, Process Inte-
gration, Devices and Structures, 2007.

[7] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y.
Wei, and D. Brooks, “Voltage smoothing: Characterizing and mitigat-
ing voltage noise in production processors via software-guided thread
scheduling,” in Proc. 43rd Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2010, pp. 77–88.

[8] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power considerations
in the design of the Alpha 21264 microprocessor,” in Proc. 35th Annu.
Des. Autom. Conf., Jun. 1998, pp. 726–731.

[9] F. Mohamood, M. B. Healy, S. K. Lim, and H.-H. S. Lee, “Noise-
direct: A technique for power supply noise aware floorplanning using
microarchitecture profiling,” in Proc. ASP-DAC, Jan. 2007, pp. 786–791.

[10] M. D. Pant, P. Pant, and D. S. Wills, “On-chip decoupling capacitor
optimization using architectural level prediction,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 10, no. 3, pp. 319–326, Jun. 2002.

[11] Y. Chen, K. Roy, and C.-K. Koh, “Current demand balancing: A
technique for minimization of current surge in high performance clock
gated microprocessors,” IEEE Trans. Very Large Scale Integr. Syst., vol.
13, no. 1, pp. 75–85, Jan. 2005.

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in Proc.
17th Int. Conf. Parallel Architectures Compilation Tech., Oct. 2008,
pp. 72–81.

[13] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. Lee, C. B. Wilkerson, S.-L.
Lu, T. Karnik, and V. De, “Energy-efficient and metastability immune
timing-error detection and instruction replay-based recovery circuits for
dynamic variation tolerance,” in Proc. IEEE Int. Solid State Circuits
Conf., Feb. 2008, pp. 402–623.

[14] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A. Klaiber, and
J. Mattson, “The transmeta code morphing software: Using speculation,
recovery, and adaptive retranslation to address real-life challenges,” in
Proc. 1st Annu. IEEE/ACM Int. Symp. Code Gener. Optimization, Mar.
2003, pp. 15–24.

[15] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye, “Dynamic binary
translation and optimization,” IEEE Trans. Comput., vol. 50, no. 6, pp.
529–548, Jun. 2001.

[16] L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
Google cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28,
Mar.–Apr. 2003.

[17] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, K. F. C. Ziesler,
D. Blaauw, T. Austin, and T. Mudge, “Razor: A low-power pipeline
based on circuit-level timing speculation,” in Proc. 36th Int. Symp.
Microarchitecture, Dec. 2003, pp. 7–18.

[18] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in Proc. Int.
Conf. Supercomputing, 2004, pp. 277–286.

[19] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa, A.
Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3 GHz fifth generation
SPARC64 microprocessor,” IEEE J. Solid-State Circuits, vol. 38, no. 11,
pp. 1896–1905, Nov. 2003.

[20] N. J. Wang and S. J. Patel, “ReStore: Symptom-based soft error detection
in microprocessors,” IEEE Trans. Dependable Secur. Comput., vol. 3,
no. 3, pp. 188–201, Jul.–Sep. 2006.

[21] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita,
T. Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa, A.
Konmoto, R. Yamashita, and H. Sugiyama, “A 1.3 GHz fifth-generation
sparc64 microprocessor,” in Proc. Design Autom. Conf., Jun. 2003, pp.
702–705.

[22] T. Slegel, I. Averill, R. M., M. Check, B. Giamei, B. Krumm, C.
Krygowski, W. Li, J. Liptay, J. MacDougall, T. McPherson, J. Navarro,
E. Schwarz, K. Shum, and C. Webb, “IBM’s s/390 g5 microprocessor
design,” IEEE Micro, vol. 19, no. 2, pp. 12–23, Mar.–Apr. 1999.

[23] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Fast
checkpoint/recovery to support kilo-instruction speculation and hardware
fault tolerance,” Univ. Wisconsin-Madison, Madison, Comput. Sci. Tech.
Rep., 2000.

[24] J. F. Martı́nez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas,
“Cherry: Checkpointed early resource recycling in out-of-order micro-
processors,” in Proc. 35th Int. Symp. Microarchitecture, Nov. 2002, pp.
3–14.

[25] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, “Checkpointed
early load retirement,” in Proc. 11th Int. Symp. HPCA, Feb. 2005, pp.
16–27.

[26] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin,
“Ultralow-cost defect protection for microprocessor pipelines,” in Proc.
12th ASPLOS, 2006, pp. 73–82.

[27] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
recording program execution for deterministic replay debugging,” in
Proc. 32nd Annu. ISCA, 2005, pp. 284–295.

[28] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks,
“DeCoR: A delayed commit and rollback mechanism for handling
inductive noise in processors,” in Proc. HPCA, Feb. 2008, pp. 381–392.

[29] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks,
“Toward a software approach to mitigate voltage emergencies,” in Proc.
ISLPED, Aug. 2007, pp. 123–128.

[30] K. Hazelwood and D. Brooks, “Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimization,”
in Proc. ISPLED, Aug. 2004, pp. 326–331.

[31] V. Reddi, M. Gupta, G. Holloway, G.-Y. Wei, M. Smith, and D.
Brooks, “Voltage emergency prediction: Using signatures to reduce
operating margins,” in Proc. IEEE 15th Int. Symp. HPCA, Feb. 2009,
pp. 18-–29.

[32] M. S. Gupta, “Variation-aware processor architectures with aggressive
operating margins,” Ph.D. dissertation, Harvard Univ., Cambridge, MA,
2009, adviser D. Brooks.

REDDI AND BROOKS: RESILIENT ARCHITECTURES VIA COLLABORATIVE DESIGN: MAXIMIZING COMMODITY PROCESSOR PERFORMANCE 1445

[33] M. Gupta, V. Reddi, G. Holloway, G.-Y. Wei, and D. Brooks, “An event
guided approach to reducing voltage noise in processors,” in Proc. Des.
Autom. Test Eur. Conf. Exhibit., Apr. 2009, pp. 160–165.

[34] E. Grochowski, D. Ayers, and V. Tiwari, “Microarchitectural simulation
and control of di/dt-induced power supply voltage variation,” in Proc.
Int. Symp. High-Performance Comput. Architecture, 2002, pp. 7–16.

[35] R. Joseph, D. Brooks, and M. Martonosi, “Control techniques to
eliminate voltage emergencies in high performance processors,” in Proc.
HPCA, Feb. 2003, pp. 79–90.

[36] M. D. Powell and T. N. Vijaykumar, “Pipeline muffling and a priori
current ramping: Architectural techniques to reduce high-frequency
inductive noise,” in Proc. Int. Symp. Low Power Electron. Design, Aug.
2003, pp. 223–228.

[37] M. Powell and T. N. Vijaykumar, “Exploiting resonant behavior to
reduce inductive noise,” in Proc. ISCA, Jun. 2004, pp. 288–299.

[38] V. J. Reddi, M. Gupta, G. Holloway, M. D. Smith, G.-Y. Wei, and
D. Brooks, “Predicting voltage droops using recurring program and
microarchitectural event activity,” IEEE Micro, vol. 30, no. 1, p. 110,
Jan.–Feb. 2010.

[39] V. J. Reddi, “Software-assisted hardware reliability: Using run-time
fedback from hardware and software to enable aggressive timing spec-
ulation,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 2010,
adviser D. Brooks.

[40] M. Toburen, “Power analysis and instruction scheduling for reduced di/dt
in the execution core of high-performance microprocessors,” Masters
thesis, North Carolina State Univ., Raleigh, 1999.

[41] H.-S. Yun and J. Kim, “Power-aware modulo scheduling for highperfor-
mance VLIW processors,” in Proc. ISLPED, 2001, pp. 40–45.

[42] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent
dynamic optimization system,” in Proc. Programming Language Des.
Implementation, May 2000, pp. 1–12.

[43] V. Reddi, M. Gupta, M. Smith, G.-Y. Wei, D. Brooks, and S. Cam-
panoni, “Software-assisted hardware reliability: Abstracting circuit-level
challenges to the software stack,” in Proc. 46th Annu. DAC, Jul. 2009,
pp. 788–793.

[44] V. J. Reddi, S. Campanoni, M. S. Gupta, M. D. Smith, G.-Y. Wei,
D. Brooks, and K. Hazelwood, Eliminating Voltage Emergencies via
Software-Guided Code Transformations, vol. 7. New York, NY: ACM,
Oct. 2010, pp. 12:1–12:28.

[45] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-
taneous mutlithreading processor,” SIGPLAN Not., vol. 35, no. 11, pp.
234–244, 2000.

[46] A. Fedorova, “Operating system scheduling for chip multithreaded
processors,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 2006,
adviser M. I. Seltzer.

[47] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware
execution: Online contention detection and response,” in Proc. 8th Annu.
IEEE/ACM Int. Symp. CGO, 2010, pp. 257–265.

[48] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS ob-
servations to improve performance in multicore systems,” IEEE Micro,
vol. 28, no. 3, pp. 54–66, May–Jun. 2008.

[49] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Proc.
Architectural Support Programming Languages Operating Syst., 2010,
pp. 129–142.

[50] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in Proc. 11th
Int. Symp. HPCA, 2005, pp. 340–351.

[51] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A.
Ramirez, and M. Valero, “Predictable performance in SMT processors:
Synergy between the OS and SMTs,” IEEE Trans. Comput., vol. 55, no.
7, pp. 785–799, Jul. 2006.

[52] W. El-Essawy and D. Albonesi, “Mitigating inductive noise in SMT
processors,” in Proc. ISLPED, Aug. 2004, pp. 332–337.

[53] L. A. Barroso, “The price of performance: An economic case for chip
multiprocessing,” Queue, ACM, vol. 3, no. 7, pp. 48–53, Sep. 2005.

Vijay Janapa Reddi (M’10) received the B.S.
degree in electrical and computer engineering from
Santa Clara University, Santa Clara, CA, the M.S.
degree from the University of Colorado, Boulder,
and the Ph.D. degree in computer science from
Harvard University, Cambridge, MA.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Texas, Austin. He explores new oppor-
tunities and synergies for cross-layer solutions that
improve processor and system power, performance,

and reliability. His background is in compilers, computer architecture, and
virtual machine technologies. His current research interests include computer
systems, focusing on the intersection between hardware and software.

David Brooks (M’02) received the B.S. degree
in electrical engineering from the University of
Southern California, Los Angeles, and the M.A.
and Ph.D. degrees in electrical engineering from
Princeton University, Princeton, NJ.

He is currently a Gordon McKay Professor of
Computer Science with the School of Engineering
and Applied Sciences, Harvard University, Cam-
bridge, MA. He joined Harvard University in 2002
after spending one year as a Research Staff Member
with the IBM T. J. Watson Research Center, York-

town Heights, NY. His current research interests include technology-aware
computer design, with an emphasis on power-efficient computer architectures
for high-performance and embedded systems.

