A Case for Persistent Caching of Compiled
JavaScript Code in Mobile Web Browsers

Lauren Guckert, Mike O’Connor, Satheesh Kumar Ravindranath, Zhuoran Zhao, Vijay Janapa Reddi
Dept. of Electrical and Computer Engineering
University of Texas at Austin
{lguckert, mike.oconnor, satheesh} @utexas.edu, zoranzhao@ gmail.com, vj@ece.utexas.edu

Abstract—Over the past decade webpages have grown an order
of magnitude in computational complexity. Modern webpages
provide rich and complex interactive behaviors for differentiated
user experiences. Many of these new capabilities are delivered
via JavaScript embedded within these webpages. In this work, we
evaluate the potential benefits of persistently caching compiled
JavaScript code in the Mozilla JavaScript engine within the
Firefox browser. We cache compiled byte codes and generated
native code across browser sessions to eliminate the redundant
compilation work that occurs when webpages are revisited.
Current browsers maintain persistent caches of code and images
received over the network. Current browsers also maintain in-
memory ‘“caches” of recently accessed webpages (WebKit’s Page
Cache or Firefox’s ‘“Back-Forward” cache) that do not persist
across browser sessions. This paper assesses the performance
improvement and power reduction opportunities that arise from
caching compiled JavaScript across browser sessions. We show
that persistent caching can achieve an average of 91% reduction
in compilation time for top webpages and 78% for HTMLS
webpages. It also reduces energy consumption by an average
of 23% as compared to the baseline.

I. INTRODUCTION

JavaScript has permeated into every aspect of the web ex-
perience. Over 92% of all webpages rely on JavaScript [7].
With the proliferation of HTMLS and its associated mobile
web applications, the world is moving into an age where
the majority of webpages involve complex computations and
manipulations within the client JavaScript engine. As the
number of webpages that provide rich and interactive content
(e.g. using HTMLS) grows, the demand for fast and efficient
JavaScript will also steadily grow. The power required to
support JavaScript features is also an emerging concern, since
a large fraction of all webpages are increasingly being ac-
cessed from mobile, power-constrained handheld devices such
as smartphones and tablets [5].

On a mobile system, the computation time required for
JavaScript compilation on a given page can be significant. For
example, we find that on a dual-core 1.7 GHz ARM Cortex-
A1S5 system typical of a high-end tablet, the ten most popular
webpages spend, on average, over 1.8 seconds compiling
JavaScript. This accounts for 22% of the total time spent
executing JavaScript. Compilation time is higher for HTMLS5-
based webpages, spending one second on average. Webpage
load time and JavaScript execution time are both an important
concern because 59% of consumers wait at most 3 seconds for

a webpage to load on their mobile device before abandoning
the webpage [8]]. To make matters worse, 46% of e-commerce
consumers are unlikely to return to the page if it failed to load
fast during their last visit [8]]. Therefore, this work looks at
an approach to preserve this effort, using a persistent cache to
retain the compiled JavaScript across browser sessions.

We examine the characteristics of top webpages, as well as
examples of emerging, highly-interactive HTMLS5 webpages
in order to understand the characteristics of JavaScript com-
pilation. We use the Mozilla JavaScript engine used by the
Firefox web browser for this study. JavaScript compilation
in Firefox takes place in several passes that together lead to
runtime overheads. The first pass parses the JavaScript text
and typically generates interpretable byte codes. A subsequent
pass, for code executed more than a few times, takes the
byte codes and generates simple native code with few, simple
optimizations. Later passes may take hot code and generate
highly optimized native code. These passes correspond to the
Bytecode compiler, JaegerMonkey compiler, and IonMonkey
compiler, respectively, within the Mozilla JavaScript engine
used by the Firefox web browser.

On the basis of profiling hot and cold function compilation
behavior, we propose persistent caching as a means to improve
both performance and energy consumption of web browsers.
Functions that are infrequently called are interpreted but are
not translated or optimized. The overhead for compilation is
incurred each time the function is executed. For functions
which are invoked frequently, they are compiled, translated,
and stored by the JIT compilers, JaegerMonkey and IonMon-
key. Thus, the compilation overhead for frequently-executed
functions is better amortized across executions than for less
frequent functions. Persistent caching attempts to alleviate
this overhead by storing these less-frequent functions across
browser sessions. By doing so, the compilation overhead is
not incurred for subsequent executions and can be amortized
in a similar manner to frequently executed functions.

Since our focus is to present a case for persistent caching
of compiled JavaScript code, in this paper we present an
analytical model to reason about the relative costs of our pro-
posed solution as compared to the current Mozilla JavaScript
engine. We then show the performance and power benefits that
can be obtained for both sets of benchmarks when persistent

caching is implemented. We show that persistent caching can
achieve an average of 91% reduction in compilation time for
top webpages and 78% for HTMLS5 webpages. Our approach
also reduces energy consumption by an average of 23% for
both the top and HTMLS5 webpages.

This paper makes the following contributions:

o We characterize JavaScript webpages ranging from com-
mon popular webpages to emerging, interactive HTMLS5-
intensive webpages.

o« We propose persistent caching to improve the perfor-
mance and energy consumption of JavaScript webpages.

o We verify the benefits of persistent JavaScript caching for
the Mozilla Firefox web browser.

In Section [IIj we motivate persistent caching in web browsers
by characterizing webpages in terms of hot and cold code.
Section explains our persistent cache model. Section
describes an analytical model to study the benefits of our
approach. Section |V| uses the model to evaluate performance
benefits, in addition to measuring memory usage and energy
consumption improvements. Section discusses the related
work. We conclude with our future work and summary of our
contributions in Sections and respectively.

II. INITIAL CHARACTERIZATION

In order to analyze the potential opportunity of persistent
caching in Firefox’s JavaScript Engine, we selected a set of
currently top webpages in the Internet, as well as a set of web-
pages containing forward-looking, highly-interactive HTMLS.
We measure and characterize the amount of JavaScript code
and its execution behavior across the webpages.

A. JavaScript Benchmarks

For the set of common, top webpages, we used the current top
10 US webpages as documented by Alexa—The Web Infor-
mation Company |[[1]. The prevalence of these top webpages
and frequent access to them suggests that they are important
to analyze and understand. In addition to the initial “webpage
load,” the JavaScript engine is also triggered when interactive
events occur, such as on a mouse click. In order to analyze the
JavaScript contributions of interactive user behavior, we also
perform a specific use case test (beyond the initial load) for
each of the top webpages. For a breakdown of the webpages
and the specific use case we performed for each see Table [T}
Note that the Wikipedia webpage does not have a use case
due to measurement limitations.

For the HTMLS webpages, we chose 9 of the current top 10
HTMLS webpages as documented by eBizMBA [3]]. The tenth
caused the mobile benchmarking platform to hang, and was,
therefore, not studied. A full list of these webpages is also
given in Table |II The use cases for these webpages is just
the initial webpage load during which a substantial portion
of JavaScript code is executed. We study HTML5-intensive
webpages because there has been much speculation that these

TABLE I: Our Webpage Benchmarks

Alexa’s Top Webpages HTMLS
Webpages Use Cases Webpages
Amazon Single-word search, click first link Art of Stars
Bing Single-word search CNN Ecosphere
Craigslist Single-word search, click first link The Expression Web
Ebay Single-word search, click first link 360 Langstrasse Zurich
Facebook | Log in and click first profile in News Feed | The Lost World’s Fairs
Gmail Log in and click first email in Inbox Soul Reaper
Wikipedia N/A This Shell
LinkedIn | View most recent updates in news feed Universeries
YouTube | Single-word search and select first result | The Wilderness Downtown
Yahoo |Log in and click first news item in the feed
Google Perform single-word search

types of JavaScript webpages are representative of the future,
and that webpages can be expected to grow in visual and
computational complexity.

B. Function Execution Characteristics

A key benefit of persistent caching is its ability to amortize
the overhead of compiling infrequently executed, or cold,
code across many browser sessions. Often, cold code within
a single execution is hot across executions as it often con-
sists of initialization functions. Ultimately, persistent caching
is most beneficial when cold code contributes heavily to
both the JavaScript compiled code and that code’s execution
time.

Firefox classifies any function interpreted over 43 times as
“hot” at which point the JaegerMonkey compiler generates
simple, native machine code. JaegerMonkey invokes the opti-
mizing lonMonkey compiler only when the native code exe-
cutes more than 10,240 times. For the purposes of persistent
caching in this paper, we do not distinguish hot code separately
between JaegerMonkey and IonMonkey. All interpreted code
is “cold” code and all compiled code is “hot” code.

We performed functional profiling using the Firebug [4] add-
on to collect various metrics, such as the number of unique
functions, executions per function and the execution time per
function. These metrics help us determine the prevalence of
cold code, as well as the amount of time spent executing the
cold code. Without a high occurrence of these characteristics,
the need for persistent caching is not as persuasive.

Figure shows the amount of cold code for the webpages
during the initial webpage load. Cold code accounts for an
average of 87% of the compiled JavaScript code for the top
webpages and 80% for the HTML5 webpages. Even for the
webpages with the lowest percentages of cold code, such as
Gmail and Soul Reaper, cold code still accounts for over 50%
of the compiled code. We attribute the general lower percent-
ages for HTMLS webpages to the fact that these webpages
are highly computational and repeatedly call a limited set of
JavaScript functions to perform their computations.

% Compiled code that is 'cold’

80 —
60 —
40—
20
0
Ky

2 O
19 S AP P s C P < Y &S F T ™
& F C S F S NN =) Q
¥ @ ST T e SRS &
Top HTML5

(a) Percent of compiled JavaScript code that is cold.

% Execution time in 'cold' code

|
c 1ol Iy I 13 e lelo ke lo T L& o e 1o he I I3 e o 16 1
FSF PRI SIS RIS TP
@ T T8 TP e S @ oV &
v @) <« AR S Qog o o"“ @,
¥
Top HTML5

(b) Percentage of execution time spent in infrequent functions.

Fig. 1: Cold code analysis of JavaScript code.

We also collected profiling metrics for each of the top web-
pages use cases. As we mentioned previously, this is to capture
user driven JavaScript activity. While the data is not shown
here, the percentage of cold code increases over the initial
webpage load to an average of 97%. The prevalence of these
colds functions for webpages suggests that persistent caching
could produce performance benefits by amortizing compilation
overhead across web browser sessions.

Although the amount of cold code is large, if a substantial
portion of the execution time is spent in a small number of
hot functions, then any relative benefit from persistent caching
would be minor. Thus, this infrequently executed cold code
must account for a significant portion of execution in order
to make a strong case for persistent caching. Figure [1b[shows
that the percentage of execution time spent in these infrequent
functions is also substantial. On average, the top webpages
spend 65% of the initial webpage load execution time on
executing infrequent, cold functions. In some cases, such as
Bing and Craigslist, almost 100% of the execution time is
dedicated to the compilation of these functions.

Beyond the initial webpage load, the percentage of execution
time increases to an average of 80%. From this observation, we
conclude that user driven JavaScript code is typically colder
than the non-interactive JavaScript code in a webpage. We do
not present this behavior in a graph.

The HTMLS benchmarks have a lower percentage of cold
code (as found in Figure [Ta), spending an average of 38%
of their execution time in cold code. Although the average
percentages for the HTML5 webpages are lower than that of
the top webpages, some of the HTMLS5 webpages, such as Art
of Stars and Lost Worlds Fairs spend over 80% of execution
time in cold code.

The large quantity of cold code and its significant contribu-
tion to the overall execution time for both top and HTMLS5
webpages suggests that significant performance boosts can be
obtained from persistent caching. The continuation of these
trends beyond the initial webpage load shows the potential
benefits extend throughout the browser session.

III. PERSISTENT CACHING

We propose persistent caching as an approach to improve
both performance and power for JavaScript webpages. As
the preliminary profiling results show, both HTML5 and top
real-world webpages spend a significant portion of execution
time interpreting and compiling functions that are infrequently
executed. This observation suggests that persistent caching can
lead to a significant reduction in compilation time.

Our persistent cache evaluation leverages the existing Mozilla
JavaScript engine framework. We pinpointed key locations
in the source which are responsible for interpretation and
compilation of JavaScript functions. Each time a function is to
be compiled, a 128-bit MD5 hash is computed on the source-
code to be compiled (the JavaScript source text in the case of
the bytecode compiler, and the bytecodes in the case of the
JaegerMonkey and IonMonkey compilers). This hash, coupled
with the length of the source, is used as a key to determine
if this function has been previously compiled. If the hash ID
is identified in the persistent cache, the previously compiled
function will be recalled. Otherwise, the compilation will take
place and store the resulting compiled function to the persistent
cache for future use. The hash ID ensures that we do not
execute stale JavaScript code from the code cache.

As an optimization, our persistent cache does not cache
“small” functions that take less time to recompile than to
retrieve from the cache. To find this threshold, we swept across
increasing bytecode sizes and measured the average time it
took to compile versus retrieve from our cache structure and
found the threshold to be 32 bytes. Thus, we persistently cache
all compiled bytecode that is greater than this size.

The proposed structure also provides the benefit of inter-
webpage amortization. In the current Firefox implementation,
if an identical function, for example a library call to jQuery,
is called on multiple webpages, each webpage will indepen-
dently interpret this function. In our proposal, these identical
functions will have identical MD5 hashes, and the function
will be read from the persistent cache rather than incurring
the cost of interpretation and re-translation.

TABLE II: Chromebook Specifications

Samsung Exynos 5250 Dual-core ARM @ 1.7 GHz | Ubuntu Chrome OS

Two ARM Cortex-A15 32 KB I-cache, 32 KB D-cache
64-bit wide interface to 2 GB of LPDDR3 DRAM |1 MB L2 Cache

Class 10 16 GB mounted SD card mounted as swap | 16+ GB of onboard flash

We assume a filesystem-based persistent cache and an in-
memory hash table for looking up the MD5 hashes. For the
purposes of our initial study, we have not placed any restric-
tions on the maximum size of the persistent cache structures.
We acknowledge that our approach with an unbounded cache
can have adverse effects on some systems, particularly on
mobile platforms with limited memory. We leave refinements
and cache management policies as future work.

IV. METHODOLOGY

Our implementation is built on top of the existing in-memory
Firefox code cache, and it is yet to completely represent the
actual timing behavior of a persistent cache. Therefore, we
developed an analytical model that allows us understand the
potential benefits of persistent caching. The model establishes
an upper bound on the improvements our persistent cache
model can obtain and the maximum penalty due to the write
of the persistent cache after an initial compile.

In order to accurately model a real-system persistent cache,
we modified the Mozilla JavaScript engine source code to
measure the timing costs for the corresponding accesses to the
persistent cache. We use high-resolution timers to measure the
time required to perform the hashing, lookup, and file access
operations that would be required in a persistent cache system.
For each compiled function, we index based on the hash,
seek to the appropriate offset within the 256 MB file system-
based persistent cache file, and read or write the corresponding
amount of bytecode. We measure the timing behavior of both
the write and read accesses to determine both the cost for
storing the compiled code on a first access and reading it back
in the case of a persistent cache hit.

V. RESULTS

To understand the potential benefits and consequences of our
persistent cache, we collect measurements on a mobile system
in terms of execution time, power, and memory usage. We
used a dual-core ARM Samsung Chromebook. The system’s
specifications are given in Table Our results show that
the persistent cache model achieves significant compilation
time and energy improvements while requiring manageable
in-memory and persistent memory footprints.

A. Performance Speedup

We evaluate two scenarios of persistent caching. In the first
scenario, we flush the persistent cache prior to each website
being loaded. In the second scenario, which is based on a
more realistic use-case behavior, the persistent cache is already
partially populated. We populate the cache by visiting each of

0.8

o
o

Relative compile time
o
»~

=} o
o N

|
o

N T [5
O s & S L2 F & W W
&q,@ Q’\(Z,\Q? Q‘/Q(g? OS\QQ@\&‘Q 0\;&04"7 [N S ée@@ee;g\’ Q\o\ Y Q\\é\&@
v ¢ <& & VL S ¢ ‘(j'Q %Vé} &
Top HTML5

Fig. 2: Relative compile time for initially empty scenario.

the webpages three times each, so that the model also captures
persistent caching benefits across webpages.

The first scenario represents the worst-case overhead for
populating the persistent cache and for hash lookup misses,
giving us an upper bound on expected persistent caching
penalties. The second scenario begins with a “warmed-up”
cache, reducing the number of cache stores and increasing
the likelihood of a hash lookup hit. In both the scenarios,
we assume that the same set of functions is called during
each visit to a webpage. Thus, the first time a webpage is
accessed, any function not existing in the persistent cache
incurs an initial overhead for storing its compiled bytecode.
Each subsequent visit to the webpage performs zero compila-
tion, instead reading the bytecode from the persistent cache.
This establishes an upper bound on the improvements from a
persistent cache.

For the initially empty cache scenario, the average overhead
for the first visit to a webpage is 7% for both top and
HTMLS webpages. For each subsequent visit the compilation
time reduces to an average of 22% and 26% of the baseline
version. Figure [2] summarizes the reduction in compilation
time across all the webpages when they are visited subsequent
times (after the first call which incurs the overhead). For
example, Facebook, Wikipedia, LinkedIn, YouTube, CNN
Ecosphere, and Universeries all improve in compilation time
to less than 10% of the original baseline Firefox. Ebay is the
only webpage that increased in compilation time. We suspect
that this is because Ebay calls many functions a single time,
and thus does not amortize the initial overhead of storing to
the persistent cache.

For the “warmed-up” persistent cache scenario, the average
overhead for the first visit to a webpage is 4% and 5% for
the top and HTMLS webpages, respectively. The overhead
reduces because many of the functions are already present
in the persistent cache. The reductions in compilation time
for subsequent webpage visits are also more significant for
this “warmed-up” scenario, reducing to an average of 9% and
22% of the baseline for the top webpages and for the HTML5
webpages, respectively.

Figure [3] shows the relative compilation times for the sub-

0.6

0.5

0.4

0.3

Relative compile time

clolo IS eIy o e le o he fe T 1o To 1o T ho Iy IS s 1o 1
F S EFTSETT ST P I o7 Y
ARG DY SN AN AR & T ® o
A% N
Top HTML5

Fig. 3: Relative compile time for “warmed-up” scenario.

sequent webpage visits for this “warmed-up” scenario. The
improved performance of this scenario over the previous
scenario is due to the presence of multiple webpages’ compiled
bytecode within the persistent cache. The subsequent visits
to a website can leverage precompiled functions from both
the current webpages as well as past webpages. The fact
that this results in greater performance improvements than the
initially empty scenario suggests that many functions are in
fact shared across webpages. To confirm this, we measured
the reuse of functions across webpages (using previously
described techniques) and found that 539 functions were called
on more than one site, implying that a persistent cache has
additional benefits for inter-webpage scenarios.

Overall, our results show that the savings that we can achieve
using persistent caching are as great as 94%. The initial
overheads for our persistent cache are less than 7% over the
baseline. At first glance, this persistent cache overhead may
seem high. However, it is likely that such overhead can be
effectively masked from the user. For example, the persistent
cache can be written “behind the scenes” during the browser
shutdown phase. In both cases (i.e., overheads and savings),
the real-world scenario shows greater performance over the
initial scenario. These findings indicate that cold functions are
indeed getting reused in our persistent caching model.

B. Memory Characterization

The main consequence of persistent caching model is the
increased memory usage to index and store the additional
compiled code. Persistent caching is only beneficial if the
improvements in power and performance are not overwhelmed
by the cost of the additional memory.

Our persistent cache implementation requires two primary
structures. First, an in-memory hash table, with each element
consisting of a 160-bit key (128-bit hash plus 32-bit source
length), 32-bit file index, 32-bit length, and 32-bit “next”
pointer (to support chaining when there are hash bucket
collisions). This data structure is also stored and restored from
the filesystem on each browser launch and exit. Second, we
have a filesystem-based persistent cache file containing the
native code for the cached functions.

120 — I

5]
S
|
|
T
T

% Energy consumption
N S (o2} =]
o o o o o
| | | |
e

To T
9 8 : KNCINSINC O R R Y
& O CFS é"@‘\c,o&q»/\ INGE IO M \V\§
¥ @ TR & S b
< S O
HTLS

Fig. 4: Relative energy consumption over the original Firefox.

In practice, the in-memory structures are quite small. The
entire persistent cache hashtable in our studies accumulated
across many runs of the full benchmark suite and other
webpages was less than 336 KB. The in-filesystem persistent
cache that holds the retained compiled code was modeled as
a 256 MB file, and is roughly the size of the total compiled
code for all the benchmarks together.

C. Power Characterization

Our persistent cache model shows energy reductions up to
74% compared to the baseline Firefox browser. We measured
hardware power values on a ARM Cortex A9 Pandaboard,
which is a development board. It is not possible to collect fine-
grained power measurements on the Chromebook. Although
we are performing the power measurements on a different
setup than the timing measurements, we found that the timing
improvements on the ARM A9 are similar to those collected
for the Chromebook, averaging around 20% relative compila-
tion time over the baseline.

In order to establish reliable power measurements, we only
measure the power supplied to the A9 SoC itself. Our sampling
rate was set to 200 KS/s. Also, in order to compare between
top webpages and HTMLS webpages, we only measure the
energy for the initial webpage load of each webpage.

Figure [shows the measured energy savings that our per-
sistent cache model achieves over the baseline version. On
average, energy consumption reduces to 77% of the base-
line for both types of webpages. However, many webpages
experience much higher improvement. For instance, Google
reduces to nearly 25% of the baseline while Bing, YouTube,
and This Shell all consume less than 50% of the baseline’s
energy consumption. These dramatic improvements for mobile
search engines are key since half of all local searches occur
from mobile systems [5]]. Note that there were cases where
a webpage experienced higher power usage for the persistent
cache version but none were beyond 20% of the baseline. We
speculate that these webpages perform more cache accesses
to small bytecode chunks, which results in higher energy
consumption than interpreting the bytecode.

The large number of webpages that benefit in terms of energy

reduction outweigh the small number of webpages that suffer
from energy increases. This suggests that persistent caching
can lead to an overall energy reduction.

VI. RELATED WORK

Recent works, such as v8 [2] and SunSpider [6]], have focused
on developing and characterizing benchmark suites and show-
ing their superiority over other suites. JSMeter from Ratana-
worabhan [11] characterizes the v8 and SunSpider suites
alongside real-world webpages. This work performs memory
and functional execution characterization of JavaScript web-
pages but does not investigate HTML5 webpages. BBench [[10]
also proposes a representative web benchmark suite. However,
this work studies microarchitectural characterization of web-
pages and limits the scope to interactive webpages on mobile
platforms. These works did not propose a methodology to
achieve performance boosts for webpages.

Previous work on persistent caching has focused on specific
dynamic compilation tools. Reddi et al. [12] showed the
potential improvements of a persistent code cache within and
across executions of an application. However, they limit their
study to the binary instrumentation tool PIN, which does
not perform staged compilation as in JavaScript. Similarly,
Bruening and Kriansky [9] show the speedup and memory
improvements that persistent caching can achieve for their
dynamic instrumentation engine, DynamoRIO. Serrano et. [[13]]
developed a “quasi-static” compiler for Java Virtual Machines
(JVM) systems. Unlike all these works, we explore the
effectiveness of persistent caching in real-world JavaScript
compilers. More specifically, our approach is a purely online
mechanism that is geared towards JavaScript execution inside
of web browsers.

In current open-source browsers, WebKit (used by Safari and
Chrome) and Mozilla (Firefox), when the browser is exited,
the work performed to parse and compile the JavaScript is dis-
carded. These browsers maintain persistent caches of HTML,
JavaScript source, and images received over the network,
but do not retain the compiled JavaScript code. Current web
browsers also maintain in-memory caches of recently accessed
webpages (WebKit’s Page Cache or Firefox’s Back-Forward
cache). However, they do not persist across browser sessions.
These in-memory caches are effectively just the data structures
generated when viewing a webpage, not code.

As far as our research effort is concerned, we believe that we
are the first to propose and study a persistent cache for the Fire-
fox web browser. We are also the first to perform a preliminary
characterization comparing real-world and HTMLS5 webpages
for a browser implementing a persistent cache. Finally, we are
the first to analyze the power impact of these webpages, both
with and without a persistent cache.

VII. FUTURE WORK AND LIMITATIONS

In this work, we took an opportunistic approach to inves-
tigating the benefits of persistent caching in a JavaScript

engine. We did not enforce restrictions on memory usage
and limited our scope to Firefox’s JavaScript engine and
its specifications. In the future, we plan to implement the
persistent caching model under more realistic constraints and
evaluate the practical power and performance advantages of a
persistent cache in mobile web browsers.

VIII. CONCLUSIONS

As webpages become more complex and interactive, it be-
comes increasingly vital for JavaScript to be efficient and
performant. Also, as the majority of web usage transitions
to the mobile realm, the power and memory consumption
of these JavaScript features must remain low. In this work,
we propose the use of a persistent cache in order to reduce
compilation time and energy usage. We prototyped a model
of our implementation in the Mozilla JavaScript engine within
the Firefox browser and studied the impact of our model on
both top webpages as well as emerging HTMLS webpages.
We find that persistent caching can achieve an average of 91%
reduction in compilation time for top webpages and 78% for
HTMLS5 webpages and it reduces energy consumption by an
average of 23% compared to the baseline version.

REFERENCES

[1] Alexa the web information company. http://www.alexa.com/topsites/
countries/US, Accessed May 12, 2013.

[2] Chrome V8.
May 12, 2013.

[3] ebizmba the ebusiness knowledgebase. http://www.ebizmba.com/!
articles/best-html5-websites, Accessed May 12, 2013.

[4] Firebug. http://getfirebug.com, Accessed May 12, 2013.

[5] Hubspot. http://blog.hubspot.com/blog/tabid/6307/bid/33314/
23-Eye-Opening-Mobile-Marketing- Stats- You-Should- Know.aspx,
Accessed May 12, 2013.

[6] Sunspider 1.0 javascript benchmark. http://www.webkit.org/perf/
sunspider/sunspider.html, Accessed May 12, 2013.

[71 W3techs. http://w3techs.com/technologies/details/cp-javascript/all/all,
Accessed May 12, 2013.

[8] What Users Want from Mobile. http://www.gomez.com/wp-content/
downloads/19986_WhatMobileUsersWant_Wp.pdf, Accessed May 8,
2013.

[9] Derek Bruening and Vladimir Kiriansky. Process-shared and persistent
code caches. In Proceedings of the ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, 2008.

[10] Anthony Gutierrez, Ronald G. Dreslinski, Thomas F. Wenisch, Trevor
Mudge, Ali Saidi, Chris Emmons, and Nigel Paver. Full-system
analysis and characterization of interactive smartphone applications. In
Proceedings of the IEEE Intl. Symp. on Workload Characterization,
2011.

[11] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn.
Jsmeter: comparing the behavior of javascript benchmarks with real web
applications. In Proceedings of the 2010 USENIX conference on Web
application development, 2010.

[12] V.J. Reddi, D. Connors, R. Cohn, and M.D. Smith. Persistent code
caching: Exploiting code reuse across executions and applications. In
Proceedings of the IEEE Intl. Symp. on Code Generation and Optimiza-
tion, 2007.

[13] Mauricio Serrano, Rajesh Bordawekar, Sam Midkiff, and Manish Gupta.
Quicksilver: a quasi-static compiler for java. SIGPLAN Not., 35(10),
October 2000.

https://developers.google.com/v8/benchmarks, Accessed

http://www.alexa.com/topsites/countries/US
http://www.alexa.com/topsites/countries/US
https://developers.google.com/v8/benchmarks
http://www.ebizmba.com/articles/best-html5-websites
http://www.ebizmba.com/articles/best-html5-websites
http://getfirebug.com
http://blog.hubspot.com/blog/tabid/6307/bid/33314/23-Eye-Opening-Mobile-Marketing-Stats-You-Should-Know.aspx
http://blog.hubspot.com/blog/tabid/6307/bid/33314/23-Eye-Opening-Mobile-Marketing-Stats-You-Should-Know.aspx
http://www.webkit.org/perf/sunspider/sunspider.html
http://www.webkit.org/perf/sunspider/sunspider.html
http://w3techs.com/technologies/details/cp-javascript/all/all
http://www.gomez.com/wp-content/downloads/19986_WhatMobileUsersWant_Wp.pdf
http://www.gomez.com/wp-content/downloads/19986_WhatMobileUsersWant_Wp.pdf

	Introduction
	Initial Characterization
	JavaScript Benchmarks
	Function Execution Characteristics

	Persistent Caching
	Methodology
	Results
	Performance Speedup
	Memory Characterization
	Power Characterization

	Related Work
	Future Work and Limitations
	Conclusions
	References

