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Abstract—Energy efficiency of GPU architectures has emerged
as an important design criterion for both NVIDIA and AMD.
In this paper, we explore the benefits of scaling a general-
purpose GPU (GPGPU) core’s supply voltage to the near limits
of execution failure. We find that as much as 21% of NVIDIA
GTX 680°s core supply voltage guardband can be eliminated
to achieve significant energy efficiency improvement. Measured
results indicate that the energy improvements can be as high
as 25% without any performance loss. The challenge, however,
is to understand what impacts the minimum voltage guardband
and how the guardband can be scaled without compromising
correctness. We show that GPU microarchitectural activity pat-
terns caused by different program characteristics are the root
cause(s) of the large voltage guardband. We also demonstrate
how microarchitecture-level parameters, such as clock frequency
and the number of cores, impact the guardband. We hope our
preliminary analysis lays the groundwork for future research.

I. INTRODUCTION

General-purpose GPU (GPGPU) architectures are increas-
ingly becoming mainstream general-purpose computing coun-
terparts to the CPU. For applications with significant data
parallelism, the GPU architecture can offer better performance
than the CPU architecture. The GPU’s throughput-driven ar-
chitecture maps well to data-parallel applications as compared
to the CPU’s single-thread-performance focused architecture.

The cost of throughput is power consumption. Historically,
the power consumption of a general purpose GPU architecture
has remained higher than that of the CPU, although the
performance-per-watt efficiency of the GPU may be higher.
High-performance GPU architectures have maintained a typi-
cal power consumption between 200 W and 250 W, whereas
many of the most competitive commodity CPU counterparts
plateau at around 130 W power budget.

With the recent GPU architectures, however, we have seen
a significant emphasis on lowering the GPU’s power con-
sumption. For example, NVIDIA claims that the latest Kepler
architecture achieves 3x the performance per watt of their
previous-generation architecture (i.e., Fermi) [1]. State-of-the-
art GPU power-saving efforts strongly reflect and follow the
trend of CPU power optimizations. Typical optimizations in-
clude clock and power gating, dynamic voltage and frequency
scaling (DVFS), and boosted clock frequencies [1], [2].

Although there has been increasing focus on applying
traditional CPU power-saving techniques to GPUs, we need
to focus on new(er) opportunities for energy optimization that
push the GPU to the limits of its operation.
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In this paper, we demonstrate the energy-efficiency ben-
efits of pushing the GPU architecture to the limits of its
operating voltage. To combat the worst-case process, voltage,
and temperature variations, traditional design methodology
requires excessive supply voltage guardband, which can be as
high as 20% in a production processor [3]. The guardband is
predicted to grow due to the increased variations as technology
scales [4]. The industry-standard practice of designing for the
worst case leads to wasted energy and performance because
the circuit could have operated at a lower supply voltage or a
higher clock frequency in the typical case [5], [6]. This trade-
off between performance, power, and reliability has remained
largely unexplored by previous works in the case of GPUs.

Using NVIDIA’s GTX 680 with the Kepler architecture, we
show the power benefits of reducing the processor’s supply
voltage at a fixed frequency to a critical voltage point at which
the program executes correctly but fails when the voltage
is reduced any further. We observe that the critical voltage
depends on the workload’s characteristics and can vary from
11% up to 21% of the nominal voltage. Based on the critical
voltage data of different programs, we demonstrate that the
L% effect is the main cause for the GPU’s reducible voltage
guardband (i.e., the offset between critical voltage and the
nominal supply voltage).

We also show that GPU architectural features like the
number of cores and GPU program characteristics, for ex-
ample, being memory bounded versus compute bounded, are
two important factors that influence the amount of reducible
voltage guardband. Understanding such features is crucial
to effectively anticipate [7], predict [8] or mitigate [9] the
reducible voltage guardband.

Our findings show that there is great potential in improving
GPU energy efficiency by controlling its reducible voltage
guardband from the architecture and program viewpoint. The
key challenge, however, is understanding and identifying the
components that impact the reducible magnitude.

The rest of this paper is organized as follows. Sec. II
studies the extent that a GPU’s voltage guardband can be
pushed, as well as the benefits of exploiting the voltage
guardband as a knob for improving a GPU’s energy efficiency.
Sec. III presents our analysis on the source of the GPU’s
voltage guardband and how microarchitectural activities and
architectural features impact the benefits. Sec. IV concludes
the paper with a summary of our important findings.
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Fig. 1: Measured critical voltage for 48 programs on the GTX 680.

II. PUSHING THE VOLTAGE GUARDBAND

We use GTX 680, a high-end modern GPU with NVIDIA’s
latest Kepler architecture [1], to demonstrate that there is a
large variation in the reducible voltage guardband among dif-
ferent programs. Pushing the guardband to the program’s limit
of correct execution can yield significant energy-efficiency
benefits. Measurements show that we can achieve up to 25%
energy reduction with this method. For all of our analysis, we
use a total set of 48 programs from the NVIDIA CUDA SDK
samples [10] and the Rodinia benchmark suite [11].

A. Critical Voltage Exploration

We experimentally reduce the operating voltage of each
program to its critical voltage, an operating point at which
the program executes correctly but fails when the voltage is
reduced any further. The resolution with which we control the
GPU’s core voltage is 6 mV. As we decrease the GPU’s op-
erating voltage from its default 1.18 V at 1.2 GHz, we ensure
program correctness at each step by checking if the GPU driver
crashes during program execution and by validating program
output against a reference run at nominal operating point.
When validating program output, we restrict output data to be
exactly the same as the reference run for integer workloads,
and within 0.02% error range for floating-point workloads.
We keep the core frequency, memory frequency, and memory
voltage, and temperature constant during the experiment.

Fig. 1 shows the critical voltage for the set of programs
we studied. The critical voltage varies from 0.93 V to 1.05 V,
while the nominal operating point is 1.18 V at 1.2 GHz. Our
measurement indicates that the critical voltage strongly varies
among these programs. Nearly half of the workloads we run
have a critical voltage of around 0.97 V, while some programs
have a critical voltage that is above 1V, the largest one is about
8% higher than the majority. Other programs have critical
voltage that is below 0.95V. Overall, the voltage guardband
is overprovisioned for the set of programs we evaluated.

To quantify the amount of “wasted” guardband, we use
the term reducible voltage guardband to denote the offset
between the nominal supply voltage and the benchmark’s
critical voltage. In the extreme case (benchmark concurrentK-
ernels), the reducible voltage guardband is 0.25 V (21%). For
the benchmark with the highest critical voltage (benchmark
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Fig. 2: Energy savings for operating the GPU at the critical voltages.

convolutionFFT2D), the reducible voltage guardband is 0.13 V
(11%). Because the reducible voltage guardbands vary signif-
icantly across different programs, we attribute the difference
to inherent program characteristics that impact (or determine)
the worst-case critical voltage.

B. Energy-Efficiency Benefits

We measure and quantify the energy-saving benefits of oper-
ating the GPU at the programs’ critical voltage. For GTX 680
power measurement, we adopt the following method: The
GPU card is connected to the PCle slot through a PCle riser
card and the ATX power supply. The PCle riser card and the
ATX power supply both have power pins that deliver power to
the GPU. We measure the instantaneous current and voltage
to compute the power supply from each of these sources. We
sense the instantaneous current draw by measuring the voltage
drop that occurs across a shunt resistor. We use NI DAQ 6133
to sample voltage at a rate of 2 million samples per second.

Fig. 2 shows the energy-saving benefits of operating at the
critical voltage.! By lowering the core supply voltage without
compromising frequency, we can improve energy efficiency.
On (geometric) average, the energy savings is about 21%.
We achieve the largest energy savings with the MonteCarlo
program. Operating at its critical voltage (0.97 V) instead of
the original 1.18 V reduces GPU energy consumption by 24%.
The smallest improvement is seen with convolutionFFT2D. We
can reduce its energy consumption by “only” 14%.

Energy reductions are generally proportional to the re-
ducible voltage guardband, as shown in Fig. 3. However, the
relationship is not linear, because the magnitude of energy sav-
ings depends on both the reducible guardband and the program
characteristics. For instance, programs that are not compute-
bounded tend to exercise the memory subsystem heavily.
Because we only scale core voltage, we observe smaller
benefits for those memory-bound programs. For compute-
bound programs, we achieve larger benefits. Therefore, it is
also important to understand program behavior for optimizing
the GPU’s energy efficiency using the voltage guardband.

'Henceforth, we use a subset of the programs mentioned in the beginning
of Sec. II because of power or performance counter instrumentation diffi-
culties. Nevertheless, the subsets are large enough to faithfully represent our
observations.
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III. CHARACTERIZING FACTORS THAT IMPACT THE
REDUCIBLE VOLTAGE GUARDBAND

It is important to understand what constrains the extent to
which the supply voltage of a GPU can be reduced and how
architectural parameters and program characteristics interact
with each other and impact a program’s critical voltage. We
present a measurement-based analysis that serves as the basis
for understanding voltage noise in GPUs from this approach.
We start by showing that the magnitude of the critical voltage
is affected by the L% noise rather than the IR drop of a GPU.
Next, we demonstrate that the number of active GPU cores
impacts the critical voltage. We also show that increasing the
clock frequency can detrimentally affect the critical voltage.
Finally, we explain how the critical voltage can be associated
with memory versus compute-bound program characteristics.
A. L% Noise

To understand why the programs have different reducible
voltage guardbands, we must understand whether the reducible
voltage guardband is caused by the IR drop or L% ef-
fect [4]. The static IR drop is the voltage drop resulting
from the resistive component of the power delivery network
when the processor consumes high power. L% is a dynamic
event, resulting from the inductive and capacitive components
when microarchitectural activity causes power fluctuations.
Reducing the IR drop requires us to lower the GPU’s peak
power consumption, and therefore may negatively impact the
GPU’s performance. Because L% is typically a rare transient
effect, prior CPU works have shown that optimizing it can
significantly boost performance [12]. Alternatively, it can also
be used to reduce energy consumption for a fixed frequency.

We find that the majority of the voltage guardband is needed
for the inductive voltage noise (i.e., di/dt voltage droop).
When the static IR drop is the main cause, the reducible
voltage guardband would have a strong correlation with the
average power consumption. Fig. 4 shows the relationship
between the reducible voltage guardband and the average
power consumption. It shows that these two are not correlated.

To confirm our analysis, we also measure the GPU pro-
cessor’s voltage trace at the package level using the DAQ.
Fig. 5 shows the snapshot of the measured voltage traces for
convolutionFFT2D and dxtc. Both programs have a similar
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power draw of around 115 watts (not shown). However,
convolutionFFT2D has a lower reducible voltage guardband
than dxtc. Their reducible voltage guardbands are 0.13 V and
0.2 V, respectively. The top graph in Fig. 5 shows the transient
voltage droops for convolutionFFT2D. The bottom graph in
Fig. 5 shows the measured trace for dxtc, which is more stable.

The trends seen with convolutionFFT2D and dxtc are repre-
sentative of the other programs. Therefore, we conclude that
the inductive voltage droop caused by the GPU processor’s
current draw variation is the major cause of the lower reducible
voltage guardband in some benchmarks. The processor’s cur-
rent draw can vary in accordance with both microarchitectural
activity and program characteristics. For instance, microarchi-
tecture stalls can cause voltage droops [12].

B. Number of Cores

Prior work with multicore CPUs demonstrated that the num-
ber of active cores could detrimentally impact the reducible
voltage guardband due to the nature of “constructive voltage
noise interference” [4]. This sort of analysis is yet to be studied
in GPUs, which use many simply in-order cores that are
significantly less power hungry than traditional out-of-order
superscalar processors.

We study the effect of active GPU cores on the critical
voltage by conducting an experiment using matrixMul. We use
matrixMul because it uniformly exercises all SIMD execution
lanes in the GPU without introducing complex behavior (e.g.,
control divergence). Because we cannot directly control the
number of active cores in the GPU, we vary the number of
CUDA thread blocks used by the program. It lets us indirectly
control the number of active cores.

Fig. 6 shows the critical voltage changes as the number of
thread blocks increase. When only one thread block is active,
the critical voltage is as low as 0.95 V. When 32 thread blocks
are used, the critical voltage increases to 0.99 V. This result
implies the guardband would increase as more cores are used.

Granted that matrixMul is a relatively simple application
compared to other programs with complex control flow, the
observation points to an optimization trade-off for energy effi-
ciency between the number of cores, the GPU critical voltage,
and energy efficiency that remains open for exploration.
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Fig. 7: Critical voltages for operating at different frequencies.

C. Clock Frequencies

In the pursuit for low power and high performance, GPUs
are employing dynamic voltage and frequency control to lower
voltage and achieve power savings when performance is not
needed. For example, NVIDIA’s GPUBoost dynamically in-
creases the GPU’s clock frequency until it hits a predetermined
temperature to deliver performance [1].

We find the possibility for an interesting trade-off between
the critical voltage and the processor’s operating clock fre-
quency. We discover the strong likelihood that we may need
to consider the critical voltage when changing frequencies,
because a small clock-frequency increase may necessitate a
relatively large critical-voltage increase, and this could void
the benefits of reducing the voltage guardband and/or the
boosted clock frequency.

We measure the critical voltage for the programs under
three frequency settings: 1.1 GHz, 1.2 GHz and 1.3 GHz.
Fig. 7 shows our results. From our measurements, we make
three important observations: First, programs generally need a
higher critical voltage at higher clock frequencies due to short
cycle time’s impact on L% noise. At a higher clock rate, stalls
and their impact on voltage droop become more pronounced
because current increases and the time duration during which
current changes gets smaller.

Second, for a fixed increase in clock frequency (e.g.,
100 MHz step), the critical voltage increases superlinearly
for nearly all programs. For example, the critical voltage of
benchmark convolutionFFT2D increases from 1 V to 1.05 V
when frequency increases from 1.1 GHz to 1.2 GHz. When the
frequency is increased further to 1.3 GHz, the critical voltage
increases by a larger amount to 1.15 V. The trend applies
generally to almost all the programs we consider.

Third, the exact magnitude of the increase can vary across
the programs. For some programs, such as BACKP, scalarProd
and lineOfSight, the critical voltage can increase much larger
than the other benchmarks when frequency changes. When
frequency increases from 1.2 GHz to 1.3 GHz, the critical
voltage increases sharply for both BACKP and scalarProd.
Howeyver, in the case of sobolQRNG, the increase is smaller. To
understand these differences, we need to examine the programs
and understand their inherent workload characteristics.
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Fig. 8: Critical voltages for the different program types.

D. Program Characterization

We demonstrate that the characteristics of a program impact
its critical voltage. Specifically, we show the extent to which
memory- versus compute-bound programs affect the critical
voltage. We find that memory-bounded programs typically
have a higher critical voltage, which is possibly caused by
stalling behavior even though GPU architectures are aggres-
sively designed to mask memory stalls via massive multi-
threading. A typical GPU can support over 20,000 threads.

We categorize the programs into four different types using
the NVIDIA visual profiler [13]. The four types of programs
we study are groups as such: memory bounded, whose ex-
ecution time is bounded by memory bandwidth; compute
bounded, whose execution time is bounded by the GPU’s
computational capabilities; latency bounded, which do not
have enough threads to run on the GPU hardware and thus
have very low utilization of both compute units and main
memory bandwidth; and balanced, which is the ideal program
to run on a GPU because it has a high utilization rate on both
compute units and memory bandwidth.

Fig. 8 shows the critical voltage for the different program
types. Memory-bounded programs tend to have a higher
critical voltage (i.e., larger voltage droops). Balanced pro-
grams show moderate critical voltage. Compute- and latency-
bounded programs tend to have lower critical voltage (i.e.,
smaller voltage droops).

Prior work in the CPU domain has shown that two con-
ditions are required for large voltage droops to occur: reg-
ular microarchitecture stalls, and synchronized stalls among
multiple cores. Both of these conditions can explain why
the memory-bounded kernels show a large droop. Memory-
bounded kernels have stall behavior that is caused by the
memory subsystem, and these kinds of stalls tend to synchro-
nize because of contention at the memory subsystem level.
Although latency-bounded programs also have stall behaviors,
the stalls are likely not aligned due to the lack of contention
among common resources. Compute-bounded programs either
have stable power draw or unsynchronized stalls.

In the future, it may be worthwhile to explore GPU kernel-
level characteristics. It may also be worthwhile to understand
how explicit program characteristics such as barrier synchro-
nizations, etc. impact the reducible guardband magnitude.

57



IV. CONCLUSION

We demonstrated that we can achieve energy-reduction
benefits as high as 25% by pushing the Kepler GPU’s core
supply voltage to its limit. The challenge for leveraging
this opportunity lies in understanding what impacts the re-
ducible voltage guardband. We find that voltage guardband
of GPUs is mainly caused by L% noise, and the critical
voltage depends on workload characteristics. We also show
how microarchitecture-level parameters, such as the number of
active cores and core frequency, impact the reducible voltage
guardband. We believe that there is a large potential for
this work, and it encourages us to further understand the
GPU voltage guardband’s interactions with architecture-level
parameters as well as GPU programs’ characteristics.
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