
Persistent Code Caching:
Exploiting Code Reuse Across Executions and Applications

Vijay Janapa Reddi
Harvard University

vj@eecs.harvard.edu

Dan Connors
University of Colorado

dconnors@colorado.edu

Robert Cohn
Intel Corporation

robert.s.cohn@intel.com

Michael D. Smith
Harvard University

smith@eecs.harvard.edu

Abstract

Run-time compilation systems are challenged with the
task of translating a program’s instruction stream while
maintaining low overhead. While software managed code
caches are utilized to amortize translation costs, they are in-
effective for programs with short run times or large amounts
of cold code. Such program characteristics are prevalent
in real-life computing environments, ranging from Graph-
ical User Interface (GUI) programs to large-scale appli-
cations such as database management systems. Persis-
tent code caching addresses these issues. It is described
and evaluated in an industry-strength dynamic binary in-
strumentation system – Pin. The proposed approach im-
proves the intra-execution model of code reuse by storing
and reusing translations across executions, thereby achiev-
ing inter-execution persistence. Dynamically linked pro-
grams leverage inter-application persistence by using per-
sistent translations of library code generated by other pro-
grams. New translations discovered across executions are
automatically accumulated into the persistent code caches,
thereby improving performance over time. Inter-execution
persistence improves the performance of GUI applications
by nearly 90%, while inter-application persistence achieves
a 59% improvement. In more specialized uses, the SPEC2K
INT benchmark suite experiences a 26% improvement un-
der dynamic binary instrumentation. Finally, a 400%
speedup is achieved in translating the Oracle database in
a regression testing environment.

1. Introduction

Run-time compilation systems alter the dynamic in-
struction stream of an application during execution. Func-
tioning independently of tool-chain dependencies allows
run-time compilers to provide a variety of powerful services

while operating on existing, unmodified binaries. Dynamic
optimization systems [1, 4, 6, 10] recognize optimization
opportunities and apply them at run time. Dynamic binary
translators [2, 9, 12, 35] facilitate the execution of binaries
compiled for one instruction set architecture (ISA) on a dif-
ferent ISA, while dynamic instrumentation [21, 22, 25, 31]
enables researchers and software developers to study appli-
cations without recompilation. New methods of employing
security [11, 18] and fault tolerance [3] are also being im-
plemented using these systems.

While run-time compilation systems open up many ex-
citing possibilities, their full potential is governed by strict
constraints on increasing program overhead. Virtual Ma-
chine (VM) overhead arises from spending time within the
infrastructure either emulating system functions, or trans-
lating new application code. The latter is significantly more
dominant. In addition, translated code overhead is ob-
served while executing the dynamically compiled applica-
tion code. Even in the absence of providing any new ser-
vice, performance of translated code incurs execution over-
head as the VM alters the dynamic instruction stream to
maintain control of the program’s execution. This paper fo-
cuses on reducing VM overhead, specifically on the costs
associated with translating application code.

Run-time compilation systems are effective in minimiz-
ing the VM overhead of hot/frequently executed code, but
the overhead remains significant for infrequently executed
(or cold) code. Cold code, in the context of a run-time com-
piler, is code whose translation cost is not amortizable by
repeated execution during a program’s lifetime. Applica-
tions exhibiting cold code behavior are prevalent in every-
day computing environments ranging from shell programs
to Graphical User Interface (GUI) and enterprise-scale ap-
plications. Pin [21], a state-of-the-art dynamic instrumenta-
tion system, causes large slowdowns even prior to injecting
instrumentation code for many small, as well as large, GUI



programs. Large enterprise-scale applications like the Ora-
cle database incur several orders of slowdown, directly due
to VM overhead associated with compiling cold code.

Performance degradation effects of cold code are im-
portant in run-time compilation systems providing trans-
lation, security, or instrumentation services. These ser-
vices run programs completely under the system’s con-
trol, requiring every instruction to be dynamically inter-
preted/translated. Thus, run-time compilers must overcome
cold code overheads, unlike same-ISA dynamic optimizers
resorting to original program execution in the presence of
cold code [1, 20]. Furthermore, transformations applied to-
wards providing a service (e.g. instrumentation) only in-
crease the overhead associated with cold code.

To overcome translation costs, run-time compilation sys-
tems manage software-based code caches to avoid repeated
translations of the same code. While effective for frequently
executed code, the benefits are small for cold code due to its
limited reuse. Some existing compilation systems resort to
interpretation [4] or less aggressive translation techniques
[2] in an attempt to reduce cold code translation overheads.

The approach discussed in this paper is based on the ob-
servation that cold code within an execution is often hot
code across multiple executions. Run-time compilation sys-
tems can exploit this inter-execution persistence by gener-
ating persistent code caches, and using them across sub-
sequent program invocations. Applications with high code
sharing benefit from improved execution time by reusing a
single persistent cache. Performance of applications with
low code sharing is improved over time by accumulating
new code discovered across executions into the persistent
code cache. The proposed model of code reuse is further ex-
tendable by leveraging inter-application persistence, which
exists in the form of common library dependencies between
programs (i.e. translations of library code generated by one
application are reusable by another application).

Persistent code caching is evaluated in Pin. Experimen-
tal results are discussed across different types of workloads:
the SPEC2K INT benchmark suite, GUI applications, and
the Oracle database. Overall, inter-execution persistence
improves the performance of GUI applications by nearly
90%, and inter-application persistence improves their per-
formance by 59%. Under dynamic instrumentation, per-
formance of the SPEC2K INT suite is improved by 26%.
Finally, exploiting the multi-process execution model of the
Oracle database yields a 400% improvement in a regression
test setting.

The paper is structured as follows: Section 2 introduces
the evaluation framework, discusses VM overhead, and
identifies when VM overhead is detrimental to performance.
Section 3 explains the exploitation of persistent applica-
tion characteristics to improve performance and presents a
working system. Section 4 evaluates the benefits of persis-

tent caching in Pin. Section 5 addresses prior work, and
Section 6 summarizes the paper.

2. Run-time Compilation Infrastructure

Run-time compiler designs vary based upon the goals
of a system. Nevertheless, certain components are funda-
mental to all. This section presents background into these
components and discusses the associated VM overhead in
the context of Pin [21], the evaluation framework.

2.1. Pin Overview

Pin is a dynamic binary instrumentation engine. It is sup-
ported on the IA32, EM64T, ARM, and IPF platforms under
Windows, Linux, MacOS and FreeBSD operating systems.
Pin’s components are illustrated in Figure 1. Pin exports an
instrumentation interface (Client API) to support the writ-
ing of Pin Tools (Client). Its core internal components are
the Emulation unit, Compilation unit, and Dispatcher.

The compilation unit compiles/translates application
code into code units called traces. A trace, in Pin’s context,
is a linear sequence of instructions fetched from a starting
address until a fixed instruction count is reached or an un-
conditional branch instruction is encountered. Execution al-
ways enters a trace via its first instruction; no side-entrances
are allowed. The fetched instruction layout of the trace is
not altered, nor are any optimizations performed on it as
Pin does not attempt original program optimization. Pin
only optimizes the instrumentation code it generates.

Once a trace is compiled, with or without instrumenta-
tion, it is placed in the code cache and a translation map
is updated. The translation map maintains information per-
taining to code within the cache. For example, given an
original instruction address, the map returns its code cache
address. After updating the map, translated branch instruc-
tions with targets corresponding to the compiled trace are
linked together. Hence, subsequent executions of the same
code require no re-translation and control remains in the
code cache. Control transfers back to the VM only when
code needs to be generated, or the emulation of a system
call is required. The emulation unit handles the latter to
ensure proper program execution.

2.2. Motivation

VM overhead is the time spent within the virtual ma-
chine translating application code or emulating system
functions. The former dominates the time spent within the
VM. Through the rest of the paper, VM overhead measures
only the cost of dynamically generating application code.

Current run-time compilation systems implement an
intra-execution code cache to tackle VM overhead. To un-



Persistence Extensions

Unit

Persistent

Database
Cache

Operating System

Hardware

A
pp

lic
at

io
n

Runtime System

Emulation Unit D
is

pa
tc

he
r

Virtual Machine

Cache
Code

Client API Manager
Persistent Cache

Client

Address Space

Compilation

Figure 1. Pin’s run-time compilation frame-
work. Persistence extensions (shaded) are
discussed in Section 3.2.

derstand its effectiveness, Figure 2(a) shows the behavior
of the SPEC2K INT benchmarks under Pin without instru-
mentation. Only the first Reference input is used for pro-
grams with multiple inputs. Vertical lines on the graph rep-
resent VM translation requests. The rightmost vertical line
indicates the end of program execution. White space in-
between the black lines indicates translated application ex-
ecution within the code cache.

According to Figure 2(a), VM translation requests occur
frequently at program startup as new code is discovered.
Much of the translated code at the beginning of execution
corresponds to program initialization and is typically cold
code (e.g. initialization of the run-time loader). As the fre-
quently executed code is generated, the number of transla-
tion requests drops because more time is spent executing the
translated application code. All SPEC2K INT benchmarks,
except 176.gcc, fit this profile. Benchmark 176.gcc is an
outlier. Its footprint is not captured even towards program
completion. Over 60% of its execution time (substantial
number of vertical lines on the graph) is spent generating
code, which is not reused enough to amortize VM overhead.

The issue of an application’s footprint not being present
in the code cache is mostly prevalent at the beginning of
program execution. While this is observed in the SPEC2K
INT suite, it is often insignificant relative to the overall exe-
cution time. However, everyday desktop applications prove
more challenging. To illustrate this, GUI applications pre-
sented in Table 1 are discussed below.

The minimum wait time, under Pin, for a GUI program
to be in full-effect (i.e. buttons, menus, etc.) for user in-
teraction is shown in Figure 2(b). The startup times are be-
tween 20x-100x slower than without Pin. The large over-
heads are not due to any inefficiencies in the design or im-
plementation of Pin, but are the result of significant cold
code execution during program startup.

Time spent executing the translated application code

(a) SPEC2K behavior using Reference inputs under Pin.

(b) GUI overhead breakdown.

Figure 2. Behavior and performance obser-
vations under Pin (assuming an unbounded
code cache).

(Pin translated code performance) is much smaller than the
time spent generating traces (Pin VM overhead) for all GUI
programs except File-Roller. File-Roller replaces the oper-
ating system’s signal handlers with its own, which requires
Pin to intercept and emulate signals on the program’s be-
half. Signal emulation is an expensive mechanism, thereby
resulting in File-Roller’s poor translated code performance.

Upon completion of the startup phase, VM overhead
drops substantially (not shown). Thereafter, user interaction
is tolerable for all programs. Program behavior begins to re-
semble that of 253.perlbmk and 186.crafty in Figure 2(a).

VM overhead arising from program initialization/startup
is a real-life concern in applying run-time instrumentation
to regression testing environments. Regression tests are
short running instances of a program that exercise localized
regions of code. This characteristic allows testing of spe-
cific program features. While instrumentation enables tasks
like code coverage characterization and memory error de-
tection to aid debugging [32], the translation cost cannot be
amortized due to the short execution times of these tests.

Consider the Gnu Gcc compiler whose test cases are sev-
eral hundred source code files. Across many tests, the com-
piler performs identical tasks of analysis, optimization and



Application Description % Lib code
Gftp File transfer client 97%

Gvim Graphical text editor 80%
Dia Diagram creation tool 96%

File Roller Archive manager 97%
Gqview Image manager 95%

Table 1. Linux GUI applications used to eval-
uate startup performance. % Lib code is the
amount of library code executed at startup.

code generation to verify output (i.e. program binary or re-
sult). Prior discussion identifies that over 60% of the com-
piler’s (176.gcc) time is spent in the VM translating code.
Such slowdowns are unacceptable in the presence of so
many tests. Much like Gcc, 100,000 tests are utilized in the
development and verification of the Oracle database [23].
The large number of tests demonstrates a severe challenge
in employing run-time instrumentation services for valida-
tion. Nevertheless, VM overhead can be substantially re-
duced by storing and reusing translations across executions,
thereby enabling testing and debugging services even for
large-scale domains.

3. Persistent Code Caching

Present run-time compilation systems discard the intra-
execution code cache at the end of an execution. Subse-
quent executions of the same program start with an empty
code cache, and translations are generated as required: pos-
sibly re-translating code already translated in previous runs.
Persistent code caching eliminates these redundant trans-
lations, thereby reducing VM overhead. A persistent run-
time compilation system extends the intra-execution code
caching model by storing and reusing intra-execution code
caches across executions.

3.1. Exploiting Code Reuse

The reuse of code across multiple executions of an ap-
plication, including both its application and library code, is
inter-execution persistence. Figure 3 shows an example of
code reuse across two inputs. Original program control flow
is shown on the left, while the right-half illustrates the same
program under Pin. Input 1 w/o a persistent code cache il-
lustrates VM requests to generate translations (e.g. A’) as
code is executing for the first time. Input 1 using its own
persistent code cache shows improved execution time when
translations are stored and reused across executions of the
same input. The VM is not invoked, even though code is
executing for the first time, as the translations already exist
within the persistent code cache. This is same-input persis-

Figure 3. An example of translation reuse
across inputs via persistent code caching.

Average Code Invariance

50 60 70 80 90 100

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

25
3.

pe
rlb

m
k

25
6.

bz
ip

2

O
ra

cl
e

Figure 4. Code coverage percentage between
phases within Oracle and Reference inputs of
SPEC2K INT.

tence, and yields the most VM overhead savings as no new
translations are generated.

In real computing environments, it is possible to en-
counter inputs for which persistent translations are non-
existent. In such scenarios, persistent run-time compiler
systems have the option of either starting with an empty
code cache, or using a persistent cache generated by another
input. The first option suffers the cost of re-translating all
code. However, in the latter, common code need not be re-
translated, as shown in Figure 3. Input 2 using Input 1’s
persistent code cache illustrates translation reuse of A’, D’
and E’ across inputs. Only C requires translation. While
VM overhead savings may not match same-input persis-
tence, using another input’s cache is a more viable approach
than complete re-translation. Using persistent caches across
inputs is cross-input persistence.

The effectiveness of cross-input persistence is dependent
upon the amount of code coverage between inputs (corrob-
orated by data in Section 4.3). Figure 4 shows a scale of
the average inter-execution code coverage for Oracle, and
for the set of SPEC2K INT benchmarks having multiple
Reference inputs. Benchmarks 164.gzip and 256.bzip2 are
clustered close to 100%, indicating all inputs exercise iden-
tical code. Benchmarks 176.gcc, 253.perlbmk, and 175.vpr
are further down the scale, indicating lower percentages of
code coverage.

Oracle, a multi-process application experiences little
code coverage (∼55%) between its different processes.



Gftp Gvim Dia File Roller Gqview
Gftp 41

Gvim 25 43
Dia 29 22 63

File Roller 23 22 43 62
Gqview 28 26 23 23 29

Table 2. Number of common libraries be-
tween GUI applications.

Each process is a separate invocation of the program’s bi-
nary to serve specific needs of the database during execu-
tion. Since the processes perform highly specialized tasks,
there is little code coverage amongst them.

The proposed model of code reuse is further extendable
via inter-application persistence, which leverages library
usage of dynamically linked applications. Table 2 exposes
significant library sharing between GUI applications. On
average, at least a third of all libraries used by a GUI appli-
cation are also used by other GUI applications discussed in
Table 2. GUI applications execute up to 97% of their startup
and initialization code from shared libraries (Table 1). The
startup time of these applications is reducible by reusing li-
brary translations generated by one program for another.

3.2. A Persistent Run-time Compilation
System

Persistent code caching is implemented in the Pin
framework. While Pin is supported on multiple platforms,
this work is evaluated only in the Linux environment on
the IA32 platform. The system supports inter-execution,
as well as inter-application persistence of single-threaded,
multi-threaded, and multi-process applications.

Extensions required to persist dynamically generated
translations, persistent cache manager and persistent cache
database, are illustrated in Figure 1. The manager performs
the fundamental tasks of generating persistent caches, ver-
ifying possible reuse, and storing them in the database. In
the following paragraphs, components of a persistent cache
are presented and a description of its generation and usage
follows. This is initially presented in the context of an inter-
execution persistent system, but is followed by a discussion
of the changes required to facilitate inter-application persis-
tence.

3.2.1. Persistent Code Caches. A persistent code
cache is a file stored on disk containing traces and their
associated data structures. The data structures contain in-
formation such as trace links and translation maps. Data
structures are persisted to facilitate translations and opti-
mizations of new code discovered across executions.

Persistent caches are generated assuming that applica-
tion binaries remain unaltered inbetween executions. How-
ever, it is possible they are modified by a static compiler or
optimizer. If modified, the translations become invalid, as
reusing them results in erroneous execution. Translations
are also invalid if the persistent system itself changes. Code
and the data structures are specific to a version of the system
and cannot be utilized across versions.

To prevent the use of invalid/inconsistent translations,
persistent caches contain information pertaining to exe-
cutable mappings present in memory at the time of their
creation. The information is contained in keys. Keys are a
hash of the base address, mapping size, binary path, pro-
gram header, and modification timestamps. The number
of keys generated varies based on the number of libraries
present in memory at the point of persistent cache creation.
At minimum, keys are generated for the application, Pin,
and the Pin Tool specifying instrumentation. The applica-
tion key ensures the original program has not been modified,
while the Pin key ensures translations are not reused across
versions of the persistent system. The Pin Tool key ensures
instrumentation semantics are consistent across executions.

Keys cannot be created for code dynamically generated
by the application (e.g. self-modifying code). Thus, persis-
tent caches only contain traces backed by a file on disk. All
others traces are invalidated by removing their information
from the translation map.

3.2.2. Persistent Code Cache Generation.
Information is written to a persistent code cache when-
ever the intra-execution code cache becomes full or the last
thread of execution performs the exit system call. In par-
ticular, at program startup, the persistence manager allo-
cates two large linear regions of memory from the applica-
tion’s virtual address space. These are the persistent mem-
ory pools, which together form a persistent cache. If the
pools are unavailable, persistence is abandoned and execu-
tion continues normally (i.e. no persistent cache is gener-
ated at any point during execution).

One of the persistent pools is dedicated to contain traces;
this is akin to Pin’s intra-execution code cache. The other
contains data structures associated with the persisted traces.
Pin’s data structures are C++ programming objects allo-
cated on an application’s heap and destroyed upon program
termination. The manager persists these objects by over-
loading the objects’ default memory allocators (i.e. new
and free) with custom versions that manage memory re-
quests out of the persistent data structures pool.

Persistent memory pools for data structures and traces
are maintained separately for performance reasons; inter-
mixing code and data structures results in poor perfor-
mance. Data structures are frequently accessed while an ap-
plication’s footprint is still being captured in the code cache.



Thereafter, control remains mostly in the code cache with
little need for them. Separating code from data allows for
code to be more tightly compacted. Otherwise, data inter-
mixed with code results in increased cache misses/conflicts,
page faults, and translation lookaside buffer misses.

3.2.3. Persistent Code Cache Reuse. The per-
sistent cache manager facilitates persistent code cache reuse
by invoking a cache lookup function at the beginning of ex-
ecution. The function attempts to locate a persistent cache
utilizing keys computed on the application being run, Pin,
and its Pin Tool. If found, the cache is loaded into memory.

A persistent cache is loaded via two mmap system calls
of the file on disk. One maps the code cache, while the other
loads the data structures. Since the Linux kernel employs
demand-based paging, disk I/O occurs based on the access
pattern of the executing code.

Library loading occurs via the mmap system call. Li-
braries may load at different addresses across executions,
as a result of changes in program behavior or host environ-
ment [24]. A persistent system must ensure the validity and
reusability of the cached translations. To ensure proper ex-
ecution, all library loads are intercepted and keys are com-
puted on the loaded binary. If the computed key matches
the key contained within the persistent cache, the transla-
tions are valid and reusable. Otherwise, a conflict has oc-
curred. The implementation leverages Pin’s existing mech-
anism to handle such conflicts, as they occur even in the
intra-execution code cache model.

Even in the absence of conflicts, loading libraries at dif-
ferent addresses across executions is problematic. Absolute
addresses embedded in the persisted translations cause in-
correct execution. For example, a run-time compiler may
translate a CALL 0x8048494 instruction into a (PUSH
0x8048499, JMP 0x78048494) pair. The PUSH in-
struction places the return address on top of the stack, while
the JMP instruction transfers control to a trace contain-
ing translated instructions of the called subroutine. Such
a translation is performed to maintain transparency and en-
sure proper execution. Reusing this translation causes pro-
gram failure if the library containing the CALL instruction
is relocated to a different address during a subsequent run;
the literal in the persisted PUSH instruction becomes in-
valid. The described implementation cannot use the per-
sisted translations if library locations vary across execu-
tions. However, the run-time compiler can be adapted to
generate position independent translations capable of cop-
ing with library relocation.

Thus far, the system is discussed in the context of inter-
execution persistence. Enabling inter-application persis-
tence requires minor changes: the application key used in
the persistent cache lookup function is ignored, thereby al-
lowing the function to return a cache corresponding to any

application instrumented identically. As such, a check ver-
ifying the usability of the persisted application translations
is mandatory to ensure execution of the proper program. If
the check fails, the persisted application translations do not
correspond to the running program, hence requiring their
invalidation. The invalidation consequently triggers trans-
lations of the current binary during execution. As execution
proceeds, persistent library translations common between
programs are reused if identical libraries are loaded at the
same address across programs. Otherwise, they too are in-
validated and re-translated.

4. Results

This section discusses the benefits of persistent code
caching. First and foremost, same-input persistence is eval-
uated to illustrate the benefits when all persisted translations
are reused without requiring new code generation. Follow-
ing that is an evaluation of the benefits of persistent caches
across inputs. Lastly, code reuse across program boundaries
is presented.

4.1. Methodology

Performance is evaluated on the SPEC2K INT suite,
GUI, and Oracle Database 10g Express Edition (XE) ap-
plications. The SPEC2K INT suite is compiled using the
Gnu Gcc 3.2 compiler at level -O2 optimization. Bench-
mark 252.eon is omitted because its source code cannot
be compiled in the experimental environment. GUI pro-
grams are evaluated only for their startup phase; the time
it takes for the graphic interface (i.e. buttons, menus, etc.)
to be ready for user interaction. Reproducible interactive
behavior is achieved using Gnu’s Xnee [34] package. Ex-
perimental data for SPEC2K INT and GUI applications is
gathered on an Intel (R) Pentium (R) 4 1700MHz machine
with 1.5GB memory running the RedHat 7.3 Linux distri-
bution.

Oracle is discussed in the context of regression testing in
a setup representative of production testing environments.
Every regression test is comprised of five phases. A phase
is a new instance of the program, which performs highly
specialized tasks. The start of a phase is identifiable via
process creation and is treated as a separate execution. In
addition, the phases are treated as unique inputs as they ex-
ercise significantly different code. The sequence of phases
are as follows: instance preparation (Start), instance asso-
ciation with database (Mount), database enabling (Open),
transaction/unit-test execution (Work), database deactiva-
tion (Close). The unit-test evaluated performs sixty trans-
actions (i.e. additions, modifications and deletions) on ten
database tables. Oracle is evaluated on a 8-way Intel (R)



Xeon (TM) clocked at 1700MHz with 4GB memory run-
ning the RedHat Enterprise Linux 3.

All benchmarks are run unmodified under Pin. 512MB
of an application’s address space (a tunable parameter)
is reserved for Pin’s use. The pre-allocated memory is
equally divided between the code cache and its support-
ing data structures. If the reserved memory is exhausted,
Pin reclaims the space by flushing the code cache. A code
cache flush discards all translated code and data structures.
Through the course of all experiments discussed in this sec-
tion, none of the benchmarks triggered a code cache flush.

4.2. Same-input Persistence

Same-input persistence demonstrates the peak potential
of the system. Figure 5(a) presents this peak potential by
showing improvements relative to running base Pin. Fig-
ure 5(b) discusses benefits under instrumentation services.

SPEC2K INT’s Train and Reference inputs have substan-
tially different run times; execution is 6× longer when the
Reference inputs are used. As expected, longer runs limit
the benefits of using persistent code caches. Once an ap-
plication’s footprint is captured in the code cache, the fixed
VM overhead becomes a smaller percentage of the execu-
tion time. This is specifically the case with the SPEC2K INT
benchmarks, which exercise little new code over time (Fig-
ure 2(a)). As a result, performance gains are better for the
Train inputs. Benchmarks 197.parser and 254.gap have in-
significant VM overhead for the Reference inputs, but both
experience ∼50% savings under the Train inputs. Large
benefits (>10%) are not seen for the Reference inputs with
the exception of 176.gcc (>30%) and 253.perlbmk (∼10%).

The variability in performance between the Train and
Reference inputs indicates that cold code exists in programs.
While the amount of cold code is dependent upon the in-
put, it cannot be dismissed as a rare occurrence. A per-
sistent system, as discussed in this paper, reduces VM over-
head when cold code exists without penalizing performance
when cold code is absent/negligible.

Figure 5(b) shows the breakdown of VM overhead and
the performance of translated code. The leftmost bar in each
cluster is the original program execution time. The bar in
the middle of the cluster shows the execution time when Pin
is performing native-to-native binary translation. The bar is
split, with the lower section representing time spent execut-
ing traces, and the upper section representing VM overhead.
A similar breakdown is presented in the last bar when basic
block instrumentation is added.

Under native-to-native translation, the two benchmarks
in the SPEC2K INT suite having significant VM overhead
are 176.gcc and 253.perlbmk. The remaining benchmarks
incur negligible overheads, or their slowdowns are primar-
ily due to poor performance of the translated code. As

such, there is little gained from using persistently cached
translations. Benchmark 176.gcc consistently executes new
code throughout its lifetime, while the 253.perlbmk has
more startup cost relative to other benchmarks (Figure 2(a)).
Using same-input persistent caches on these two bench-
marks eliminates VM overhead completely as shown in Fig-
ure 5(a).

If additional services like instrumentation are added for
long running programs, it is possible to disproportionally
increase VM overhead, and worsen translated code perfor-
mance. This is illustrated by the last bar within the clusters
of Figure 5(b). Detailed basic block profiling increases VM
overhead by as much as 25%. The increase is substantial
in 255.vortex and 256.bzip2 which in the absence of instru-
mentation incur ∼2% VM overhead.

GUI programs highlight an interesting aspect of same-
input persistence – the startup code of a GUI program re-
mains consistent across different inputs. A substantial part
of a GUI program’s input is user interaction (e.g. mouse
activity and button clicks). User input cannot be presented
to the program or processed by the program unless initial-
ization completes. The same initialization code (i.e. cold
code) is consistently executed across all executions. Hence,
caching the cold startup code of GUI programs is extremely
beneficial. Figure 5(a) shows an average improvement of
90% in their execution time. Such improvements are highly
desirable as GUI applications are interactive in nature, and
slow startup times are not tolerable.

Lastly, the performance of the Oracle benchmark is
shown. A single unit-test (all phases in sequence) without
Pin takes approximately 80 seconds. Running the same test
under Pin takes nearly 1300 seconds without instrumenta-
tion. Using persistence reduces execution time to just over
490 seconds, a 63% improvement in performance. Ben-
efits under instrumentation are even larger. Instrumenting
memory references without persistence extends execution
by 4000 seconds, but with persistence it takes slightly over
1000 seconds (∼4× speedup).

VM overhead is sensitive to the amount of instrumen-
tation added, and to the analysis performed within the in-
strumentation routines. Instrumentation increases VM over-
head due to additional code generation, but complex and
time consuming analysis can diminish the relative signifi-
cance of VM overhead. To avoid such potential biases, in-
strumentation results are not discussed in the remainder of
the paper. Performance is compared to the minimum over-
head Pin must overcome before applying any instrumenta-
tion: the cost of dynamically recompiling application code.

4.3. Cross-input Persistence

Persistent caches are capable of improving the perfor-
mance of not only the input used in creating them, but



(a) Performance improvement of SPEC2K INT (Train and Reference inputs), GUI and
Oracle benchmarks.

(b) SPEC2K INT Reference input overheads with and without instrumentation.

Figure 5. Evaluation of Same-input Persistence.

other inputs as well. This cross-input persistent cache usage
model is most desirable when same-input persistent caches
are unavailable. To evaluate this, two benchmarks illus-
trated in Figure 4 are discussed in detail as a case study. The
criteria for choosing the benchmarks is the amount of VM
overhead and the amount of code coverage between inputs.

The two interesting benchmarks worth investigating in
detail are 176.gcc and Oracle. Both experience large VM
overheads while exhibiting different code coverage charac-
teristics between inputs/phases. 176.gcc suffers from∼33%
VM overhead with tight code coverage (∼90%) between its
inputs. Oracle experiences ∼63% slowdown due to VM
overhead, and its average code coverage is the lowest at
55%, compared to the other benchmarks in Figure 4.

While benchmarks 253.perlbmk and 175.vpr are inter-
esting due to low code coverage between their respective
inputs (Figure 4), they incur low VM overheads of only 2%
and 8% (Figure 5(a) for Reference inputs). Cross-input per-

sistence does improve their execution time relative to run-
ning Pin without persistence, but the improvements are not
substantial as the headroom for VM overhead reduction is
small. The same is observed with benchmarks 164.gzip and
256.bzip2.

Table 3(a) shows 176.gcc’s code coverage across differ-
ent combinations of the Reference inputs. The leftmost col-
umn indicates a run, and the percentage of its code covered
by other inputs is listed in the columns following the same
row. Code coverage is the amount of static code correspond-
ing to an input also executed by other inputs. For example,
97% of Input 5’s code is also executed by Input 2. 100%
code coverage corresponds to same-input persistence. The
table shows fluctuation between 84% and 98% code cover-
age for 176.gcc. Input 4 shows the least code coverage for
all inputs, suggesting lower benefits are likely compared to
using other inputs’ persistent caches.

Table 3(b) shows a similar code coverage table for the



Input 1 Input 2 Input 3 Input 4 Input 5
Input 1 100% 87% 89% 84% 88%
Input 2 93% 100% 90% 85% 98%
Input 3 93% 88% 100% 91% 89%
Input 4 95% 90% 98% 100% 90%
Input 5 92% 97% 90% 84% 100%

(a) 176.gcc

Start Mount Open Work Close
Start 100% 47% 47% 33% 46%

Mount 22% 100% 78% 66% 64%
Open 18% 66% 100% 68% 56%
Work 18% 66% 77% 100% 56%
Close 29% 89% 91% 74% 100%

(b) Oracle

Table 3. Code coverage percentage.

Oracle database. The data indicates significant fluctuation
in coverage across phases ranging between 18% (Work ’s
coverage by Start) to 91% (Close’s coverage by Open). A
persistent cache created using the Start phase is least likely
to help the other phases due to low code coverage (between
18% and 29%). The persistent cache from the Open phase
is most likely to help the other phases since it encompasses
large amounts of code corresponding to all inputs (between
47% and 91%).

The benefits of cross-input persistence on 176.gcc are
shown in Figure 6(a). Within each cluster, the leftmost bar
indicates the performance of an input executing without a
persistent cache. The rest of the bars correspond to priming
the code cache with a persistent cache generated using an
input corresponding to the legend. For example, Persistent
Cache Input 2 refers to a persistent cache generated using
Input 2.

In analyzing the performance of cross-input persistence
for 176.gcc, the most significant insight is that sizable
performance improvements are achieved over running Pin
without persistence. Performance is tied to the amount of
code coverage between inputs, similar to results in profile-
driven compilation systems. While best results are achieved
with same-input persistence (100% coverage), the execu-
tion of Input 5 using a persistent cache from Input 4 results
in higher execution time (84% coverage and 108 seconds
execution time) than using a persistent cache from Input 2
(97% coverage and 90 seconds execution time).

Performance of Oracle’s phases under cross-inputer per-
sistence is shown in Figure 6(b). Even though Oracle has a
lower percentage of code coverage between inputs, all of its
phases benefit from using persistent code caches. Improve-
ments range from 7% (Start phase with Persistent Cache

(a) 176.gcc

(b) Oracle

Figure 6. Time savings under Cross-input
Persistence.

Mount) to 81% (Mount phase with Persistent Cache Open).
Unlike 176.gcc’s inputs, Oracle’s phases behave sub-

stantially different based upon the cache being utilized.
Consider the execution times of the Close phase using Per-
sistent Cache Start and Persistent Cache Open. There is
∼60% difference in execution time. A correspondingly
large difference of 70% exists in coverage of the Close
phase between the Open and Start phases.

The input that benefits the least, even with same-input
persistence, is the Start phase. Relative to the other phases,
Start is covered the least by other phases. As a result, cross-
input persistence improves performance by only 7%.

Overall, persistent caches are useful even when their in-
puts are run infrequently as they can improve the perfor-
mance of other inputs. In addition, a persistent cache does
not degrade performance when it is ineffective. As such,
persistence improves the current code caching model.

4.4. Persistent Cache Accumulation

Using a persistent cache created from only one input
limits the benefits to the amount of code coverage between



(a) 176.gcc

(b) Oracle

Figure 7. Time savings under Persistent
Cache Accumulation.

inputs. With applications such as Oracle that experience
low code coverage between inputs (i.e. phases), perfor-
mance differs significantly depending on the persistent code
cache being used. For instance, Persistent Cache Start
yields the least improvement in performance across all the
remaining phases. On average it executes only 22% of the
code exercised by other inputs (Table 3).

New code is discovered across executions as inputs
change, which is an opportunity to improve the performance
of persistent caches over time. The code coverage of a per-
sistent cache can be increased by repeatedly using it across
executions of different inputs, and adding newly discovered
translations into it. The run-time addition of new transla-
tions into a persistent code cache is persistent cache accu-
mulation.

The effect of applying persistent cache accumulation on
176.gcc is shown in Figure 7(a). Each cluster shows the ex-
ecution time when an accumulated persistent cache is used
for an input. The leftmost bar in each cluster is the per-
formance of base Pin running without persistence. The last
bar in every cluster is the performance of same-input per-
sistence. It exists to compare the effectiveness of persistent
cache accumulation. The bars inbetween indicate the per-

formance of the accumulated caches.
Persistent code caches are accumulated in ascending in-

put order, skipping the cache corresponding to the input be-
ing evaluated. For example, consider Input 2 on the x-axis.
Set 1 in its cluster contains a persistent cache generated us-
ing Input 1. Set 2 contains the accumulation of persistent
caches generated using Input 1 and Input 3. Input 2 in Set
2 is skipped because it corresponds to the input being eval-
uated. Set 3 is made up of Input 1, Input 2 and Input 4, and
Set 4 is comprised of Input 1, Input 2, Input 3 and Input 5.

Across all inputs of 176.gcc, accumulated persistent
caches outperform Pin without persistence, while closely
matching the performance of same-input persistence. The
benefits from accumulating more than two persistent caches
are not substantial/noticeable due to large amounts of code
coverage between inputs of this benchmark. Therefore, ad-
ditional accumulations do not add large amounts of new
code to the persistent cache.

In contrast, accumulation largely benefits Oracle. As
traces from more inputs are accumulated (increasing set
number), performance improves with the exception of the
Start phase. The gains are limited as it experiences the least
code coverage by the other phases.

Across the Mount, Work, and Close phases, Set 3 yields
the most improvement in performance. It contains code ac-
cumulated from the Start, Mount, and Open phases. Of
these, the Open phase is the most complex and executes
large amounts of new code not present in the Start and
Mount phases. As a result, its accumulation contributes a
significant number of traces to the persistent cache result-
ing in improved execution time.

Set 4, the addition of the Close phase to Set 3, does not
contribute much improvement. The Close phase is rela-
tively small. Additionally, Set 3 already contains much of
the code Close exercises. This is due to the Open phase,
which covers 91% of Close’s code footprint (Table 3(b)).

Overall, persistent cache accumulation is very effective.
For applications like 176.gcc, which exhibit high code shar-
ing, accumulation maintains the persistent code to be used
in later executions without decreasing performance. For ap-
plications like Oracle experiencing lower amounts of code
sharing, persistent cache accumulation greatly improves
performance. Aggregating the benchmark’s traces from dif-
ferent phases into a single persistent cache narrows perfor-
mance to within 22% of same-input persistence.

4.5. Inter-application Persistence

Startup time of real world applications is diminishable
by leveraging library sharing amongst programs. Table 4
shows the amount of a GUI application’s library code found
in other GUI applications persistent caches. For example,
78% of Gvim’s library code is found in Gftp’s persistent



Gftp Gvim Dia File Roller Gqview
Gftp 100% 71% 64% 78% 78%

Gvim 78% 100% 76% 62% 72%
Dia 64% 55% 100% 74% 78%

File Roller 62% 81% 74% 100% 84%
Gqview 79% 72% 78% 84% 100%

Table 4. Library code coverage percentage
between GUI applications.

Figure 8. Time savings under Inter-
application persistence.

cache. This data is a refinement of Table 2, which presents
code sharing at the coarse granularity of entire libraries and
does not account for the actual code coverage.

Execution time improvements under inter-application
persistence (i.e. the use of one application’s persistent code
cache for another) are shown in Figure 8. The leftmost bar
reflects the startup time of the application under Pin with-
out persistence, which on average is over 20 seconds for all
applications. Same-input persistence (second bar in clus-
ter), previously discussed in Section 4.2 provides a basis for
evaluating time savings under inter-application persistence.

Every cluster has a legend corresponding to itself (i.e.
Gftp on the x-axis has a Persistent Library Cache Gftp leg-
end entry). These bars isolate the maximum benefits achiev-
able using only library code. It is a form of same-input per-
sistence, but without traces corresponding to the primary
application itself. Across all programs, this bar is within
a second or two of same-input persistence, indicating that
GUI applications indeed execute significant startup code
from libraries as claimed in Table 1. Ergo, persisting trans-
lated library code in itself can offer large performance im-
provements in startup time.

Remaining bars within the clusters show time savings
under inter-application persistence. Improvements in per-
formance are significant (averaging around 59%) across all
applications, but do not correspond closely with the code

Figure 9. Persistent cache sizes.

coverage data in Table 4 (averaging 70% coverage). While
applications exhibit code sharing, the implementation has
inherent limitations. Traces corresponding to identical li-
braries loaded at different addresses across programs can-
not be used because the system does not generate relocat-
able translated code. Instead, the system falls back to re-
translation. Hence, potential benefits are lost.

4.6. Persistent Code Cache Sizes

Input code coverage (i.e. code footprint) determines the
size of a persistent cache. Most SPEC2K benchmarks have
small code footprints. As a result, their caches are less than
3MB in size. Benchmark 176.gcc, due to its large code
footprint, has a larger 14MB persistent cache. As per Fig-
ure 9, the GUI and Oracle benchmarks discussed in this
paper have even larger persistent caches.

The stacked bars of Figure 9 illustrate the memory con-
sumed by the persistent traces (i.e. code cache) and the
persistent data structures. Interestingly, the data structures
corresponding to the traces consume more memory than
the traces themselves. Applications in the SPEC2K INT
benchmark suite exhibit the same characteristic. Data struc-
ture memory consumption is more because trace manage-
ment requires large amounts of information such as incom-
ing/outgoing links, register liveness analysis and register
bindings.

Memory management is an important aspect of run-time
compilation systems. Prior work focuses on reducing the
memory footprint of the translated code [14, 15, 29] assum-
ing the code cache to be the largest consumer of memory.
However, data in Figure 9 indicates there is more room for
reducing memory footprint by targeting the runt-time data
structures.



5. Related Work

Implementations of persistence have been explored in
the domain of binary translation as a means of reducing VM
overhead. Static pre-translators [7, 17, 28] support offline
translation for online usage. However, static pre-translation
has proven infeasible in production environments due to ex-
tensive code expansion. Even when adding small amounts
of instrumentation, field experiments show a 10× increase
in code size. Such expansion is impractical for large appli-
cations like Oracle, which are ∼100MB in static size and
1GB when statically pre-translated. These applications re-
quire the use of a dynamic system that persistently caches
only executed code. Experiments using the implementation
discussed in this paper yielded a manageable cache size of
∼256MB.

Persistence in dynamic binary translators is briefly
touched upon by the authors of Strata [27] and HD-
Trans [30]. But neither focused entirely on persistence nor
demonstrated significant benefits using it. In this paper, the
potential of persistence is explored thoroughly across dif-
ferent classes of applications, as well as their corresponding
inputs.

Hazelwood and Smith [16] characterizes code sharing
in the context of a dynamic optimization system for the
SPEC2K INT suite. This work is motivated by that initial
study and builds upon it in three important ways. First, run-
time compilation overhead is broken down and the over-
head reducible via persistent caching is explained. Second,
code coverage and the significance of persistent caching are
discussed across a broader set of real-life applications, con-
trasting the SPEC2K INT suite with the GUI programs and
the Oracle database. Lastly, performance results using a
real system are presented.

Li et al. [19] improve the software-managed code cache
model of the IA32EL binary translator by not discarding
translations of modules unloaded from memory. Rather,
the invalid translations are cached separately from the code
cache in an attempt to reuse them if the module is later
reloaded during execution. Persistence as investigated in
this paper goes further by extending the model of code reuse
across executions, as well as applications.

Conte et al. [8] use persistence to improve object-code
dynamic rescheduling as binaries are used across VLIW
machine generations. Object-code, once dynamically re-
scheduled to a VLIW machine other than its native counter-
part, is stored on disk and used across executions. Hence,
reducing the number of rescheduling requests over the life-
time of a binary on an incompatible VLIW machine.

In evaluating the benefits of profile information, prior
work [5, 13, 26, 33] explores the effectiveness of train-
ing inputs in predicting code coverage, and future program
behavior under new inputs. Considerable work in profile-

driven optimization leverages such information. At present,
this work investigates the benefits of persistence in a system
(Pin) affected only by code coverage, and not by run-time
specifics of control flow and memory usage.

While persistence is evaluated in Pin, the fundamen-
tal approach of leveraging code reuse across executions
and applications is exploitable by other dynamic compila-
tion systems as well. These systems engage in complex
optimizations and analysis, but prior to engaging in such
complex tasks, they too must overcome cold code and/or
startup penalties. Therefore, persistence can be exploited as
a means of overcoming these performance bottlenecks.

6. Conclusion

This paper proposes extending the intra-execution
model of code reuse, employed by present run-time com-
pilation systems, to inter-execution and inter-application
(by leveraging common library dependencies). Translations
generated during executions are cached persistently on disk
for reuse across runs.

The important contribution of this paper is that persis-
tent translations are useful for several important application
classes. In particular, persistence benefits programs with
severe startup costs (e.g. GUI) and large code footprints
(e.g. Gcc and Oracle). Performance improvements are even
larger under more specialized uses of run-time compilation
systems such as dynamic binary instrumentation.

Persistent code caching is implemented in Pin. The per-
sistent system supports inter-execution, as well as inter-
application persistence of single-threaded, multi-threaded,
and multi-process applications. The performance benefits
are evident from the results: SPEC2K INT benchmarks ex-
perience an average improvement of 26% with instrumenta-
tion. The startup phases of desktop GUI applications benefit
by nearly 90%. Furthermore, a 400% speedup is achieved
in translating the Oracle database in a regression testing en-
vironment. Aside from improvements in performance, the
system does not degrade performance when persistence is
ineffective.

7. Acknowledgements

We thank Alex Shye, Kelley Kyle, Bala Narasimhan and
the anonymous reviewers for their detailed comments and
suggestions on improving the quality of this paper. We are
also extremely thankful to the Pin Team for granting us ac-
cess to the Pin source code. This work was funded by Intel
Corporation.



References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-
parent dynamic optimization system. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design and Im-
plementation, 2000.

[2] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky,
Y. Wang, and Y. Zemach. IA-32 Execution Layer. In Proc.
of the 36th International Symposium on Microarchitecture,
2003.

[3] E. Borin, C. Wang, Y. Wu, and G. Araujo. Software-based
transparent and comprehensive control-flow error detection.
In Proc. of the International Symposium on Code Genera-
tion and Optimization. IEEE Computer Society, 2006.

[4] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In CGO ’03: Proc.
of the international symposium on Code generation and op-
timization, 2003.

[5] B. Calder, D. Grunwald, and A. Srivasta. The predictability
of branches in libraries. In Digital WRL Technical Report,
June 1995.

[6] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo:
A dynamic optimization system. In 3rd ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-3),
December 2000.

[7] R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing
alpha executables on windows nt with spike. Digital Tech-
nical Journal, 9(4):3–20, 1998.

[8] T. M. Conte and S. W. Sathaye. Dynamic rescheduling: A
technique for object code compatibility in VLIW architec-
tures. In Proc. of the 28th Annual International Symposium
on Microarchitecture, 1995.

[9] J. C. Dehnert, B. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The transmeta code morphing
software. In Proc. of the International Symposium on Code
Generation and Optimization, 2003.

[10] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. DELI: A new run-time control point. In 35th
Annual International Symposium on Microarchitecture, De-
cember 2003.

[11] Determina. http://www.determina.com/.
[12] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compila-

tion for 100% architectural compatibility. In Proc. of the
24th International Symposium on Computer Architecture,
June 1997.

[13] P. T. Feller. Value profiling for instructions and memory
locations. Master’s thesis, University of California at San
Diego, 1998.

[14] A. Guha, K. Hazelwood, and M. L. Soffa. Reducing exit stub
memory consumption in code caches. In International Conf.
on High-Performance Embedded Architectures and Compil-
ers (HiPEAC), Ghent, Belgium, January 2007.

[15] K. Hazelwood. Code Cache Management in Dynamic Op-
timization Systems. PhD thesis, Harvard University, Cam-
bridge, MA, May 2004.

[16] K. Hazelwood and M. D. Smith. Characterizing inter-
execution and inter-application optimization persistence. In
Workshop on Exploring the Trace Space for Dynamic Opti-
mization Techniques, San Francisco, CA, 2003.

[17] R. J. Hookway and M. A. Herdeg. Digital FX!32: Com-
bining emulation and binary translation. Digital Technical
Journal, 9(1), August 1997.

[18] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In Proc. of the 11th
USENIX Security Symposium, pages 191–206, 2002.

[19] J. Li, P. Zhang, and O. Etzion. Module-aware transla-
tion for real-life desktop applications. In Proc. of the 1st
ACM/USENIX international conference on Virtual execution
environments, 2005.

[20] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew,
and D.-Y. Chen. The performance of runtime data cache
prefetching in a dynamic optimization sytem. In Proc. of
the International Symposium on Microarchitecture, 2003.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proc. of the ACM SIGPLAN 2005
Conf. on Programming Language Design and Implementa-
tion, June 2005.

[22] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. In Proc. of the 3rd Workshop on Runtime
Verification, July 2003.

[23] Oracle. The making of oracle database 10g. Website.
URL:http://www.oracle.com/technology/oramag/oracle/03-
sep/index.html.

[24] PaX. Web site: http://pax.grsecurity.net/.
[25] D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder. GILK:

A dynamic instrumentation tool for the linux kernel. In
Proc. of the 12th International Conf. on Modeling Tools and
Techniques for Computer and Communication System Per-
formance Evaluation (TOOLS ’02), 2002.

[26] S. Savari and C. Young. Comparing and combining profiles.
volume 2, 2000.

[27] K. Scott, J. Davidson, and K. Skadron. Low-overhead soft-
ware dynamic translation. Technical Report CS-2001-18,
University of Virgina, 2001.

[28] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta.
Quicksilver: A quasi-static compiler for java. In Proc. of
the ACM SIGPLAN International Conf. on Object-Oriented
Programming Languages, Systems, Languages, and Appli-
cations, October 2000.

[29] S. Shogan and B. R. Childers. Compact binaries with code
compression in a software dynamic translator. In Proc. of
the conference on Design, Automation and Test in Europe,
2004.

[30] J. S. S. Swaroop Sridhar and P. P. Bungale. Hdtrans: A low-
overhead dynamic translator. In Proc. of the Workshop on
Binary Instrumentation and Applications, 2005.

[31] A. Tamches and B. P. Miller. Fine-grained dynamic instru-
mentation of commodity operating system kernels. In Oper-
ating Systems Design and Implementation, 1999.

[32] Valgrind. Project suggestions, 2003. Website.
URL:http://valgrind.org/help/projects.html.

[33] D. W. Wall. Predicting program behavior using real and esti-
mated profiles. In Proc. of the ACM SIGPLAN 1991 Conf. on
Programming Language Design and Implementation, 1991.

[34] G. Xnee. We site: http://www.gnu.org/software/xnee/.
[35] C. Zheng and C. Thompson. Pa-risc to ia-64: Transparent

execution, no recompilation. Computer, 33(3), 2000.


