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ABSTRACT
Big data, specifically data analytics, is responsible for driving
many of consumers’ most common online activities, includ-
ing shopping, web searches, and interactions on social media.
In this paper, we present the first (micro)architectural investi-
gation of a new industry-standard, open source benchmark
suite directed at big data analytics applications—TPCx-BB
(BigBench). Where previous work has usually studied bench-
marks which oversimplify big data analytics, our study of
BigBench reveals that there is immense diversity among ap-
plications, owing to their varied data types, computational
paradigms, and analyses. In our analysis, we also make an im-
portant discovery generally restricting processor performance
in big data. Contrary to conventional wisdom that big data
applications lend themselves naturally to parallelism, we dis-
cover that they lack sufficient thread-level parallelism (TLP)
to fully utilize all cores. In other words, they are constrained
by Amdahl’s law. While TLP may be limited by various
factors, ultimately we find that single-thread performance is
as relevant in scale-out workloads as it is in more classical
applications. To this end we present core packing: a software
and hardware solution that could provide as much as 20%
execution speedup for some big data analytics applications.

1. INTRODUCTION
Big data analytics is the application of advanced analytic

techniques to large, diverse structured and un-structured data.
It empowers users with a granular perspective of complex
business operations and customer habits that rarely find their
way into traditional data warehouses or standardized reports.
Using techniques such as predictive analytics, data mining,
statistics, machine learning, and natural language processing,
big data analytics enables its users to understand the current
state of the business and track complex and continuously
evolving behavior such as end-user customer traits.

From an industry perspective, big data analytics has been
oversimplified. Much previous research has been conducted
into big data [1,2,3,4,5,6,7], but this has often taken a broad
approach, covering not only data analytics but also media
streaming, social networking, real-time services, etc. Often,
data analytics is reduced to simple, sample applications in-
tended as demonstrations rather than benchmarks. While not
wholly without value, these micro-benchmarks are ultimately
not representative of industry. To merit serious study, an
analytics benchmark should be characterized by (1) realism,
the use of applications that are representative of real-world

applications, including complexity and size; (2) comprehen-
siveness, or a thorough exercise of functionalities; and (3)
usability, which ensures reproducibility of studies.

In this work, we study TPCx-BB, which distinguishes
itself as a comprehensive data analytics benchmark, repre-
sentative of industry workloads, designed to be eminently
usable. TPCx-BB (hereafter “BigBench”) is a recent industry-
standard workload developed through collaboration from mul-
tiple industry partners. BigBench is especially attractive be-
cause it simulates a real-world scenario: a modern retailer
with both an online and physical store presence which col-
lects a wealth of data about its customers, competitors, stores,
and online reputation. It seeks, through 30 data analytics
“queries,” to use this data for economic gain. Each query
operates on a subset of the data in a unique way: Q01, for
example, identifies the top products sold together in given
stores (structured data), while Q28 classifies product review
sentiment (positive or negative) based on the textual customer
reviews (un-structured data) that are logged into the database.

We perform the first comprehensive characterization of
BigBench. We analyze BigBench from two key perspectives.
First, we undertake a (micro)architectural study of its execu-
tion on an enterprise-level cluster. Compared to prior work,
which often tend to use only a handful of (micro) bench-
marks, the 30 component queries show diverse behavior that
is masked when they are considered in aggregate. This di-
versity arises from exercising different Hadoop and Spark
capabilities such as MapReduce, machine learning, natural
language processing, pure query language queries, and others
in various combinations on structured, semi-structured, and
un-structured data. Each BigBench query is a complete appli-
cation, executing multiple operations on various sources of
data to produce unique and insightful takeaways. As a result,
we see that some queries show great computational diversity
(Q02, Q09, and Q28), while others show great memory (Q06
and Q19) or I/O diversity (Q05 and Q16). It is impossible to
capture these extremes with only a handful of benchmarks.

Second, we analyze the parallelism characteristics of Big-
Bench to reveal a startling dearth of thread-level parallelism
(TLP), in stark contrast to widely held assumptions regarding
big data’s scale-out potential. The lack of TLP arises from
various sources, but its effect is always the same: cores are
being left unused by big data. This suggests that relying
solely on scale-out resources is insufficient; systems must
also be designed to actively monitor TLP and take proactive
measures to boost single-thread performance as necessary.



Table 1: Comparison of benchmark quality. Several benchmarks related to big data are compared based on their compliance to three qualities of
good benchmark design. A realistic benchmark reflects complex real-world scenarios; reliance on micro-kernels (grep, sort, etc.) or computational
kernels (k-means, naive Bayes, etc.) undermines benchmark realism. A comprehensive benchmark covers all the use cases within a domain; too broad
a domain, though, lacks focus and neglects important use cases. A usable benchmark has a simple, strong, and robustly repeatable installation and
running process. A complex installation interferes with a user’s ability to run the benchmark at all. BigBench alone meets all three requirements.

Benchmark Realism Comprehensiveness Usability
BigDataBench [1] Mostly micro-benchmarks or kernels Slightly too broad but covers SQL,

MapReduce, ML, and user-defined
Very involved setup with
extensive configuration

Big Data Benchmarks [8] Only one non-micro-benchmark Limited to SQL and user-defined Out of date; complex installation
process

CloudSuite [3] All workloads are complex and
capture real-world use cases

ML, user-defined, MapReduce;
only 3 analytics workloads

Formerly very difficult to install;
simplified by Docker images

DCBench [5] Mostly micro-benchmarks or kernels MapReduce, ML, and
user-defined

Out of date; complex installation
process

HiBench [7] Mostly micro-benchmarks or kernels MapReduce, ML, SQL Minimal configuration needed;
detailed installation instructions

LinkBench [9] Mimics Facebook computation Limited to graphs Needs extensive configuration
YCSB [10] Creates realistic testing environment

for stressing data serving systems
Framework for testing;
not a standalone benchmark

Requires integration with real
workload; difficulty varies

BigBench [11] Emulates a retailer running
thorough analytics on customer,
product, and competitor data

Hadoop and Spark; MapReduce,
user-defined, SQL, NLP, ML

Uses Cloudera/HortonWorks;
installed by unpacking files;
one-line command to run

In response, we propose core packing to actively restrict
computation to a minimal set CPU cores as a means of proac-
tively enabling Intel Turbo Boost [12]. Our experiments show
that Turbo Boost is not normally being applied even when it
has the potential to boost performance. Through small archi-
tectural and software changes, we estimate that core packing
could provide up to 20% speedup in some BigBench queries.

In summary, we make the following key contributions:
• We present the first microarchitectural characterization

and system-level analysis of TPCx-BB, an open-source
industry-standard big data analytics benchmark.

• Contrary to the assumptions of some previous bench-
marks, we reveal that big data analytics is a rich and
diverse field with distinct execution characteristics, mer-
iting different foci for study and improvement.

• We experimentally quantify a major bottleneck that
arises from limitations on TLP, which indicates that
even though parallelism may be abundant in these big
data applications, it is still critical to focus on improving
scale-up performance in addition to the traditional scale-
out systems’ research approach.

• We demonstrate the potential of core packing to proac-
tively assist Intel Turbo Boost to improve performance
and energy savings in big data analytics.

This paper is organized as follows. Section 2 justifies
studying BigBench (TPCx-BB) in an already crowded field
from an industry perspective. Section 3 presents the details of
BigBench and how it is run. Section 4 describes our experi-
mental setup. In Section 5 we present our (micro)architectural
analysis of BigBench and expose the diversity of behaviors
among queries that would be hidden by treating them as a
single black box. Section 6 exposes the low TLP exhibited
by all of the queries. In Section 7 we introduce core packing
as a measure to proactively enable Turbo Boost during low-
TLP execution. Section 8 presents related work. The paper
concludes in Section 9.

2. MOTIVATION

With the wealth of big data-related benchmarks avail-
able [1, 3, 5, 7, 8, 9, 10], one might question whether there
is any value in studying one more (BigBench). To this we
emphatically answer in the affirmative. We outline here three
major qualities a benchmark should possess to merit serious
study: realism, comprehensiveness, and usability. Table 1
shows how each of several benchmarks compares in compli-
ance to these qualities. Only BigBench captures all three.

Realism As the field of big data has matured, the com-
plexity and realism of the benchmarks has improved. Initial
benchmarks focused on micro-benchmarks (e.g. sort, grep,
relational queries, etc.) and later benchmarks began incorpo-
rating computational kernels (e.g. k-means clustering, naive
Bayes, etc.). However, to represent industry-strength work-
loads, a benchmark must capture complex scenarios.

BigBench relies exclusively on such complex workloads,
developed through open discussion with major industry play-
ers, including Microsoft, Oracle, Cloudera, and Intel, among
others [13]. As a result, BigBench’s queries are complex,
realistic tasks that represent real-world applications.

Comprehensiveness A comprehensive benchmark must
cover all relevant use cases and components—it is not enough
to use Hadoop; rather, the various functionalities of the
Hadoop ecosystem must be exercised. Hadoop has long
since moved beyond just MapReduce: MapReduce, query
language (e.g. SQL), machine learning, and user-defined
applications are all part of a comprehensive benchmark.

BigBench relies on up-to-date releases from the Hadoop
ecosystem, including Apache Spark. Its 30 queries cover a
huge variety of use cases for the software: MapReduce, natu-
ral language processing, machine learning, query language
interaction, and user-defined functions [11].

Usability Many existing benchmarks are not designed for
use with industry-standard workflows that integrate with big
data package solutions, such as Cloudera and HortonWorks,
which is detrimental to repeatability and usability over time.
Ideally, installation of a benchmark must be as simple as
unpacking the files. Running the benchmark must be just as



easy: with a single command a user should be able to specify
important parameters, run the benchmark, and get a score.

BigBench is designed to work seamlessly with industry
solutions. It uses Cloudera or HortwonWorks to streamline
the installation of Hadoop and related products. BigBench
can be run, start to finish, with a single command, while still
offering the flexibility to study individual components.

3. BIGBENCH
We present an overview of BigBench. Section 3.1 de-

scribes the design and operation of BigBench and explains
the different data types that feature in BigBench. Section 3.2
explains the process of running BigBench. Section 3.3 ex-
plains how the data volume is controlled.

3.1 A Modern Retailer Implementation
BigBench is a big data workload specification to standard-

ize how researchers and industry evaluate big data work-
loads [14]. The specification is a TPC [11] benchmark
(“TPCx-BB”), for which Intel has provided an open source
reference implementation [15], based on Hadoop, Hive [16],
and Spark [17]. In this paper, we use Intel’s open source
implementation to conduct our evaluations.

BigBench simulates a modern retailer, with both a phys-
ical and online store presence. The benchmark operates
on structured, semi-structured, and un-structured data “col-
lected” from stores, online reviews, customers, and competi-
tors through the execution of 30 queries, each extracting some
value from the data, e.g. finding the products most frequently
purchased together or tracking the product pages that cus-
tomers viewed before making their online purchases. The 30
queries are comprehensive in that they reflect the end-to-end
processing for big data analytics and faithfully capture the
typical real-world use-case for a retail business. We omit the
complete query descriptions here for brevity. Full details can
be found in the TPCx-BB specification [11], but we show
high-level query properties in Table 2.

Henceforth, we use the terms “query” and “application”
interchangeably, reflecting the fact that each query represents
a complete data analytics operation that merits its own study.

Table 2: Primary query data types and operations. The combinations
of operation type—MapReduce (MR), machine learning (ML), natu-
ral language processing (NLP), user-defined function (UDF), and pure
query language (QL)—operation specifics, and data type—structured
(Str), semi-structured (Smi), and un-structured (UnS)—give rise to
tremendous diversity. Compiled from TPCx-BB specification [11].

Query Data; Oper. Query Data; Oper. Query Data; Oper.
Q01 Str; UDF Q11 Str; QL Q21 Str; QL
Q02 Smi; MR Q12 Smi; QL Q22 Str; QL
Q03 Smi; MR Q13 Str; QL Q23 Str; QL
Q04 Smi; MR Q14 Str; QL Q24 Str; QL
Q05 Smi; ML Q15 Str; QL Q25 Str; ML
Q06 Str; QL Q16 Str; QL Q26 Str; ML
Q07 Str; QL Q17 Str; QL Q27 UnS;

UDF/NLP
Q08 Smi; MR Q18 UnS;

UDF/NLP
Q28 UnS; ML

Q09 Str; QL Q19 UnS;
UDF/NLP

Q29 Str; UDF

Q10 UnS;
UDF/NLP

Q20 Str; ML Q30 Smi;
UDF/MR

3.2 Running BigBench
A complete BigBench run consists of four stages, though

the score for a run consists of only the latter three stages:
1. Data Generation This stage generates the data which

will be used in the later processing stages of the bench-
mark. It is representative of the retailer collecting data
from its customers, stores, and competitors. While data
generation is an essential part of the benchmark, its
operation is not included in the final score.

2. Load Test Data generated in the previous stage is im-
ported into the metastore. This tests loading efficiency.
This is the first stage that contributes to the benchmark
score. Time on an analytics cluster is valuable. Hence,
importing data for later analysis must not be too costly.

3. Power Test All 30 queries are run in order, each query
in isolation. This is representative of online analytics,
where the goal is to produce results as quickly as possi-
ble through sequential execution (i.e. latency matters).
It is most useful for detailed microarchitecture-level
analysis to guide future processor design, as the behav-
ior of each query can be individually studied.

4. Throughput Test Two or more query streams are
executed concurrently. The throughput test is represen-
tative of offline data analytics. Multiple queries are run
simultaneously with the goal of maximizing throughput
(i.e. latency is unimportant). A query stream is a pre-
determined ordering of all 30 queries; a larger stream
count will almost certainly lead to longer latency, but
the throughput test measures throughput rather than
latency. Thus, a user may produce a better score by
increasing the number of streams.

Official BigBench scores are a measure of the throughput
of the three sub-tests: the load, throughput, and power tests.
See the appendix for details on how a BigBench run is scored.

3.3 Scalability Knob
A user can specify the “scale factor” of the data generation

phase to control the total volume of data. Each scaling factor
unit is equal to ⇠1 GB of data; hence, a factor of 1000 would
produce ⇠1 TB of input data. Though BigBench supports
arbitrary scale factors, there are only seven values for which
benchmark results may be officially reported: 1000, 3000,
10,000, 30,000, 100,000, 300,000, and 1,000,000. These data
sizes easily scale to fill nearly any cluster.

4. EXPERIMENTAL SETUP
We present here our experimental methodology. Section 4.1

describes our cluster setup. Section 4.2 describes how we
aggregate the performance counter data from multiple ma-
chines. Section 4.3 explains the different scale factors we
use to evaluate the effects of data volume on our conclusions.
We recognize the significance of Hadoop parameter tuning;
Section 4.4, therefore, discusses our tuning decisions.

4.1 Cluster Configuration
All our experiments are conducted on actual silicon (not

simulation). We primarily use two clusters. The first is a 3+1
cluster: 3 “workers” and 1 “master” node. Each of the worker
nodes features a single Xeon E5-2699 v3 18-core CPU with



(a) Q10. (b) Q12. (c) Q30.

Figure 1: CPU activity over time. The activity is shown in aggregate across all the cores on each node. Transitions between map and reduce phases
are marked by vertical dashed lines and the phases are colored appropriately.

384 GB of RAM, as detailed in Table 3. Our second cluster
is a similarly configured 8+1 cluster which we use to validate
our findings more generally (Section 6.3). In Section 7 we
briefly use an E5-2699 v4 cluster for illustration purposes.

4.2 Performance Measurement
Given our cluster configuration, we focus our study on

the worker nodes. We do not study the master node, as its
responsibility is administrative—that is, it coordinates the
work of the worker nodes but does no actual computation.

We gather CPU performance counter data using Intel’s
EMON [18] tool. It is a low-level command line tool that
allows us to specify the performance counter events and at-
tributes to monitor in Intel processors.

We aggregate the data from all cores, on each of the three
worker nodes, and then average them to obtain a final metric.
We justify this decision by observing that the worker nodes
exhibit nearly identical execution behavior, as shown in Fig-
ure 1. In this figure, we plot the CPU activity of three of the
queries as a function of time. For each of the three queries,
we show the CPU activity on each of the three worker nodes.
For clarity, we shade map and reduce regions in purple and
orange, respectively (setup regions are left white).

Comparing the CPU activity across the nodes, we see that
in all three queries, the three worker nodes are nearly identical.
Much of the time, the nodes’ plot lines overlap so well that

Table 3: Experimental setups. The 3+1 cluster has three worker nodes
while the 8+1 cluster has eight. We evaluate only the worker nodes, as
they bear the burden of computation.

3+1 Cluster Worker 8+1 Cluster Worker
CPU 1⇥ Xeon E5-2699 v3 2⇥ Xeon E5-2699 v3

Cores 18 18
Threads 36 36
Frequency 2.3 GHz 2.3 GHz
Turbo Freq 3.6 GHz 3.6 GHz
LLC 45 MB 45 MB

Memory 384 GB 256 GB
Channels 4 8
Speed DDR4-2133 DDR4-2133

Storage 7⇥ Intel SSD 1⇥ Intel SSD
Network 10 Gbps 10 Gbps
BB Scale Factor 1000 3000

nodes 1 and 2 cannot be seen. This indicates that all three
nodes are executing almost the exact same thing at all times.
In retrospect, this finding is unsurprising: Hadoop is designed
to evenly distribute comparable work across nodes.

Some regions show noticeable differences between the
nodes, for example in Figure 1c at the end of the first map
phase. These differences are uncommon and resolve quickly.
We speculate that they arise due to inevitable slight work
imbalances between the nodes and resolve as soon as a given
map or reduce phase has finished. These are distinct from the
stragglers identified by Google that they attribute to machines
with real performance issues (e.g. failing disks) [19].

4.3 Data Volume
In most of our experimental evaluation we use a scaling

factor of 1000, i.e. a total input size of ⇠1 TB. But in order
to demonstrate that our findings are generally applicable even
at larger scale factors, we also conduct a number of exper-
iments using a scale factor of 3000. Because our primary
cluster lacks sufficient disk space for these experiments, we
use a cluster from a cloud computing service (Section 6.1).
We continue to use 3000 when we turn to a larger cluster
(Section 6.3), which we utilize for demonstrating real-world
implications of our findings even at larger scales.

4.4 Hadoop Parameter Tuning
Hadoop workloads are notoriously sensitive to parameter

tuning—settings such as data compression algorithms, data
split sizes, and the overlap of map and reduce phases can
strongly influence performance. For our 3+1 clusters, we use
light tuning for each query but we do not spend significant
time fine-tuning every parameter. We omit tuning when using
the cloud computing service due to the time and concomitant
cost that would be required for proper tuning. In Section 6 the
8+1 cluster is highly tuned and corroborates the results of the
less-tuned 3+1 cluster. We verified our tuning is sufficiently
robust that it does not alter our conclusions in this paper.

5. BIGBENCH QUERY ANALYSIS
In this section, we conduct the first deep (micro)architec-

tural characterization of BigBench. In contrast to prior work
that has collapsed big data analytics into a small set of appli-
cations [3, 5, 8, 20], we show that data analytics applications



Table 4: Microarchitectural characteristics of individual queries. Each row of the table corresponds to a different metric (with repeats in the upper
and lower halves of the table). Hence, each row (distinguished by its color) should be thought of as an independent heat map. The stronger the color of
a cell, the higher its value. These metrics reveal a rich variety of execution behaviors not captured when viewed as a whole, as in Table 5, so we must
focus on deeper analysis into individual queries to drive design.

Metric Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15
CPI 1.38 0.757 0.826 0.783 1.52 1.32 1.13 0.903 1.99 1.08 1.36 0.980 1.32 1.46 1.18
Front-End Bound Cycles (%) 13.3 16.1 16.0 16.3 13.2 13.9 13.6 15.8 12.6 15.2 12.9 15.8 13.6 12.6 14.0
Back-End Bound Cycles (%) 60.9 45.8 48.6 47.2 63.2 60.3 57.5 51.2 66.2 46.4 62.5 53.0 60.9 63.6 58.3
Branch Mispredict Rate (%) 1.94 0.819 0.629 0.917 0.409 1.21 1.83 1.12 0.301 2.43 2.08 0.721 1.57 1.24 1.78
L1D MPKI 16.0 9.00 10.2 11.1 10.8 17.0 15.4 11.8 5.69 21.2 17.1 6.51 17.4 12.3 17.2
L2 MPKI 12.4 3.87 3.58 3.85 4.47 12.3 11.4 6.40 3.92 17.1 12.7 4.68 11.7 9.13 11.6
LLC MPKI 2.27 0.731 0.674 0.678 1.21 3.73 1.96 1.19 1.05 1.26 2.43 0.914 2.54 1.96 2.20
Memory Bandwidth (MB/s) 7640 6100 5660 6070 5610 25600 4720 7490 4840 3130 12200 5110 14800 10100 6340
IO Bandwidth (MB/s) 52.1 119 89.8 111 7.75 34.9 36.0 54.7 45.8 21.5 55.0 36.8 19.5 34.5 14.2

Metric Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30
CPI 1.04 1.21 0.885 1.09 1.45 1.06 0.970 1.34 1.38 1.42 1.42 1.61 1.17 1.74 0.786
Front-End Bound Cycles (%) 15.9 13.5 14.1 15.0 12.9 14.5 13.8 13.6 13.3 13.5 13.0 12.1 14.7 12.8 16.4
Back-End Bound Cycles (%) 53.9 59.0 49.1 48.6 62.6 55.6 54.7 60.6 61.5 62.0 62.4 64.1 54.9 64.8 46.9
Branch Mispredict Rate (%) 1.19 2.01 1.64 2.51 1.38 1.70 1.61 1.88 2.03 1.25 0.938 1.93 2.71 0.507 0.689
L1D MPKI 12.2 18.2 14.1 22.7 13.9 15.1 12.6 15.3 16.8 14.3 12.8 16.1 17.9 5.58 8.85
L2 MPKI 9.43 12.3 11.8 17.8 10.2 10.1 9.95 13.2 13.0 10.2 7.32 12.2 15.6 4.46 3.54
LLC MPKI 2.10 2.24 2.16 1.65 2.26 1.75 1.79 2.49 2.31 2.30 1.57 2.49 2.56 1.30 0.705
Memory Bandwidth (MB/s) 13800 5540 12100 2560 9330 8400 9410 15400 10800 11400 4560 6340 4870 6150 6330
IO Bandwidth (MB/s) 274 41.9 23.8 22.9 28.3 115 53.2 27.9 19.9 17.5 21.8 7.91 67.4 26.2 90.7

are rich and varied, necessitating individualized study to ade-
quately understand and address performance issues.

The throughput test (Table 5), which runs multiple streams
concurrently, highlights no specific issues. It achieves gen-
erally average performance across the board, with the single
exception of a high skew toward back end-bound cycles.

Since the throughput test is composed of multiple queries
running simultaneously, it obscures a variety of performance
bottlenecks unique to subsets of the queries. In contrast,
the power test (Table 4), executing queries in isolation, re-
veals several execution inefficiencies. Studying the power test
serves two important purposes: (1) it exposes performance
bottlenecks obscured by the throughput test, and (2) it exposes
bottlenecks unique to a latency-sensitive workload. Thus, by
study of the power test, performance issues can be directly
addressed, thereby indirectly benefiting the throughput test.

Accordingly, we analyze the power test and explore dif-
ferences between it and the throughput test. Our analysis is
divided into three categories: compute (Section 5.1), memory

Table 5: Microarchitectural metrics of the throughput test on each of
the three worker nodes. These aggregate throughput statistics hide the
rich underlying heterogeneity shown in Table 4.

Metric Node 1 Node 2 Node 3
CPI 1.00 1.00 1.01
Front End-Bound Cycles (%) 15.3 15.3 15.3
Back End-Bound Cycles (%) 53.9 54.0 54.2
Branch Mispredict Rate (%) 0.928 0.922 0.924
L1D MPKI 10.7 10.7 10.8
L2 MPKI 5.85 5.80 5.87
LLC MPKI 1.14 1.13 1.14
Memory Bandwidth (MB/s) 10220 10140 10430
IO Bandwidth (MB/s) 94.6 95.4 95.9

(Section 5.2), and I/O (Section 5.3). We summarize query het-
erogeneity via principal component analysis in Section 5.4.

5.1 Compute Heterogeneity
The throughput test shows a stable cycles-per-instruction

(CPI) of 1.0 across all three nodes (Table 5). Over 50% of
cycles are back end-bound, compared to only 15% for front
end-bound cycles. Branch prediction is over 99% accurate,
in confirmation of the low fraction of front end-bound cycles.

In contrast to the throughput test, the power test queries
demonstrate strong heterogeneity in execution characteristics
(Table 4). The CPI measures show a low of 0.757 in Q02
(1.32 IPC) and a high of 1.99 in Q09 (0.503 IPC). The extent
of CPI variation suggests that many of the queries present
great opportunity for per-core execution improvement.

The only metrics consistent across the power test and
throughput test are the front end- and back end-bound cycles.
Confirming past findings [21], all queries are strongly back
end-bound. The percentage of front end-bound cycles has a
small range of 12.1% to 16.3%, while the back end-bound
cycles’ range is slightly larger at 45.8% to 66.2%. Prior work
attributed this phenomenon to cache access latency [3, 20].

All 30 queries are well served by the CPU’s branch pre-
dictors, with the worst misprediction rate appearing in Q28
at 2.71%. This agrees with research from Jia, et al. [5] but
stands in contrast to that of Kanev, et al. [21]. We note in the
latter, though, that the profiled workloads are not restricted to
data analytics. See Section 8 for more detailed discussion.

5.2 Memory Heterogeneity
Table 5 shows that the throughput test is well served by

the existing cache hierarchy. The number of misses per kilo-
instruction (MPKI) rests at only 10.7, 5.9, and 1.1 for the
L1D, L2, and LLC caches, respectively. Furthermore, our sys-
tems seem to be over-provisioned for the memory bandwidth



requirements of the throughput test. With an average through-
put of only 10.4 GB/s, the workload would be adequately
served by even a single memory channel. With four channels
of DDR4-2133 SDRAM, our systems provides an aggregate
bandwidth of 68 GB/s, far in excess of the workload’s needs.

In contrast, the isolated queries show strongly heteroge-
neous cache behavior. The cache miss rates range from 5.58
(Q29), 3.58 (Q03), and 0.674 (Q03) MPKI to 22.7 (Q19), 17.8
(Q19), and 3.73 (Q06) MPKI for the L1D, L2, and LLC, re-
spectively. The throughput test MPKIs fall in the middle of
these ranges, as would be expected. The higher miss rates
probably merit investigation and remediation.

We note that in some queries, such as Q10, Q19, and Q28,
the L2 miss rates are nearly as high as the L1D miss rates,
suggesting that the working set sizes of the data exceed the
size of both the L1D and L2 caches, a trend not seen in the
throughput test. In no case is the LLC miss rate close to the
L2 miss rate. Thus, the LLC size (45 MB) seems adequate to
capture a meaningful portion of the working set size.

The queries’ memory bandwidth utilization is also well
below the system capacity. At the low end, Q19 only demands
2560 MB/s average memory bandwidth. Even Q06, with an
average bandwidth utilization of 25.6 GB/s, is safely below
the total sustainable bandwidth. However, unlike the through-
put test, Q06’s bandwidth requirements would not be met by
a single memory channel, and queries Q11, Q13, Q16, Q19,
and Q23 have bandwidth requirements high enough that they
could be impeded in older technology systems.

5.3 I/O Heterogeneity
Though we cannot separate disk from network bandwidth

usage (both are lumped together as I/O bandwidth), we can ex-
amine how usage requirements compare to disk and network
capacities. Our seven SSDs provide an aggregate 2.3 GB/s
while our 10 Gbps Ethernet translates to 1.25 GB/s.

Although the throughput test bandwidth requirements are
an order of magnitude smaller than either disk or network
bandwidth capacity, the power test shows that queries demand
a range of I/O bandwidth requirements, ranging from 7.75
(Q05) to 274 MB/s (Q16). There is a 35⇥ difference from the
lowest to the highest consumer. While our systems provide
ample bandwidth, a system setup utilizing older technology,
such as spinning hard disks or 1 Gbps Ethernet, would likely
impose a performance penalty on the larger consumers, such
as Q02, Q04, Q16, and Q21. The throughput test hides this
bottleneck. Ferdman et al. concluded that I/O bandwidth was
over-provisioned [3] but studied a very limited subset of data
analytics applications. The work of Zhou et al. confirms a
bandwidth bottleneck for spinning hard disks that does not
exist for SSDs [2] but does not consider network bandwidth.

5.4 Heterogeneity Summary
As a summarizing takeaway, we use principal component

analysis [22] (PCA) to show the presence of major clusters,
which indicates the importance of selecting widely varying
and representative applications for study. PCA is a statistical
method used to produce uncorrelated variables from a set
of possibly correlated variables (Table 4). The smaller the
distance between two queries in Figure 2 (i.e. the lower the
height of the connecting arc), the more similar the queries

Figure 2: Query similarity dendrogram. For each query we denote
the data type on which it primarily operates: structured (“Str”), semi-
structured (“Smi”), or un-structured (“UnS”).

are. For example, Q03 and Q30 show a very small distance
and Table 4 shows very similar metrics for the two queries.

As indicated by the figure’s coloring, we have identified
four clusters with broadly similar characteristics, two of
which have a strong showing of semi-structured (green) and
un-structured data queries (purple). The structured data
queries dominate the other two clusters. The green clus-
ter queries, all but one of which operate on semi-structured
data, are related to users’ web click streams. The one semi-
structured query outside of the green cluster (Q05, in the
red cluster) is more oriented toward customer interest pre-
diction, which generally aligns with the red cluster. The
un-structured queries mostly fall in the purple cluster, but
there is an equally strong showing of structured queries there.
Rather than the kind of data operated upon, these queries are
united in that they analyze store sales and correlate those with
other categories such as review sentiment, demographics, or
store properties. The final cluster, cyan, contains queries that
segment products, customers, or stores.

The presence of clusters demonstrates the importance of
selecting widely varying and representative applications for
study. This analysis can aid future studies that seek to study
a subset of BigBench through detailed simulation.

6. AMDAHL’S LAW IS ALIVE AND WELL
From a high level, big data applications are generally

viewed as a natural fit for multicore parallel computing. In-
deed, Hadoop is frequently touted for its impressive scale-out
capabilities, and big data is an intuitive fit for extracting par-
allelism. Unfortunately, individual applications may not fit
the “infinite scalability” model so well.

In this section, we conduct a thread-level parallelism (TLP)
study of BigBench execution and demonstrate that not all big
data applications are so amenable to scale-out computing as
one would hope. We measure the TLP and determine that it
is the biggest bottleneck to performance in Section 6.1. The
lack of TLP persists even as the data volume increases in Sec-
tion 6.2. We quantify the performance impact of this finding
by scaling the number of cores and operating frequency for
BigBench queries in Section 6.3. Then, in Section 6.4, we ex-
plore some of the causes of the low thread-level parallelism.

6.1 Limited Thread-Level Parallelism
Though some of the queries showed no major microarchi-



Table 6: TLP for per-query activity (power test) and per-node activity
(using a 4-stream throughput test). Higher values indicate greater TLP.
Cell shading indicates how little TLP a query exhibits.

Power Test
Query Eff. TLP Query Eff. TLP Query Eff. TLP
Q01 42.4% Q11 60.7% Q21 47.5%
Q02 59.1% Q12 46.7% Q22 48.4%
Q03 65.3% Q13 70.4% Q23 72.3%
Q04 65.2% Q14 64.5% Q24 58.1%
Q05 71.2% Q15 30.6% Q25 64.1%
Q06 76.3% Q16 61.1% Q26 38.7%
Q07 23.4% Q17 27.6% Q27 38.4%
Q08 51.2% Q18 39.8% Q28 17.6%
Q09 81.3% Q19 15.7% Q29 77.7%
Q10 21.7% Q20 55.7% Q30 67.8%

Throughput Test
Node 1 81.6% Node 2 81.9% Node 3 82.5%

tectural bottlenecks (Section 5), there is actually a pervasive
system-level problem that affects all the queries and extends
even into the throughput test: they all spend a significant
amount of time in a halted CPU state—i.e. they have limited
thread-level parallelism (TLP). Measuring the total amount
of non-halted CPU time gives us a view of how effectively
the available cores are being utilized. Though there are var-
ious reasons for low CPU utilization, ultimately the result
is the same: these supposedly inherently scalable scale-out
workloads are not scaling out to utilize the available cores.

We measure TLP by taking the ratio of two counters:
CPU_CLK_UNHALTED.REF_TSC and TSC. TSC refers to the
Time Stamp Counter that is incremented every cycle at the
nominal clock rate (regardless of DVFS changes). The other
counter is an analogous per-core counter that is only incre-
mented when the core is not in a fully halted state. Reasons
for halted cycles include processes yielding the core(s) due
to blocking I/O operations, synchronization between threads,
waiting for input, etc. Thus, TLP is a measure of how many
cores are actually being utilized over the full execution.

In Table 6, we show the TLP (as a percentage of available
parallel resources) for the power and throughput tests. In the
throughput test, we report this metric for each of the three
workers; in the power test, we average the metric across the
workers, the same as we did in Section 5.

TLP should ideally sit at or near 100%, indicating that the
application is scaling out to all cores. Measures short of 100%
indicate that CPU cores are being halted. In the throughput
test, for example, various cores are halted nearly 20% of the
time, meaning that, effectively, nearly 7 of the 36 CPU cores
are doing nothing at any given point in time. Run in isolation
(i.e. the power test), the applications show more concerning
behavior. They have a wide range of TLPs, ranging from
81.3% in Q09 down to 15.7% in Q19.

6.2 Data Volume Scaling Analysis
We increase the scale factor to see if TLP increases as the

data volume increases. Even as the scale factor is increased,
we find that TLP remains constrained. We experimented with
increasing the scale factor from 1000 to 3000 to determine
its effect on TLP. Recall from the experimental setup section
(Section 4.3) that our primary cluster lacks sufficient stor-
age to accommodate the larger scale factor; we consequently

Figure 3: Thread-level parallelism at different scale factors. TLP al-
most universally rises as the scale factor is increased from 1000 to 3000.
Even with the improvements, though, the TLPs are remarkably low,
showing that single-thread performance will continue to be an issue.

utilized a cloud compute cluster hosted on Amazon Web Ser-
vices [23] to examine TLP changes for a large subset of the
queries, as shown in Figure 3. There was no contention for re-
sources as we had exclusive access to the physical machines.

Extremely low-TLP queries (e.g. Q10, Q17, Q19) unsur-
prisingly show the greatest increases in TLP. However, we
find that the increase is sublinear and still very low. High-
TLP queries are unaffected or show limited impact from the
increase in scale factor. Even at the higher scale factor, all
queries’ TLPs leaves ample room for improvement.

It is likely that with further increases in scale factor we
would see a steady rise in TLPs as they approach some upper
limit. However, even at a scale factor of 3000, a 3+1 cluster
is strained, taking multiple days to finish the power test. A
production setup would likely scale out at that point, thereby
maintaining the relatively low TLPs that we have seen.

6.3 Core and Frequency Scaling Analysis
The limited TLP of big data queries manifests even in

finely-tuned clusters. To illustrate this, we turn to our 8+1
cluster (Table 3), a distinct setup with carefully tuned pa-
rameters for each query. Its results exemplify the real-world
impact of limited TLP. Though this careful setup captures
98% of TLP in the throughput test, the low TLP problem
persists in the power test. We use a scale factor of 3000.

The effect of adding cores to the cluster can be quanti-
tatively measured. In Figure 4a, we restrict the number of
active cores and measure the efficiency of increasing the core
count from 9 cores (18 threads) to 18 cores (36 threads) and
36 cores (72 threads). We define efficiency as follows:

Efficiency =
RunTime1 �RunTime2

RunTime1 · (1� Resource1
Resource2

)

This metric is the ratio of the actual change in running
time to the expected change in running time. It quantifies
how well an application utilizes increased resources. Most
queries benefit from increased core counts, but some are
largely unaffected, e.g. Q27. The queries with high core-
scaling efficiency correlate with the high-TLP queries, e.g.
Q02, Q04, and Q30. Q10 and Q19 show negative efficiencies,
indicating increased running time; this may be attributable to
noise or the overhead of managing more threads.

In contrast to Figure 4a, Figure 4b shows frequency scaling
efficiency. Unlike core scaling, increasing the frequency al-
ways improves performance; additionally, frequency scaling



(a) The efficiency of core scaling. The efficiency is computed relative
to 9 cores/18 threads at 2.3 GHz. As the number of cores increases, the
relative benefit decreases, which is indicative of an insufficiency of TLP.

(b) The efficiency of frequency scaling. The efficiency is computed rel-
ative to a base frequency of 1.2 GHz using 18 cores/36 threads. The
benefit of the higher frequencies is better than the benefit of more cores.

Figure 4: Core and frequency scaling efficiency on a parameter-tuned 8+1 cluster.

(a) Core scaling. Tail length is largely unaffected by core count. (b) Frequency scaling. Tail length is very sensitive to frequency.

Figure 5: Core and frequency scaling on Q06. The tail is largely unaffected by the core count but is very sensitive to frequency.

is more efficient at improving performance. Even when core
scaling efficiency drops below 50% (and even into negative
numbers), frequency scaling efficiency remains above 55%.

Consider query Q17: going from 9 to 18 cores, it has an effi-
ciency near 20%, meaning that doubling the number of cores
only reduces the runtime by 10% (20% of the expected 0.5⇥
run time). Increasing the frequency from 1.20 to 1.80 GHz,
though, is nearly 98% efficient. Thus, the 1.5⇥ increase in
frequency yields a 1.5⇥ (33%) decrease in run time.

Therefore, we conclude that big data, which is, by design,
supposed to be massively parallel and scalable, still demands
high single-thread performance from modern processors.

6.4 Low TLP Causes
There are various explanations for the TLP problem. Q10

has one of the lowest TLPs of all the queries, evidenced by
both Table 6 and Figure 1a. When we examine the per-core
activity of Q10 (not shown), we find that only a handful of
cores are active, maintaining near-100% activity, while the
remainder of the cores are essentially halted. In contrast,
a per-core breakdown of most queries shows all cores do-
ing effectively the same thing, with core activity plots very
similar to the full CPU activity plot (e.g. Figure 1c). In
other words, Q10 naturally lacks the parallelism to utilize all

available cores. Q10 performs Natural Language Processing
(NLP) [13], similar to Q10 , Q18 , Q19 and Q27, all of which
also suffer from low TLP (Table 6).

In other queries, the work may be fairly well spread across
cores and yet still show low TLP. We can understand the
limited TLP in these queries by looking at Q06 as a case
study (Figure 5). In Figure 5a, we vary the core count from 9
(18 threads) to 18 (36 threads) and 36 (72 threads), plotting
the TLP timelines. As the figure shows, the first phase of the
application scales well with the increasing core count. The
final phase, however—the “tail” region—is nearly unchanged
by the core count. Most of the queries exhibit these tail
regions, where a relatively small amount of work has to be
completed. These tails are not limited to query termination,
though, as most queries are composed of multiple map and
reduce phases, each of which can exhibit a tail.

In contrast, consider Figure 5b, which shows the effects of
frequency scaling on Q06. Moving from 1.2 GHz to 1.8 GHz
and 2.3 GHz, not only does the first phase benefit (as it did
with additional cores), but the tail also shrinks from 126 to 78
seconds. Thus, even though Q06 is largely TLP-rich, it has
one distinct phase with almost no thread-level parallelism.

An additional likely TLP limiter is resource contention.
Periodic dips in TLP (Figure 1) tended to correlate with some



I/O related system calls in our experiments (not shown).

7. WORKING WITH AMDAHL’S LAW
Our findings on the lack of TLP suggest that warehouse-

scale computing requires a more nuanced approach than sim-
ply pursuing scale-out computing. Scale-out resources offer
no benefit when queries encounter TLP-limited regions of ex-
ecution. Indeed, as dictated by Amdahl’s law, the speedup of
these queries will be increasingly dominated by single-thread
performance as the highly parallel regions grow ever faster.

We propose that proactive measures can and should be
taken to identify TLP-limited periods of execution and to
actively boost single-thread performance. In this section we
explore Intel’s Turbo Boost technology [12] as one target for
proactive management. Though Turbo Boost already works
to take advantage of slack in thermal and power margins,
we show in Section 7.1 that the software architecture and
Turbo Boost hardware constraints combine to undermine
its effectiveness. Therefore, in Section 7.2 we propose an
architectural enhancement to Turbo Boost that can work in
concert with software to maximize Turbo Boost efficacy. We
evaluate this proposal for big data analytics in Section 7.3.

7.1 Turbo Boost Limits in the Hadoop System
Turbo Boost is an Intel technology that utilizes slack in

the CPU’s power and thermal margins to drive operating fre-
quency above its nominal maximum value [12]. Turbo Boost
is limited, however, by the number of active cores on a CPU.
To achieve the maximum Turbo Boost frequency in large core
count systems, nearly all the cores have to be disabled. The
Xeon E5-2699 v4 (the successor to the E5-2699 v3 that we
used), for example, nominally runs at 2.20 GHz and has a
maximum Turbo Boost frequency of 3.60 GHz [24]. With all
its cores enabled, however, the E5-2699 v4 has a much lower
Turbo Boost ceiling of 2.80 GHz [25]. It can only achieve
the 3.60 GHz frequency with all but two cores disabled.

Hardware Limits As we show in Figure 6, most Turbo
Boost (i.e. frequency gains) for server-class systems cannot
be realized unless most of the cores have been disabled. With
all 22 cores active, the E5-2699 v4 Turbo Boost ceiling is
capped at 2.80 GHz, a far cry from 3.60 GHz. Only once 14 of
the 22 cores are disabled does the Turbo Boost ceiling begin
to rise beyond 2.80 GHz, and only when 20 cores have been
disabled does the ceiling finally reach 3.60 GHz. With every
disabled core, additional power and thermal slack is created,
yet the Turbo Boost ceiling usually remains unaffected.

Software Limits Within the Hadoop ecosystem, Turbo
Boost is severely handicapped: in combination with kernel
scheduling policies, the multitudinous threads launched by
Java and Hadoop’s suite of tools are spread out to as many
cores as possible. Unfortunately, the threads’ activity is too
limited to justify the use of additional cores. Even a severely
TLP-constrained query (e.g. Q10)—which ought to enjoy a
very high Turbo Boost ceiling—runs barely over 2.80 GHz.

Undermining Performance These hardware and soft-
ware limits together work to constrain the performance of
data analytics applications. Figure 7 shows for Q10 the num-
ber of cores with one or more Linux threads that are “Run-
ning” [26] at any given time as well as the computing time
consumed by all threads. During query execution, all the

Figure 6: Turbo Boost ceiling as a function of core count. As CPU core
counts have increased, the available Turbo Boost ceiling has become
relatively constrained. Only when most cores are disabled can Turbo
Boost become most effective.

Figure 7: CPU busyness and total compute time. Busy cores are those
with at least one Linux thread in the “Running” state. Computation
time is a measure of how much time is spent on the cores divided by the
wall clock time; thus, it is a measure of how many cores are needed. It
is equivalent to TLP.

cores are occupied by running threads, which limits Turbo
Boost’s ceiling. Simultaneously, though, the computing time
falls far short of the capacity of the busy cores. Thus we
see that the operating system and Hadoop ecosystem (with
its many threads) work together to undermine the ability of
Turbo Boost to accelerate TLP-limited regions.

7.2 Core Packing (Proactive Turbo Boosting)
We propose core packing to enable proactive Turbo Boost

management: the profusion of running threads currently
spread across many cores should be collapsed onto the mini-
mum set of cores needed to accommodate them. This change
would serve to proactively facilitate Turbo Boost.

By forcing the threads onto fewer cores (by explicitly dis-
abling cores), we can induce a higher frequency and shorter
running time. We use Q10 as a case study, due to its par-
ticularly low TLP. For the following experiments, we use
a single-socket Broadwell-based (instead of Haswell-based)
3+1 cluster of Xeon E5-2699 v4 CPUs. We use the Broadwell
CPUs because of their higher core count (22 instead of 18).1

In Figure 8, we show the operating frequencies and running

1In executing Q10, the Haswell CPUs achieve an average operating
frequency slightly above 2.80 GHz. With the four extra cores in the
Broadwell CPUs, the higher Turbo Boost ceiling is out of reach, and
these CPUs almost never rise above 2.80 GHz.



(a) Effect of scaling the number of cores on Q10.

Q10 Time Energy Rel. Time Rel. Energy
4 Cores 632 s 24.6 kJ 1.308⇥ 1.028⇥
8 Cores 466 s 22.2 kJ 0.965⇥ 0.929⇥
12 Cores 467 s 23.3 kJ 0.967⇥ 0.976⇥
18 Cores 473 s 23.8 kJ 0.979⇥ 0.994⇥
22 Cores 483 s 23.9 kJ 1.000⇥ 1.000⇥

(b) Benefits when running with fewer cores.

Figure 8: Attainable benefits when TLP is low.

times of Q10 with various core counts. The 22-core line (Fig-
ure 8a), the baseline machine configuration, shows that Q10
executes at 2.80 GHz for most of its operation and finishes in
483 seconds (Figure 8b). Recall from Table 6 and Figure 1a
that Q10 is very TLP-deficient. Therefore, as we decrease the
core count (using the operating system to explicitly disable
cores) we see the query finish more quickly. For the 12- and
18-core runs, the operating frequency remains at 2.80 GHz,
so the speedup is likely attributable to the decreased overhead
of managing so many threads. When the core count drops to
8, the operating frequency increases to 2.90 GHz, and at 4
cores, it jumps to 3.30 GHz. While the 4-core configuration
severely degrades the running time (632 seconds—a 31%
slowdown), the 8-core configuration completes in only 466
seconds—a 3.5% speedup. Q10 has a high-TLP region at the
beginning of its execution, which offsets the higher frequency
of the 4-core configuration; the 8-core configuration is able
to meet the demands of the high-TLP operations while still
providing a frequency boost. We also note that the 8-core
configuration reduces total energy consumption by 7.1%.

Thus, if Turbo Boost can be carefully orchestrated (i.e.
controlled and efficiently executed), there is tremendous op-
portunity for increased performance and energy savings. To
this end, we propose a modified architecture combined with
software support to facilitate core packing for proactive Turbo
Boosting without sacrificing scale-out performance.

Architecture Support The Turbo Boost ceiling of cur-
rent many-core server architectures, like the Xeon E5-2699 v4,
does not increase until most of the cores are halted. We pro-
pose a smoother transition from the base to the maximum
Turbo Boost ceiling: allow the ceiling to increase at smaller
increments for every core that is halted. We believe this
design change should be achievable, as we do not propose
that the maximum frequency or the starting frequency be
changed; rather, we propose that the steps between frequen-
cies be smaller but uniformly applied for every disabled core.

Table 7: Estimated application speedups on a Xeon E5-2699 v3 based
on our analytical model. Because no current hardware implements our
proposed changes, it is not possible to measure actual speedups.

Query Speedup Query Speedup Query Speedup
Q01 15.8% Q11 9.2% Q21 13.2%
Q02 13.1% Q12 14.7% Q22 13.9%
Q03 11.1% Q13 8.0% Q23 7.7%
Q04 11.3% Q14 7.4% Q24 9.6%
Q05 7.2% Q15 14.1% Q25 8.6%
Q06 6.2% Q16 11.5% Q26 16.9%
Q07 19.7% Q17 19.2% Q27 14.5%
Q08 14.4% Q18 15.2% Q28 13.7%
Q09 4.7% Q19 18.9% Q29 6.6%
Q10 15.1% Q20 10.3% Q30 10.1%

Software Support Using hardware counters, the operat-
ing system or even runtime environment should actively mon-
itor the TLP. Whenever it dips low enough that a core could
be safely disabled, the operating system should proactively
halt that core until the TLP again rises. Current schedul-
ing policies try to distribute threads onto as many cores as
are available; we have seen the folly in this approach, as it
diminishes Turbo Boost’s effectiveness.

7.3 Core Packing Analysis
To evaluate the benefits of core packing, we show in Fig-

ure 9 just how large the measured benefits could be. Using all
22 cores during the high-TLP region at the beginning of exe-
cution (Figure 9a) and then dropping down to 4 cores when
TLP is severely limited (Figure 9b), from the time spent in
the high- and low-TLP regions we estimate that we could
achieve a 13.5% speedup and 30% energy reduction.
Q10’s simplicity allows us to simply and effectively mimic

and measure core packing behavior on a real system. Because
of its simplicity, we were able to run Q10 with two different
core configurations that mimic the behavior of core packing.
But we have to use a model to evaluate the other, more com-
plex queries. We base this model on the assumption that the
two supporting mechanisms we recommended earlier can be
implemented in a real system. If we assume (1) that each
query can execute at 3.60 GHz when only one core is active
and (2) that the Turbo Boost ceiling is a linear function of the
number of active cores, then we can estimate the operating
frequency (the average Turbo Boosted frequency):

freqT B = freq0 +(1�TLP) · (freqMax � freq0) (1)

Here, freq0 is the base average frequency of the applica-
tion (measured at close to 2.80 GHz for each query) on the
Haswell-based Xeon E5-2699 v3 and freqMax is the maxi-
mum Turbo Boost frequency (3.60 GHz).

We estimate the performance improvement as follows:

speedup =
freqT B � freq0

freq0
· efficiencyfreq (2)

Here, efficiency f req is the efficiency of frequency scaling,
which we reported earlier (Section 6.3).

Table 7 shows our estimated performance gains using Equa-
tions 1 and 2. Our model predicts a 15.1% speedup for Q10,
which is very close to the speedup we estimated from exe-
cution profiles on varying core counts. Based on this model,



(a) Q10 CPU activity with 22 cores. In the shaded region, the use of all
22 cores is ideal due to the high TLP.

(b) Q10 CPU activity with 4 cores. In the shaded region, the use of
only 4 cores is ideal due to the low TLP.

Figure 9: Core scaling in Q10. The TLP varies over the course of the application, so the number of cores should ideally be adjusted as well. We
show only two configurations here, but a deployment-ready solution would vary the core count even more carefully. We use the shaded regions in
computing the attainable speedup in a deployment-ready solution.

we estimate that the queries could gain a minimum of 4.7%
speedup (Q09) and a maximum of 19.7% speedup (Q07).

In summary, core packing would actively monitor instanta-
neous TLP and adapt the system’s performance accordingly.
Core packing would proactively force the shutdown of lightly
active cores, to consolidate the work onto fewer more active
cores, and thereby yield substantial performance improve-
ments while requiring zero changes to the application code.

8. RELATED WORK
Though previous work has researched the execution charac-

teristics of big data applications, that work has been based on
benchmarks that rely on micro-benchmarks [1, 3, 5, 7, 8]. Our
work studies BigBench, which is unique in thoroughly ex-
ploring the subfield of big data analytics and relying solely on
industry-backed, fully realized applications. In this section,
we compare our work to that based on other benchmarks.

Architectural Studies Introducing BigDataBench, Wang
et al. concluded that data caches perform well for big data
applications [1], in agreement with the DCBench paper by
Jia et al. [5] and the memory characterization from Dimitrov
et al. [4]. Lotfi-Kamran et al. suggested that the LLC is
excessive and that its area should be partially reclaimed for
additional cores [27]. We find that data analytics cache behav-
ior is more nuanced than past papers have revealed: the merit
of the L2 cache varies between workloads and the MPKIs at
all cache levels is very dependent upon the application. Ferd-
man et al. [3] and Yasin et al. [20] demonstrated that cache
access latency causes back end stalling, which we confirm.

Meanwhile, Kanev et al. found instruction footprint in the
caches to be one of the major contributors to stalls, reporting
front end stalls in 15-30% of cycles [21]. This contrasts our
work, where we have found front end stalls impacting only
12-16% of cycles. We conjecture that this is due to Kanev’s
work including applications beyond data analytics.

System-Level Studies Kanev et al. profiled a Google
warehouse-scale computer, looking at both microarchitecture
and software trends [21]. They identified a “datacenter tax”
consisting of common subroutine overheads for which they
suggest specialized accelerators. We concur that single-thread
acceleration is necessary, though we propose a more general
solution in augmenting Turbo Boost through core packing.
Cochran et al. proposed setting thread affinities to control
power consumption [28]. We use a comparable technique to
achieve both energy and performance improvement.

Prior work has noted the low CPU utilization in big data

workloads [3, 6, 13, 21, 29, 30, 31, 32] and has attributed it to
resource contention, long disk latency, lack of memory-level
parallelism, etc. Our work confirms that CPUs are being
under-utilized, but we treat this as a parallelism issue and
seek to improve single-thread performance.

Scale-Up Performance Appuswamy et al. recognized
that scale-up is often more critical than scale-out perfor-
mance [30]. We show that even in scale-out scenarios, scale-
up performance is critical. Frequency boosting has previously
been proposed to mitigate the bottlenecks of Amdahl’s law
and to balance power efficiency [33, 34, 35]. We propose
a modified architecture where more incremental frequency
improvements can be utilized by an active software system.

9. CONCLUSION
BigBench is a realistic big data analytics benchmark and a

deep study of its behavior reveals that architectural charac-
teristics and bottlenecks vary among queries. By far, though,
the worst bottleneck is the startlingly low thread-level par-
allelism present in all applications, including even (in some
environments) the throughput test. Particularly in the power
test of BigBench, this low TLP wastes so many cycles as to
be equivalent to leaving multiple cores unused at all times.

The great diversity of big data analytics demands that any
future study consider a wide variety of applications. Any
analysis or solution that derives from too narrow a field of
applications will likely have questionable applicability. Con-
versely, the diversity also indicates that there is not likely to
be a panacea to address all performance issues. As in any ma-
ture field, innovative solutions will be those that consider the
multitudinous applications and adapt to their idiosyncrasies.

BigBench’s TLP paucity violates commonly held beliefs
regarding big data, namely that it is arbitrarily parallelizable
and that scale-out is the only needed solution. Amdahl’s
law dictates that as parallelizable regions become faster, the
single-threaded (or thread-limited) regions will increasingly
dominate compute time. Without minimizing the importance
of scale-out computing, this work has demonstrated that scale-
up improvements continue to be eminently relevant. Future
work will need to focus on the single-threaded bottlenecks
that afflict big data or risk leaving untapped a major opportu-
nity for performance improvement.
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APPENDIX
A BigBench score is computed from the load (TLD), through-
put (TT T ), and power test (TPT ) throughputs:

TLD = 0.1 ·TLoad

TPT = M · M
q

’i=M
i=1 Q(i)

TT T =
1
n
·TTput

where TLoad , Q(i), and TTput are the running times of the
load test, query i in the power test, and the throughput test,
respectively, in seconds. M is the number of queries (30)
and n is the number of streams in the throughput test. TLD is
multiplied by 0.1 to reduce its weight in the final score.

The final score (at scale factor SF) is computed as

BBQpm@SF =
SF ·60 ·M

TLD ·
p

TPT ·TT T

where SF represents the scale factor and the factor of 60
converts from second to minutes.
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