arXiv:1603.03086v2 [cs.CR] 11 Mar 2016

EMMA: A New Platform to
Evaluate Hardware-based Mobile Malware Analyses

Mikhail Kazdagli
University of Texas at Austin

mikhail.kazdagli@utexas.edu
vj@ece.utexas.edu

ABSTRACT

Hardware-based malware detectors (HMDs) are a key
emerging technology to build trustworthy computing plat-
forms, especially mobile platforms. Quantifying the efficacy
of HMDs against malicious adversaries is thus an important
problem. The challenge lies in that real-world malware typ-
ically adapts to defenses, evades being run in experimental
settings, and hides behind benign applications. Thus, real-
izing the potential of HMDs as a line of defense — that has
a small and battery-efficient code base — requires a rigorous
foundation for evaluating HMDs.

To this end, we introduce EMMA—a platform to evaluate
the efficacy of HMDs for mobile platforms. EMMA decon-
structs malware into atomic, orthogonal actions and intro-
duces a systematic way of pitting different HMDs against a
diverse subset of malware hidden inside benign applications.
EMMA drives both malware and benign programs with real
user-inputs to yield an HMD’s effective operating range—
i.e., the malware actions a particular HMD is capable of de-
tecting. We show that small atomic actions, such as stealing
a Contact or SMS, have surprisingly large hardware foot-
prints, and use this insight to design HMD algorithms that
are less intrusive than prior work and yet perform 24.7%
better. Finally, EMMA brings up a surprising new result—
obfuscation techniques used by malware to evade static anal-
yses makes them more detectable using HMDs.

1. INTRODUCTION

Hardware-based malware detectors (HMDs) are an attrac-
tive line of defense against malware [1} 2| [3} 4]. An HMD
extracts instruction and micro-architectural data from a pro-
gram run and raises an alert when the current trace’s statis-
tics looks anomalous compared to benign traces (or simi-
lar to a known malicious one). HMDs are small and can
run securely even from a compromised OS—they are thus
a trustworthy first-level detector in a collaborative malware
detection system [5} |6] and are being deployed in commer-
cial mobile devices.

Evaluating HMDs for mobile malware, however, is a new
challenge for architects. Unlike SPEC programs, malware
only runs under specific conditions—on real devices in se-
lect geographical regions triggered by commands from a re-
mote server. Without a malware benchmark suite, it is chal-
lenging to experiment with a carefully diversified set of mal-
ware. Further, HMDs have to differentiate malware from
benign programs—without real inputs that cover a repre-
sentative range of benign traces, mobile apps are quiet and
HMDs will simply learn to label any computation as mal-

Ling Huang*

Vijay Reddi Mohit Tiwari
*DataVisor Inc

hling@cs.berkeley.edu
tiwari@austin.utexas.edu

Benignware
Real Users
HMD Analyst l
l Benign Angry Birds Sana Medical Tuneln Radio ...

apps

HMD algorithms ! } | !

Power transform | -y il

ocSVM Record-replay user input :“E {o
perf tert —> range
erformance counter traces| T
Exynos of HMD
Mobile platform

2c SVM, rand forest... T T T T

Malware Payload diversification, Command and control,
synthesizer Code obfuscation, Repackage into benignware

Operating

DWT | bag of words,
markov model | ocSVM,

Behavior

Info Stealers Network nodes Compute nodes
taxonomy

M?Iwalre Geinimi.a LeNa.c Zitmo Obad Maistealer ...
binaries

Malware

Figure 1: Overview of EMMA.

ware. HMDs today are evaluated in a ‘black-box’ manner
— without explicitly triggering malicious payloads and by
comparing malicious traces to quiescent benignware traces [1]]
— such that neither malware nor benignware traces represent
a real execution.

In this paper, we present EMMA—a principled methodol-
ogy to evaluate HMDs for mobile malware (Figure [T). As
a baseline advance over prior work []1], we reverse engineer
real malware to execute correctly and drive mobile apps us-
ing real human input on actual hardware that contains real-
istic data. We have built a custom record-and-replay frame-
work for Android apps to replay thousands of 5 to 10 minute
long user interactions — such as playing Angry Birds or fill-
ing out a medical diagnostic questionnaire — correctly. Fur-
ther, we explicitly model malware adapts its hardware level
behaviors to evade detection. To this end, we present a tax-
onomy of real malware into orthogonal behaviors (and atomic
actions for each behavior) and synthesize a diverse range of
malware actions.

EMMA helps a malware analyst find the operating range
of HMD algorithms. An operating range is a new metric
of the form: an HMD algorithm A can detect malware pay-
load X hidden in app Y with a false positive rate of Z. In
contrast, HMDs’ performance today is quantified using Re-
ceiver Operating Curves (ROC plots) that show aggregate
true positive v. false positive rates across a suite of malware
and benignware programs. Aggregate ROCs are mislead-
ing because (a) adversaries can adapt payloads arbitrarily in
response to the proposed HMD — hence, operating range is
defined in terms of atomic malware payload units instead of

true positive percentages in ROC plots — and (b) false posi-
tives should be measured using the benign app that malware
hides in—comparing to an arbitrary benign app or system
utility yields an unrealistic (and better) false positive rate.

We demonstrate EMMA’s utility through three case studies
that yield new conclusions. Our first case study shows that
anomaly-based HMDs, that flag novel executions as mal-
ware, benefit from EMMA’s characterization of atomic mal-
ware actions. Specifically, we find that desktop HMDs de-
signed to detect short-lived exploits are a poor fit to detect
mobile malware payloads. Further, small software level ac-
tions such as stealing a 4MB photo or one SMS takes 2.86s
and 0.12s respectively on a Samsung Exynos 5250 device.
Using this insight, we propose an HMD that uses longer-
duration (100ms) feature vectors and is 24.7% more effec-
tive using the area under the ROC curve (AUC) metric than
prior work (at the same false positive rate of ~20%).

Our second case study uses EMMA’s malware taxonomy
to design effective supervised learning based HMDs, i.e.
HMDs trained on both benignware and known malware. We
show quantitatively that supervised learning HMDs benefit
from training on a malware set that covers diverse, orthogo-
nal behaviors (compared to HMDs trained on a subset of be-
haviors). Further, the supervised learning model can classify
even small pieces of data (1 photo, 25 contacts, 200 SMSs,
etc) being stolen with close to 100% accuracy at 5% false
positive rate. However, malware payloads such as HTTP-
layer denial of service attacks are undetectable at the hard-
ware level—EMMA provides such semantic insights into why
HMDs succeed and fail.

Our final case study shows a surprising result—obfuscation
techniques to evade static analysis tools make HMDs more
effective. Specifically, malware developers use string en-
cryption and Java reflection to create high-fanout nodes in
data- and control-flow graphs and thus foil static analysis
tools. However, these obfuscation techniques in turn create
instruction sequences and indirect jumps that make malware
stand out from benignware. Hence, in addition to collabora-
tive malware detectors, light-weight HMDs can complement
static analysis tools [7] used by Google and other app stores
to drive malware down into more inefficient design points.
To summarize, our specific contributions include:

1. Malware taxonomy. We deconstruct 229 malware bi-
naries from 126 families into orthogonal behaviors, iden-
tify atomic actions for each behavior, and build a malware
synthesizer that incorporates state-of-the-art obfuscation and
command-and-control protocols. We find that small software-
level actions have large hardware footprints and use this to
design effective HMDs.

2. Record and replay platform. We record real (human)
user traces for 9 complex and popular applications such as
Angry Birds running on actual hardware with realistic data
— ~1 to 2 hours for each app — and show that these are very
different from traces produced with none or auto-generated
inputs. We repackage the 9 benign apps into a total of 594
diverse malware binaries and replay over 4000 minutes of
malware binaries to extract malicious payloads’ time inter-
vals. We use this platform to evaluate HMD algorithms.

3. Three case studies with new insights. Anomaly de-
tectors, if tuned to atomic actions in real malware, improve

o 6K sms youtube.apk
& / MonkeyJump2+Geinimi.a

3 /

2 4 i

@ Benign MonkeyJump2

=

[%]

§ contacts

Sk ™~

2

= Y

~—— MonkeyJump2+Geinimi.a (CRASH)

100 200 300 400
Time, sec

Figure 2: Executing malware payloads. The off-the-shelf
Geinimi.a malware crashes immediately. Once fixed,
Geinimi.a executes malicious payloads such as stealing
SMSs or contacts or downloading files.

over prior HMDs by 24.7%. Supervised-learning HMDs im-
prove by 6-10% if the training set includes each high-level
behavior from EMMA’s taxonomy, and can detect even small
data items being stolen from within complex apps. Finally,
HMDs detect what static analyses cannot—reflection and
string encryption improves our HMD’s detection rate.

EMMA has already informed the design and evaluation of
a commercial malware detector and is in use by an external
academic research group. We will release the user traces,
malware and benignware dataset, and the hardware platform
to researchers to seed composable research on HMDs. Be-
fore we dive into the details of EMMA in Sections[B]land[4] we
motivate our approach by demonstrating how prior ‘black-
box’ approaches to evaluating HMDs can lead to misleading
results.

2. MOTIVATION

We consider HMDs as part of a collaborative malware de-
tection system that has two components. On the server side,
a platform provider (e.g., Google) executes benign and/or
malware applications using test and real user inputs, mea-
sures performance counters, and creates a database of com-
putational models. On client devices, a light-weight local
detector samples performance counters to create run-time
traces from applications, and compares each run-time trace
to database entries on the device and forwards suspicious
traces to a global detector on the server.

HMDs can build databases of signatures of both malware
and benign executions [1] or train only on benign executions
to flag anomalous executions as malware [2]—EMMA can be
used to evaluate both these classes of HMDs. In a signature-
based analysis, the HMD has to compare each run-time trace
with the entire database looking for a possible match. In an
anomaly detector, each run-time trace purports to belong to
a specific app — hence the HMD needs to match the cur-
rent trace to only that specific app’s model. If malware is
detected with high confidence, the global detector raises an
alert to the user and/or a malware analyst.

Importantly, HMDs’ value lies in being trustworthy and
light-weight in comparison to software based detectors, e.g.,
by running in an enclave [8 9]] secure against even user er-
rors and kernel rootkits [10]. HMDs do not need to have

1.5¢]
o Firefox
1. + Firefox + Malware
x Random Android process
<
Y 05
o
~ o
o of
£ o 0 R 3
~ + + o ol
“05 ek
* oy o
+
+
-1 :
-1 - 1

5 0 0
Dim 1 (87.53%)

Figure 3: Differential analysis of malware v. benignware.
The plot shows principal components of benign Firefox,
Firefox with malware, and arbitrary Android apps. Ma-
licious Firefox’s traces are closer to Firefox than to ran-
dom apps.

0% false positives and 100% true positives—they only need
to serve as an effective filter for a global detector that can
then use program analysis [11} [I2] or network-based algo-
rithms [[13] to build a robust global detector. We refer read-
ers to Vasilomanolakis et al. [5] for a survey on collaborative
malware detectors.

2.1 Hardware-based Malware Detectors

One line of HMD research focuses on deskfop malware
which has very different characteristics compared to mo-
bile malware. Ozsoy et al. 3] propose custom hardware
signals and hardware-accelerated classifiers and use off-the-
shelf desktop malware to evaluate their HMD with ~90%
true positive and 6% false positive rates. Tang et al. [2]
present an anomaly detector for desktop malware and evalu-
ate using 2 benign programs and 3 exploits, achieving 99%
detection accuracy for less than 1% false positives.

To understand how Android malware is different, we com-
pare 20 Windows malware samples (similar to ones in the
studies above) to 20 benign programs such as pdfviewer,
calculator, filetransfer, resizer, screensaver, etc. We find that
Windows malware executed an average of ~60K system calls
within 10 minutes v. only 2.5K for benignware. RegSet-
Value, the system call used to modify Windows registry, is
invoked 820 times by malware and only 72 times by benign-
ware. Further, malware spawns 182 processes/threads on
average while benignware spawns fewer than 30. Windows
malware have historically targeted gaining control of the ma-
chine whereas Android malware rarely attempt system-level
exploits. Hence, mobile malware executions are far closer to
benign executions. . We present our findings about mobile
malware in Section [3.1]and quantify these in Section[5.1]

The closest related work to ours — on HMDs for mobile
malware — is by Demme et al. [|1], where the authors present
a supervised learning HMD that compares off-the-shelf An-
droid malware to arbitrary benign apps, yielding an 80:20
true positive to false positive ratio. However, this method-
ology of using off-the-shelf malware and comparing it to ar-

3Kt
3 Real User Input
s I
3 M i A
3 2K)1 My A
o i oA m % A
o] 1 ! YA A ™
o \ n ! ; o
5 N R W
5 K } ! \g Vo
51 o "/
© ""i"' J
2 Yy Android Monkey
v NoUserInput " .

100 200 300 400
Time, sec

Figure 4: Real user inputs create hardware level activ-
ity, while providing no input or using Android’s input-
generation tool (Monkey) creates a very small signal.

bitary benign apps is fallacious, as we discuss next.

2.2 Pitfalls in Evaluating HMDs

One challenge in evaluating detectors is that malware de-
velopers can adapt their apps in response to proposed de-
fenses. For example, we have found that simply splitting a
payload into multiple software threads dramatically changes
the malware’s performance-counter signature and training a
signature-based HMD on the former execution yields a very
low probability of labeling the latter as malware.

Further, prior work analyzes malware samples categorized
by family-names like CruseWin and AngryBirds-LeNa.C—
this does not inform an analyst as to why a malware bi-
nary was (un)detectable. Instead, we propose that determin-
ing the robustness of a hardware-based malware detector re-
quires understanding why a particular malware sample was
(un)detectable, to anticipate how it can adapt, and then to
create a malware benchmark suite to identify the operating
range of the detector.

A second challenge is that mobile malware samples avail-
able online [|14} 15]], and used in prior work, seldom execute
‘correctly’ (Figure[J). Malware often require older, vulnera-
ble versions of the mobile platform, they may target specific
geographical areas, include code to detect being executed
inside an emulator, wait for a (by now, dead) command-
and-control server to issue commands over the internet or
through SMSs, or in many cases, trigger malicious actions
only in response to specific user actions [[16} [17]. 20% of
malware executions in Demme et al’s [[1]] experiments lasted
less than one second and 56% less than 10 seconds — less
time than it takes to steal 5 photos. We posit that experi-
ments should establish that malware does execute its ‘pay-
loads’ — such as stealing personal information, tracking lo-
cations, sending premium SMSs etc — instead of executing a
binary on a network-connected machine and assuming that
payloads executed correctly [1}3]].

A third challenge is to ensure appropriate differential anal-
ysis between benign and malware executions. Prior work [/1]]
trains detectors on malware executions but tests against ar-
bitrary benign applications. However, Figure [3] shows that
Firefox infected with malware looks similar to Firefox it-
self and still very different from arbitrary Android processes

o N @ ®
S o o

@
<]

Noow
S o

N
S

Percentage of Malware Population (%)
N
5]

2012 2013 2014 2015

o

OInfomation Stealers W Networked Nodes @ Compute Nodes

Figure 5: Malware behaviors observed in a 126-
family 229-sample Android malware set from Contagio
minidump. Most malware steals data or carries out net-
work fraud. However, samples that use phones as com-
pute nodes, e.g., to crack passwords or mine bitcoins,
have been reported in 2014.

like netd. Further, Figure 4] shows that driving Android ap-
plications using real user-input has a major impact on the
execution signals compared to giving no input or using the
Android ‘Monkey’ app to generate random inputs. Hence,
we propose to test HMDs using malicious binaries against
appropriate parent apps while both apps are being driven us-
ing real user-inputs.

On Quantitative Comparison to Prior Evaluation Meth-
ods. We have shown in this section that prior ‘black-box’
methods yield traces that do not represent either malware or
benignware executions. The prior method has logical flaws
—as a result, 20% of malware traces in [1]] are shorter than
1 second, and 56% are <10s — and we deliberately eschew
further quantitative comparisons with EMMA. Instead, our
evaluation focuses on case studies using EMMA to yield new
insights into building effective HMDs.

3. MALWARE TAXONOMY

The first major component of EMMA generates a diverse
population of malicious apps. To do so, we first introduce
a taxonomy of high-level malware behaviors, and then use
it to create a set of representative malware whose hardware
signals have been explicitly diversified.

Figures [and [6] show our manual classification of mal-
ware into high level behaviors. We studied 53 malware fam-
ilies from 2012, 19 from 2013, 31 from 2014 and 23 from
2015 — a total of 229 malware samples in 126 families —
downloaded from public malware repositories [[15} |18, [19].
Our classification’s goal is to identify orthogonal atomic ac-
tions and to determine concrete values for these actions (e.g.,
amount and rate of data stolen).

To classify malware, we disassembled the binaries (APKs
on Android) and executed them on both an Android devel-
opment board and the Android emulator to monitor: permis-
sions requested by the application, middleware-level events
(such as the launch of Intents and Services), system calls,
network traffic, and descriptions of malware samples from
the malware repositories. We describe our findings below.

3.1 Unique Aspects of Mobile Malware

Our key insight is that instead of trying to detect conven-
tional root exploits (20, 21}, 22]], we propose to detect mali-

02012 W2013 @2014 W2015

t HHn:iﬁ.

phone sms contacts gps app. Info browser other files click/apk scams: DoS
info info fraud paid
SMSs

Percentage of Malware Population (%)

Figure 6: Examples of malware behaviors and their con-
tribution to the malware dataset.

cious payloads. Here, payloads refer to code that achieves
the malware developers’ goals, such as sending premium
SMSs, stealing device IDs or SMSs, etc. We observed root
exploits in only 10 of 143 samples in 2012 and 3 of 32 sam-
ples in 2013 — we now take a closer look at the attack vectors
mobile malware rely on.

Mobile malware can successfully execute payloads due to
vulnerable third-party libraries. In one instance that affected
hundreds of millions of users, a “vuln-aggressive” ad-library
had a deliberate flaw that led to downloaded files being ex-
ecuted as code [23]. Webviews, that enable Android apps
to include HTML/javascript components, are another ma-
jor source of vulnerabilities [[24] that allows payloads to be
dropped to a device. Apps with this vuln-aggressive library
or Webviews are otherwise benign and can be downloaded
from app stores as developer signed binaries, only to be com-
promised when in use.

In other cases, errors by an app’s benign developers them-
selves can lead to malicious payloads being executed. Mis-
configured databases even in popular apps like Evernote [25]]
and AppLocker [26] (a secure data storage app) were vul-
nerable to malicious apps on the device simply reading out
data from sensitive databases. In such cases, the malicious
app could be an otherwise harmless wallpaper app that con-
structs an ‘Intent’ (a message) to AppLocker’s database at
run-time and exfiltrates data if successful.

User errors are another cause for malware payloads ex-
ecuting successfully at run-time. Malicious apps read data
from an online server, use it to construct a user prompt at
run-time, and thus request sensitive permissions such as ac-
cess to SMSs or microphone. Users often accept such re-
quests [27]] and once authorized, apps can siphon off all
SMSs or conduct persistent surveillance attacks [28]].

Worst of all, even the platform (Android) code can have
severe vulnerabilities that doesn’t require a conventional ex-
ploit. For example, the Master Key vulnerability [|10] simply
involved an error in how Android resolves a hash collision
due to resource-names in a binary at install time v. execu-
tion time. By packing the binary with a malicious payload
such that the install time check passes but the execution time
loader picks the other malicious payload, attackers could dis-
tribute their payloads through signed apps in official app-
stores.

Finding: analyze payloads instead of exploits. Based
on the above findings, we conclude that while there are many
routes to getting a payload to execute as part of a benign
app, executing the payload is mandatory for malware to win.
Hence our proposed detectors seek to distinguish malicious

payloads from benign app executions. The challenge of de-
tecting payloads is that payloads can look very similar to be-
nign app’s functionality. For example, if a previously harm-
less game AngryBirds starts to comb through a database, can
we distinguish whether it is reading a user’s gaming history
(harmless) or a user’s password database (attack) using only
hardware signals.

In this sense, our problem is a general and more compli-
cated version of detecting exploits — whether Internet Ex-
plorer or Acrobat PDF is under a return-oriented program-
ming attack (ROP) followed by Stage 1 shell codes (as con-
sidered by Tang et al [2]).

3.2 Behavioral Taxonomy of Mobile Malware

At a high level we assigned every malicious payload to
one or more of three behaviors: information stealers, net-
worked nodes, and compute nodes (Figure [6)).

Information stealers look for sensitive data and upload
it to the server. User-specific sensitive data includes con-
tacts, SMSs, emails, photos, videos, and application specific
data such as browser history and usernames, among others.
Device-specific sensitive data includes identifiers — IMEI,
IMSI, ISDN - and hardware and network information. The
volume of data ranges from photos and videos at the high
end (stolen either from the SD card or recorded via a surveil-
lance app) to SMSs and device IDs on the low end.

The second category of malicious apps requires compro-
mised devices to act as nodes in a network (e.g., a botnet).
Networked nodes can send SMSs to premium numbers and
block the owner of the phone from receiving a payment con-
firmation. Malware can also download files such as other
applications in order to raise the ranking of a particular ma-
licious app. Click fraud apps click on a specific web links to
optimize search engine results for a target.

Given the advances in mobile processors, we anticipated
a new category of malware that would use mobile devices as
compute nodes. For instance, mobile counterparts of desk-
top malware that runs password crackers or bitcoin miners
on compromised machines. This was confirmed by recent
malware samples whose payload was to mine cryptocurren-
cies [29]. We did not observe Bitcoin miners until mid-
2014 (when we conducted our survey) and used a password
cracker as a compute-oriented malware payload. The cracker’s
task is to recover sensitive passwords by making a guess,
compute the guess’ cryptographic hash, and compare each
hash against a sensitive database of hashed passwords.

Finding: Software-level actions are surprisingly long
in hardware. Figure [/| shows the specifics of each mal-
ware behavior we currently include in EMMA. Interestingly,
atomic malware payload actions take significant amount of
time at the hardware level for several payloads — e.g., steal-
ing even one SMS or a Contact requires 0.12s to 0.36s on av-
erage. These constants inform the design of our performance
counter sampling durations and machine learning models in
Sectiond] The last two columns in Figure [7]show the aver-
age length of an atomic action in the malware payload (not
counting delays such as being scheduled out by the operat-
ing system), and the instruction count per action (e.g. steal-
ing 1 photo/contact/SMS, clicking on 1 webpage in click
fraud, opening 500 connections and keeping them alive in

Synthetic Parameters Malware- | # of RPKG | Length Inst.
Malware (number of items) Specific Mal. Apks | per Action| Count
Delay (ms) (sec) | (Million)

Steal files (4.2MB | 1, 15, 35, 50 0, 1K, 5K 12 2.86 50.97
each)
Steal contacts 25, 70, 150, 250 0,10, 25 12 0.36 67.80
Steal SMSs 200, 400, 700, 1.7K |0, 15, 40 12 0.12 25.90
Steal IDs, GPS data size fixed 0, 200 2 4* 39.65
Click fraud (pages) | 20, 80, 150, 300 0, 1K, 3K 12 0.40 44.40
DDos (slow loris) | 500 connections 1, 40, 80, 200 4 425 49.70
SHAL1 pass. cracker | 10K,0.5M,1.5M,2.5M | 0, 20, 40 12 2.8E-5 1.9€-2

Figure 7: Malware payloads: 4 info stealers, 2 net-
worked nodes, and 1 compute node. These settings rep-
resent a small but computationally diverse subset of mal-
ware behaviors. Interestingly, small software actions
have large hardware footprints.

App name | Description | # of User Actions User Time | CPU Time | Inst. Count
Installs (min) (min) (Billion)
Amazon |internet 10M - | searched for sporting goods; |81.15 32.40 1,914.97
store 50M looked through 25 pages;
clicked on 50 items
Angry game M- played 9 rounds and 76.97 63.76 1,047.73
Birds S5M completed 7 levels
CNN newsapp |[5M-— browsed several categories |58.04 11.60 254.85
1om of news and a few articles of
each type
Firefox browser 50M — browsed 20 webpages 93.96 45.51 1,464.52
100M | starting from google.finance
Google map 500M — | browsed maps of a few cities |56.09 35.38 768.31
Maps service 1B and opened street views
Google translator |500M - | translated 30 words, 59.72 12.12 203.61
Translate 1B searched history, tried
handwriting recognition
Sana MIT | medical U/A completed 5-6 111.41 11.37 145.94
Medical | app questionnaires
Tuneln internet 50M - |switched amongst 6 channels | 78.10 26.17 407.99
Radio radio 100M and listened to radio
Zombie |game M- played 5 rounds and 91.62 88.40 2,261.99
WorldWar 5M completed 4 levels

Figure 8: Real user inputs on benign apps, with per
app traces up to ~2 hours and ~2 trillion instructions.
We choose complex apps and include a mix of com-
pute (games), user-driven (browsers, medical app), and
network-centric (radio) apps.

a DDoS attack, generating 1 string and computing its hash
using SHAT).

3.3 Constructing Malware Binaries

We now describe the steps required to create a realistic
malware binary. Malware activation can be chosen from be-
ing triggered at boot-time, when the repackaged app starts,
as a response to user activity, or based on commands sent
over TCP by a remote command and control (C&C) server.
In all cases, malware communicates back to the C&C server
to transfer stolen data or compute results. EMMA’s config-
uration parameters also specify network-level intensity of
malware payload in terms of data packet sizes and inter-
packet delays, and device-level intensity in terms of execu-
tion progress (in terms of malware-specific atomic functions
completed). We chose concrete parameters for malicious
payload based on an empirical study of mobile malware as
well as information about benign mobile devices [30].

The generated malware has a top-level dispatcher service
that serves as an entry point to the malicious program; it
parses the supplied configuration file, launches the remain-
ing services at random times, and configures them. Ma-
licious services can run simultaneously or sequentially de-

pending on the configuration parameter. In some cases, the
service that executes a particular malicious activity can serve
as an additional dispatcher. For example, the service execut-
ing click fraud spawns a few Java threads to avoid blocking
on network accesses. Every spawned thread is provided with
a list of URLs that it must access. Besides Android services,
we register a listener to intercept sensitive incoming SMS
messages, forward them to C&C server, and remove them
from the phone if needed. This listener simulates bank Tro-
jans that remove confirmation or two-factor authentication
messages sent by a bank to a customer.

Most professional apps are obfuscated using Proguard [31]]
to deter plagiarism. Proguard shrinks and optimizes bina-
ries, and additionally obfuscates them by renaming classes,
fields, and methods with obscure names. We applied Pro-
guard to the malware payloads (even when we did not use
reflection and encryption) to make the payloads look like
real applications.

After a malware payload is created, it must be repack-
aged into a baseline app. Repackaging malware into a base-
line app involves disassembling the app (using apktool),
and adding information about new components and their in-
terfaces in the application’s Manifest file. We then insert
code into the Main activity to start the top-level malware
dispatcher service (whose activation trigger is configurable),
and add malicious code and data files into the apk. We then
reassemble the decompiled app using apktool. If code in-
sertion has been done correctly, apktool produces a new An-
droid app, which must be signed by jarsigner before de-
ployment on a real device.

4. REAL USER-DRIVEN EXECUTION

Armed with a computationally diverse malware suite, we
now select a similarly diverse suite of benign apps, drive
them with long, real, user inputs, and extract hardware sig-
nals from them. Figure [§]shows the apps that we selected —
notice that we drive real user-level functionality instead of
random inputs.

4.1 Benign Apps

Our main goal is to choose applications that represent
popular usage, and that require permissions to access re-
sources like SD card and internet connectivity. This en-
sures that the applications are interesting targets for mal-
ware. Further, we ensure that the apps cover a mix of com-
pute (games), user driven (medical app, news), and network
(radio) behaviors, diversifying the high-level use cases for
apps in the benignware suite. Our chosen app set includes
native (C/C++/assembly), Android (Dalvik instructions), and
web-based functionality, varying the execution environment
of our benign app pool. In our evaluation (Section [3)), we
confirm that this high-level diversity does indeed translate
into diverse hardware-level signals.

4.2 User Inputs

For each benign application, we created a workload that
represents common users’ behavior according to statistics
available online. For example, when exercising Firefox, we
visited popular websites listed on alexa.com. Automating
this is simple. For Angry Birds, we recorded a user playing

the game for multiple rounds and successfully completing
several levels. For the medical diagnostics app (Sana), we
record users completing several questionnaires, where each
questionnaire requires stateful interactions spread over sev-
eral screens. Such deep exploration of real apps is far be-
yond the capability of not only the default UI testing tool
in Android (Monkey [32]]), but also state of the art in input
generation research [33]]. Without such deep exploration of
benign apps, the apps’ hardware traces will reflect only a
dormant app and cause the malware signals to stand out at
test time but not in a deployed system.

For each benign app, we collect 6 user-level sessions (each
5-11 min long) and use a heavily modified Android Reran [34]
to record and replay 4 of these sessions with random delays
added between recorded actions (while ensuring correct ex-
ecution of the app). These 10 user-level traces per app gen-
erate 56—111 minutes of performance counter traces across
all apps.

Each benign app is then repackaged with 66 different pay-
loads to create 9 x 66 malware samples. To collect perfor-
mance counter traces, we replay one of the app’s user-level
traces and extract 5—-11 minutes long performance counter
traces for each malware sample.

Figure [§] shows some interesting trends in benign traces.
While Sana commits 145 Billion instructions in 111 min-
utes, Zombie WorldWar commits 2,261 Billion instructions
in 91 minutes — clearly, Sana is much more user-bound while
Zombie WorldWar is compute-heavy. CNN and Angry Birds
are similar to Zombie WorldWar, where Tuneln Radio lies
between Sana and Zombie WorldWar in instructions com-
mitted.

Finding: HMDs have to be application-specific. In-
terestingly, as we show in our evaluation (Section E]) the
compute intensity of CNN and Zombie WorldWar results in
them having the worst detection rates among all the apps in
our suite. On the other hand, even though Tuneln Radio is
more intense than Sana, Tuneln Radio exposes malware bet-
ter. We find that this is because the Radio has more regular
behavior while Sana executes in short, sharp bursts. EMMA’s
realistic replay infrastructure and user-input traces are key to
producing these insights into HMDs’ performance in a real-
istic setting.

4.3 Extracting Hardware Signals

We now describe our measurement setup for precise re-
producibility. The measurement setup requires careful setup
and correctness checks since it is difficult to replay real user
inputs to the end once delays and malware payloads are added.
Devices. Our experimental setup consists of an Android de-
velopment board connected to a desktop machine via USB,
which in turn stores data on a server for data processing and
construction of ML models. The desktop machine uses a
wireless router to capture internet traffic generated by the
development board. The traffic collected from the router
is analyzed to ensure that benignware and malware execute
correctly.

We use a Samsung Exynos 5250 equipped with a touch
screen, and a TI OMAP 5430 development board, and we
reboot the boards between each experiment. We ran all ex-
periments on the Exynos 5250 because some common apps

11

.‘
Lm‘ fl

o

‘”w"‘ A wh

benign 1
i ’

‘w ‘[Al
“) ;M‘n !'”HMH ,‘ J “M ()

| M.
SR
\ V' ‘JL‘ U“f” ;t‘i M‘w

- benign

h |
um“ f“w\ ’Mi”\ |
0

Probability

malware test

80 160 240 0 80
Time, sec

malware test

Time, sec

1'std. dev

malware test
160 240 80 160 240

Time, sec

Figure 9: HMD results for Angry Birds with click fraud operating at three (increasing) intensities. Since HMD is
trained on benign AngryBirds, a low dark-line shows that the HMD detects malware as a low probability state.

like NYTimes and CNN crashed on OMAP 5430 for lack
of a WiFi module, but repeated Angry Birds experiments on
the OMAP 5430 to ensure that our results are not an artifact
of a specific device.

Performance counter tracing. We used the ARM DS-5

v5.15 framework and the Streamline profiler as a non-intrusive

method for observing performance counters. DS-5 Stream-
line reads data every millisecond and on every context switch,
so it can ascribe performance events to individual threads.
However, in DS-5 Streamline extracting per process data can
only be done using its GUI, forcing us to automate this pro-
cess using the JitBit [35] UI automation tool.

Choice of performance counters. We used hardware per-
formance counters to record five architectural signals: mem-
ory loads\stores, immediate and indirect control flow instruc-
tion counts, integer computations, and the total number of
executed instructions; and one micro-architectural signal: the
total number of mispredicted branches. We collected counter
information on a per process basis as matching programmer-
visible threads to Linux-level threads requires instrument-
ing the Android middleware (i.e., is non-trivial), and per-
application counters yielded reasonable detection rates. We
leave exploring the optimal set of performance counters for
future work.

Ensuring correct execution. We ensured that the malicious
payload was executed correctly on the board for each trace.
Specifically, synthetic malware communicated with a Her-
cules 3-2-6 TCP server running on the desktop computer,
which recorded a log of all communication. The synthetic
malware itself printed to a console on the desktop computer
(via adb) as well as to DS-5 Streamline when running each
malicious payload.

For experiments with off-the-shelf malware, we developed
an HTTP server to support custom (reverse-engineered) du-
plex protocols for C&C communication. If we allowed mal-
ware to communicate to its original server, which was not
under our control, we captured network traffic going through
the router. We checked the validity of performance coun-
ters readings obtained via DS-5 Streamline with specially
crafted C programs, which we compiled and ran natively on
the boards.

4.4 Constructing and Evaluating HMDs

Using benign and malware traces collected as described
above, an HMD analyst can then train and test a range of
HMD algorithms. For example, Figure [0] shows one of the
HMD algorithms we present in a case study in Section
The HMD is an anomaly detector and the figure plots the

likelihood that the current trace is going through a known
phase—a low probability thus indicates potential malware
(the dark line) while higher probabilities indicate benign-
ware (light gray lines). Increasing the payload’s intensity
lowers the probability even further. By tuning the probabil-
ity at which a time interval is flagged as malicious (or by
training a classifier to learn this), an analyst can trade-off
false positives and true positives.

Importantly, we evaluate true positives and the detection
threshold using only the time windows that contain malware
payload execution. We do not use time windows where our
repackaging code and dispatcher service executes, since we
would like the HMD to be evaluated solely using payloads
and not exploits. We do not use time windows before or after
the payload is complete, because if an HMD raises an alert
when the payload is not executing, the alert may in reality
be a false positive that will get recorded as a true positive.
Prior evaluation methods do not separate out malware pay-
load intervals and may have this error. On the other hand, to
measure false positives, we use benign traces only and hence
use the entire trace durations for each experiment. Finally,
we use 10-fold cross validation on an appropriate subset of
our data to evaluate HMDs.

S. CASE STUDIES USING EMMA

We show how malware analysts can use EMMA through
three case studies. (1) We use malware payload sizes in Sec-
tion [3[to tune the machine learning features (100ms v. sub-
ms in prior work) for an anomaly detector HMD. Our HMD
out-performs prior work designed to detect short-lived ex-
ploits by 24.7% on the area under curve (AUC) metric (Sec-
tion[5.1)). (2) EMMA’s taxonomy of malware in Section[3|can
be used to train a supervised learning based HMD eficiently.
This ‘balanced” HMD outperforms alternative HMDs — that
are trained on subsets of malware behaviors — when tested on
new variants of the behaviors. (3) Surprisingly, we show that
our anomaly-based HMD can detect malware that uses ob-
fuscation to evade the best (deployed as well as in research)
static analyses. Hence, HMDs and static analyses are com-
plementary and can drive malware payloads towards ineffi-
cient implementations.

5.1 Anomaly detector using EMma’s taxonomy

We begin by quantifying why prior work designed to de-
tect exploits may not yield the best HMDs to detect long-
lived payloads.

Exploit-based ML features do not expose payloads (Fig-
ure [10). Tang et al. [2]] present an HMD specifically de-

1.25

| E

I
0.75 i | J
0.25 $| ! é E

Before After

——t - T} -+

1
$

Figure 10: Distribution of load/store events in Angry
Birds before and after power transform. Power trans-
form does not make malware payloads on Android more
discernible from benign behavior, whereas Tang et al. [2]
show that it separates exploits from benign apps in Win-

dows.
100

80

60
4 | |
0

Click fraud DDoS SHA1

o

N
o

Area under the curve (AUC), %

File Contacts Sms

B Power transform + ocSVM Wavelet transform + ocSVM

Figure 11: Comparison of power transform + ocSVM
(prior work) and Discrete Wavelet Transform + ocSVM
(this work). Our detector has 24.7% better area under
curve metric (AUC) than prior work.

signed to detect the multi-stage exploits that characterize
Windows malware. The HMD samples performance coun-
ters every 512k cycles, and uses a power transform on per-
formance counter data to separate benign and malicious time
intervals. Then, a one-class SVM (ocSVM) is trained on
short-lived features — i.e., on each sample as a non-temporal
model and using 4 consecutive samples to train a temporal
model — to label anomalous time intervals as malicious.

We find that power transform does not have the same ef-
fect on mobile malware payloads—payloads look very sim-
ilar to benignware traces even after a power transform. For
example, Figure [I0] shows the distribution of load-store in-
struction count per time interval for benign Angry Birds (la-
beled ‘Clean’), compared to time intervals in Angry Birds
infected with different malware payloads (e.g., file stealer,
click fraud, DDoS, etc)—before and after a power trans-
form. The distributions are shown as a box-and-whiskers
plot, where the box edges are 25" and 75" percentiles, the
central mark is the median, the whiskers extend to the most
extreme data points not considered outliers, while the out-
liers are plotted individually in red. Data in both plots have
been normalized to the range of benign Angry Birds’ values.
We use the standard Box-Cox power transformation to turn
performance counter traces into an approximately normal

distribution. Since the distributions of malware and benign-
ware in Figure [T0] overlap significantly, training an ocSVM
on this dataset will yield a poor HMD as we show next.
Payload-centric ML features. We designed a new HMD
whose features reflect our findings about mobile malware
payload sizes in Figure[7} Specifically, we attempt to capture
program effects at the scale of 100ms intervals, i.e., closer to
the time required for atomic actions like stealing information
or networking activity.

We then extract features from each 100ms long time in-
terval using Discrete Wavelet Transform (DWT) and use the
wavelet coefficients as a feature vector for the time interval.
The wavelet transform can provide both accurate frequency
information at low frequencies and time information at high
frequencies, which are important for modeling the execution
behavior of the applications. We use a three-level DWT with
an order 3 Daubechies wavelet function (db3) to decompose
a time interval. We also used the Haar wavelet function, but
did not observe much difference in the detection results.

Finally, we use multiple feature vectors to construct two
models: (a) a bag-of-words algorithm followed by a ocSVM,
and (b) a probabilistic Markov model. Both these models are
simple to train and compute at run-time, and hence serve as
good local detectors (and a good baseline for more complex
models such as neural nets that are harder to train).

5.1.1 Bag-of-words Anomaly Detector

The bag-of-words model treats 100ms time intervals as

words and a Time-to-Detection (TTD) window as a docu-
ment. We experimented with a range of words and TTDs,
finding a codebook of 1000 words and TTD = 1.5 seconds to
yield good results. The bag of words algorithm maps each
TTD window into a 1000-entry histogram, and trains a one-
class SVM on benign histograms. We parameterize the one-
class SVM so that it has ~20% percent false positives.
Comparison with power transform | ocSVM HMD. Fig-
ure [TT] compares our bag-of-words based ocSVM with one
that uses a power transform using the area under ROC curve
(AUC) metric. Note that AUC is a relative metric to com-
pare classifiers, whereas the operating range measures an
HMDs’ robustness to atomic-action-sized mutations in mal-
ware. The bag-of-words model outperforms prior work for
each category of malware behavior and by an average of
24.7% higher AUC across all malware.
Operating range of DWT | bag-of-words | ocSVM. Fig-
ure[I2]shows the operating range for the bag-of-words model.
Each cell in the matrix corresponds to a malware payload
action (y-axis) and benign app (x-axis) pair. The malware
payloads are grouped by category and within each category,
increase in size from top to bottom and in delay from right
to left. These experiments use parameters from Figure [§]
The intensity of the color — from light green to dark red —
corresponds to the detection rate, which is computed as the
number of raised alarms versus the total number of alarms
that could be raised.

Figure |12] shows that the bag-of-words model achieves,
at ~20% false positive rate: 1) surprisingly high true posi-
tive rate for dynamic, compute intensive apps such as Angry
Birds (99.9%), CNN (84%), Zombie WorldWar (93%), and
Google Translate (92.4%); and 2) ~80% true positive rate

Contacts Files

ID SMS

CrackDDoS Click

HMZHMZHMZHMZHMZHMZHMZHMZNMH
AB Radio Sana Amazon CNN Firefox Maps Trans. Zombie

Figure 12: The operating range of Bag-of-words HMD.
In each rectangle, the size of malicious payload grows
from the top to the bottom, and the amount of delay de-
creases from left to right (H=High, M=Medium, Z=Zero
delay). If color goes from light to dark within a rectan-
gle, then the detection threshold (i.e., the lower end of the
operating range) lies inside the rectangle.

for both Amazon and Sana.

5.1.2 Markov-model based Anomaly Detector

We present an alternative HMD to show that HMD mod-
els should be chosen specific to each application, and that
there is an opportunity to apply ensemble methods to boost
detection rates.

Our first-order Markov model based HMD assumes that
the normal execution of an application (approximately) goes
through a (limited) number of states (program phases), and
the current state depends only on the previous state. The goal
is to detect malware if its performance counter trace creates
a sequence of rare state transitions (as shown in Figure J).

The HMD uses DWT to extract features as in the bag-of-

words model, but maps them to a smaller number of words
(i.e., states in the Markov model) using k-means clustering.
We use the Bayesian Information Criterion (BIC) score
to find that 10 to 20 states is a good number across all benign
apps. Using observed state transitions derived from training
data, we empirically estimate the transition matrix and ini-
tial probability distribution (through Maximum Likelihood
Estimation). For detection, the Markov model HMD tracks
the joint probability of a sequence of states over time and
if malware computations create anomalous hardware signals
(i.e. this probability is below a threshold for 5 states in our
model), the HMD raises an alert.
Operating range of DWT | Markov model HMD. Fig-
ure [[3] shows the results-matrix for the Markov model based
detector. All the results are shown for a false positive rate of
20-25%.

Increasing the size of each payload action makes malware
more detectable — this can be seen as the colors being more
intense towards the bottom part of most rectangles. Increas-
ing the delay between two malicious actions does not have
a similarly predictable effect — SMS stealers in Angry Birds

Contacts Files
~
(=]

v 700
2 1700
a X X X X X X X X X
20 |]
80
¥ 150
S 300 |
wv
o
o
S
S 104
il
S 500K
2 15M | |
& 25M \

HMZHMZHMZHMZHMZHMZHMZHMZNMH
AB Radio Sana Amazon CNN Firefox Maps Trans. Zombie

Figure 13: The operating range of Markov model HMD.
Interestingly, the Markov model performs worse than
the simpler bag-of-words model for compute intensive
and dynamic apps (e.g., Angry Birds, CNN, and Zombie
WorldWar).

is a rare pair where detection rate increases with delay. This
is interesting since intuitively, adding delays between pay-
load actions should decrease the chances of being detected.
However, these experiments indicate that for most malware-
benign pairs, detection depends on how each payload ac-
tion interferes with benign computation rather than delays
between the payload actions.

The most important take-away from Figure [I3]is that for

most malware-benignware pairs, the detectability changes
from light green to dark red as we go from top to bottom
in the rectangle — this shows that our malware parameters in
Figure @ are close to the detection threshold, i.e. the lower
end of the HMD’s operating range for the current false pos-
itive rate. There are a few exceptions as well, such as click
fraud, DDoS, and password crackers hiding in CNN; and
DDoS in Angry Birds, Maps, Translate, and Zombie World
Wards. For these cases, the payload intensity has to be in-
creased further to find their detection threshold.
Markov model HMD space and time overheads. Markov
models representing the behavior of the benign apps vary
from 1.2KB to 6.7 KB, with an average size of 3.2KB - they
are thus cheap to store on devices and transfer over cellular
networks. Its time to detection ranges between 1.2 seconds
to 4.4 seconds and about 2.5 seconds on average. This means
that the system can detect suspicious activities at the very
beginning, considering that exfiltrating even one photo takes
2.86 sec on average.

5.1.3 HMDs should be app-specific

Interestingly, the Markov model works significantly better
than bag-of-words for Tuneln Radio — with a 10% FP: 90%
TP rate compared to 38%FP: 90% TP rate respectively — but
performs significantly worse on apps like Angry Birds. In
summary, a deployed HMD will benefit from choosing the
models that work best for each application, but due to their
different TP:FP operating points, will also benefit from using
boosting algorithms in machine learning [37].

15

50|
25

150
250
200
400
700
1700}

Contacts Files
<
(=]

ID SMS

20|

150
300

10K
500K]

ss Crack DDoS Click

Pass
N
[
< <

HMZHMZHMZHMZHMZHMZHMZHMZNMH
AB Radio Sana Amazon CNN Firefox Maps Trans. Zombie

Figure 15: Operating range of 2-class Random For-
est HMD: more effective than anomaly detectors when
trained on a balanced dataset of all malware behaviors.

5.2 Emma improves accuracy of supervised 2-
class HMDs

EMMA can significantly improve the performance of su-
pervised learning based HMDs; specifically, by training the
HMDs on a ‘balanced’ training data set that contains mal-
ware with each high-level behavior (Figure [I4). Note that
supervised learning techniques can be trained to recognize
specific families of malware (i.e. a multi-class model) or
to coalesce all feature vectors into one label (i.e., a 2-class
model)—we evaluate both categories in Figure [T4]

In all the following experiments the number of training
samples is fixed to exclude bias from training sets of differ-
ent size. Each training set is balanced, i.e. contains equal
number of benign and malicious samples. The results are
computed using 10-fold cross validation.

We experimented with several supervised learning algo-
rithms — e.g., decision tree, 2-class SVM, k-Nearest Neigh-
bor, Boosted decision trees, and Random Forest (RF)— and
present the results for RF classifier because it demonstrated
the best performance on our data set. In Figure[T4] we present
results using ROC curves (left) and AUC metric (right) to
compare relative performance of RF under different training
and testing data sets. Solid lines in the ROC plot correspond
to testing on the same malware type that is used for train-
ing, while the dashed lines show RF’s performance on other
malware types.

The common trend that we observed across all nine apps
and all malware types is that the RF classifier has signifi-
cantly better performance when testing on the same malware
types (solid lines are higher than the dashed ones). The only
exception is when the RF HMD is trained on DDoS mal-
ware, it surprisingly achieves better performance on other
malware behaviors than on the in-class malware behaviors.

Further, we trained a classifier on a balanced set of ma-
licious data that included all malware behaviors in EMMA.
The solid line with dots (in the ROC plot) and the column
on the far right (in the AUC bar graph) in Figure [T4] show
that showing some variants of each behavior enables the RF
to achieve a higher detection rate (on even new variants)

O 001NN LN —

//Code snippet extracted from Obad.apk
//Method: com.android. system.admin.
//1loOcccoC.loOcccoC(final boolean b)

class name
oCIICI11(594,

//dynamically construct
String class_name =
//return a class object
Class<?> ¢ = Class.forName(class_name);
//dynamically construct the name of a method
String method_name = oCIICI1 (250, 33, —51);
//return an object associated with the method
Method m = c.getMethod (method_name,
new Class<T>[] { Long.TYPE });
m.invoke (value, array);

24, —27);

Figure 16: Code shows Java reflection and string encryp-
tion in Obad malware that foils static analysis tools.

than both prior work as well as one-class SVMs. The RF
HMD can, for example, detect close to 85% of the malware
with only 5% false positives compared to our anomaly de-
tectors’ similar true positives for ~20% false positive rates.
Finally, the RF HMD trained on a balanced data set yields
97.5% AUC whereas RF HMDs trained on per-behavior in-
puts yield AUCs of 91% and 85% when tested against the
same or new malware behaviors respectively (averaged across
all behaviors).

Operating range of Random Forest HMD. Figure|[I5]shows
the detection results matrix for the RF HMD across the en-
tire malware payload (Y-axis) and benignware (X-axis) cat-
egories for a fixed false positive rate of 5%. The key re-
sults are that RF detects most payloads except for detecting
click fraud and DDoS attacks in CNN, Firefox, and Google
Translate. It is likely that DDoS attacks — which involve a
sequence of infrequent HTTP requests — look very similar
to benign apps and are not well suited to be detected using
HMDs. Indeed, all three HMDs — bag-of-words, Markov
model, and RF — do a poor job of detecting DDoS attacks
in most apps. On the other hand, RF consistently detects in-
formation stealers and compute malware (password cracker)
across most apps. For apps with regular behavior (Radio) or
sparse user-driven behavior (Sana), RF can detect all but the
smallest of malware payloads.

In summary, EMMA helps an analyst develop a robust HMD—

first by dissecting existing malware to identify orthogonal
behaviors, and then by training the HMD on a representative
set of malicious behaviors. In the end, using the operating
range, EMMA informs the analyst of the type of behaviors
the HMD is well/poorly suited at detecting.

5.3 Composition with Static Analyses

Reflection is a powerful method for writing malware that
evades static program analysis tools used in App Stores to-
day [38]]. Interestingly, we show that malware that uses re-
flection to obfuscate its static program paths in turn worsens
its dynamic hardware signals, and improves HMDs’ detec-
tion rates.

Java methods invoked via reflection are resolved at run-
time, making it hard for static code analysis to understand
the program’s semantics. At the same time, reflection alone
is not sufficient — all strings in the code must also be en-
crypted, otherwise the invoked method or a set of possible

|
[

[

L
=
o
o

©
o

X

=)

=)

® <

g g

2 2
3 s 60

[0} [}

= =
= ~ 40

3 3

o c
0 ~—sms - sms > 20

= - -sms - others [

—click fraud - click fraud =~ <C
- ~click fraud - others 0

! —+-others - others
0 | | | . |
0 20 40 60 80 100

False Positive Rate, %

File Contacts Sms Click DDoS SHA1 Balanced
fraud

M Other malware Same malware

Figure 14: Training supervised learning HMD on a balanced set of malware behaviors yields best results.

100,

[e]
o

S

o

-

= 60

o

©

£ K

3 40

e 500" ~_malware + reflection

Qo
20 Radio malware AB
0 10 20 30 40 50

10 20 30 40 50

phase-window FP (%)

Figure 17: (Markov model) Effect of obfuscation and
encryption on detection rate: interestingly, malware be-
comes more distinct compared to baseline benign app.

methods might be resolved statically.

To illustrate an actual malicious use of Java reflection and
encryption, we show a code snippet (Figure [I7) from Obad
malware [[16]]. The code decrypts class and method names
(lines 6 and 10) by calling the method oCI1C11(). As a
result, static analyses [[12] 39] either do not model reflec-
tion or conservatively over-approximate the set of instan-
tiated classes for method_name (line 10) and target meth-
ods for the invoke function (line 14). Due to control-flow
edges that may never be traversed, static data-flow analysis
becomes overly conservative, and static analyses end up with
high false positive rates (or more commonly, with malware
that goes undetected).

We augmented our synthetic malware with reflection and
encryption similar to Obad’s implementation. Static analysis
of our malware does not reveal any API methods that might
raise alarms—we tested this using the Virustotal online ser-
vice which ran 38 antiviruses on our binary without raising
any warnings.

Figure[T7]shows results of using the Markov model HMD
on the 66 synthetic malware samples from Figure [/| aug-
mented with reflection and encryption, and embedded into
each of AngryBirds, Sana, and TunelnRadio. We see that in
Angry Birds and Sana the detection rate of the malware that
uses both reflection and encryption is significantly higher
because reflection and encryption are computationally in-
tensive and disturb the trace of the benign parent app (i.e.,
more than the same malware without reflection and encryp-
tion). We do not see the same trend for TuneInRadio because

its detection rate was already quite high, so the additional
impact of reflection on Tuneln Radio stays within the noise
margin. We conclude that HMDs complement current static
analyses and can potentially reduce the pressure on compu-
tationally intensive dynamic analyses with a larger trusted
code base [11]].

6. CONCLUSIONS

EMMA is particularly relevant to computer architects since
hardware behaviors in payloads are easy to obfuscate, whereas
malware semantics are forced to be more consistent at the
software level. This paper focuses on diversifying hardware
signals and evaluating hardware detectors—future work will
look into applying EMMA'’s principles to software detectors.

Our results show that HMDs, just like system call based
behavioral detectors [40], have false positives rates that pre-
clude solo deployment. However, HMDs form a trustwor-
thy local detector that can be isolated from kernel compro-
mises or user errors—our results show that HMDs separate
out true and false positives well enough for a global detector
to be triggered on-demand and apply distributed algorithms
to boost the global malware detection rate [13].

HMDs complement prior work in static and dynamic anal-
ysis of mobile malware. Static analysis research includes an-
alyzing apps’ permissions to detect overprivileged apps [41],
detecting malware repackaged in benign apps through pair-
wise comparison of binaries [42} 43| 44| 145]], or using type-
systems [46] and program dependency graphs [47] to detect
malware. Dynamic analyses observe an app’s run-time data
to enforce access control or information flow policies [48|
49,50, [11]]. Aurasium [49] repackages existing apps by at-
taching user-level sandboxing and policy-enforcement code.

Our future work will include composing HMDs with sys-
tem call and compiler-runtime based malware detectors. Our
approach of identifying why a detector succeeds and fails,
instead of black-box experiments with malware binaries, is
crucial towards this goal. Indeed, prior work has pointed out
the pitfalls of using machine learning in a black-box man-
ner for network-based intrusion detection systems [5 1] —we
provide a framework to conduct evaluate behavioral detec-
tors in a principled manner. Purely machine learning-based
ensemble methods to compose weak detectors into one ro-
bust detector are also a rich vein of research to draw from [4].

Finally, computer architects are exploring new hardware
signals and accelerators to improve security in general and
malware detectors in particular—our work lays a solid method-

ological foundation for future research into HMDs for mo-
bile platforms.

7.
(1]

[2

—

3

—

4

finr}

[5

—_

[6

—

[7

—

[8

[l

[9

—

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

REFERENCES

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang,
Adam Waksman, Simha Sethumadhavan, and Salvatore Stolfo. On
the feasibility of online malware detection with performance
counters. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pages 559-570,
New York, NY, USA, 2013. ACM.

Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo.
Unsupervised anomaly-based malware detection using hardware
features. In Research in Attacks, Intrusions and Defenses - 17th
International Symposium, RAID 2014, Gothenburg, Sweden,
September 17-19, 2014. Proceedings, pages 109-129, 2014.

Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh,
and Dmirty Ponomarev. Malware-aware processors: A framework for
efficient online malware detection. In Proceeding of the 21st
International Symposium on High Performance Computer
Architecture, 2015.

Khaled Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Ensemble learning for
low-level hardware-supported malware detection. In /8th
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2015.

Emmanouil Vasilomanolakis, Shankar Karuppayah, Max
Miihlhéuser, and Mathias Fischer. Taxonomy and survey of
collaborative intrusion detection. ACM Comput. Surv.,
47(4):55:1-55:33, May 2015.

Chenfeng Vincent Zhou, Christopher Leckie, and Shanika
Karunasekera. A survey of coordinated attacks and collaborative
intrusion detection. Computers & Security, 29(1):124 — 140, 2010.

Trendlabs a look at google bouncer. http://blog.trendmicro.com/
trendlabs-security-intelligence/a-look-at-google-bouncer.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade,
and Juan Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, HASP *13, pages 11:1-11:1, New York, NY,
USA, 2013. ACM.

Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata.
Innovative technology for cpu based attestation and sealing. HASP
’13,2013.

Master key vulnerability. http://blog.trendmicro.com/trendlabs-
security-intelligence/trend-micro-solution-for-vulnerability-
affecting-nearly-all-android-devices.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitoring
on smartphones. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’ 10, 2010.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden,
Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau,
and Patrick McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps.
In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2014.

Denver Dash, Branislav Kveton, John Mark Agosta, Eve Schooler,
Jaideep Chandrashekar, Abraham Bachrach, and Alex Newman.
When gossip is good: Distributed probabilistic inference for
detection of slow network intrusions. In Proceedings of the 21st
National Conference on Artificial Intelligence - Volume 2, AAAT 06,
pages 1115-1122. AAAI Press, 2006.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Proceeding SP ’12 Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pages 95-109, 2012.

Mobile malware database. http://contagiominidump.blogspot.com.

Obad malware. http://securityintelligence.com/diy-android-malware-
analysis-taking-apart-obad-part-1.

Geinimi malware.

[18]
[19]
[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]
[32]

(33]

[34]
[35]
[36]

[37]

(38]

(391

[40]

[41]

https://nakedsecurity.sophos.com/2010/12/31/geinimi-android-
trojan-horse-discovered/.

Malware database. http://malware.lu.
Malware database. http://virusshare.com.

Universal android rooting procedure (rage method).
http://theunlockr.com/
2010/10/26/universal-android-rooting-procedure-rage-method/.

Gingerbreak apk root. http://droidmodderx.com/
gingerbreak-apk-root-your-gingerbread-device.

Exploid. http://forum.xda-developers.com/showthread.
php?t=739874.

Vulnerable & aggressive adware. http://www.fireeye.com/
blog/technical/2013/10/ad-vulna-a-vulnaggressive-vulnerable-
aggressive-adware-threatening-millions.html.

Erika Chin and David Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In Revised Selected Papers of
the 14th International Workshop on Information Security
Applications - Volume 8267, WISA 2013, pages 138-159, New York,
NY, USA, 2014. Springer-Verlag New York, Inc.

Evernote patches. http://blog.trendmicro.com/trendlabs-security-
intelligence/evernote-patches-vulnerability-in-android-app/.

Applock vulnerability.
http://blog.trendmicro.com/trendlabs-security-intelligence/applock-
vulnerability-leaves-configuration-files-open-for-exploit.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney,
Erika Chin, and David Wagner. Android permissions: User attention,
comprehension, and behavior. Technical Report
UCB/EECS-2012-26, EECS Department, University of California,
Berkeley, Feb 2012.

Android rat malware.
http://www.itpro.co.uk/malware/22627/android-rat-malware-invades-
mobile-banking-apps.

Mobile bitcoin miner. https://blog.lookout.com/blog/2014/04/24/
badlepricon-bitcoin.

Mikhail Kazdagli, Ling Huang, Vijay Reddi, and Mohit Tiwari.
Morpheus: Benchmarking computational diversity in mobile
malware. In Workshop on Hardware and Architectural Support for
Security and Privacy, 2014.

http://developer.android.com/tools/help/proguard.html.

Ui/application exerciser monkey.
http://developer.android.com/tools/help/monkey.html.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An
input generation system for android apps. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2013, pages 224-234, New York, NY, USA, 2013. ACM.

Record and replay for android. http://www.androidreran.com.
Jitbit macro recorder. http://www.jitbit.com/.

Dan Pelleg and Andrew W. Moore. X-means: Extending k-means
with efficient estimation of the number of clusters. In Proceedings of
the 7th International Conference on Machine Learning, 2000.

R.E. Schapire and Y. Freund. Boosting: Foundations and Algorithms.
MIT Press, 2012.

Dissecting android’s bouncer. https://www.duosecurity.com/
blog/dissecting-androids-bouncer.

Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang.
Chex: Statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS *12, pages 229-240,
New York, NY, USA, 2012. ACM.

Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher
Kruegel, Mihai Christodorescu, and Engin Kirda. A quantitative
study of accuracy in system call-based malre detection. In
Proceedings of the 2012 International Symposium on Softre Testing
and Analysis, ISSTA 2012, pages 122-132, Neork, NY, USA, 2012.
ACM.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and
David Wagner. Android permissions demystified. In Proceedings of
the 18th ACM Conference on Computer and Communications

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Security, CCS ’11, pages 627-638, New York, NY, USA, 2011.
ACM.

Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones:
Detecting cloned applications on android markets. In Sara Foresti,

Moti Yung, and Fabio Martinelli, editors, Computer Security 4AS
ESORICS 2012, volume 7459 of Lecture Notes in Computer Science,
pages 37-54. Springer Berlin Heidelberg, 2012.

Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting
repackaged smartphone applications in third-party android
marketplaces. In CODASPY ’12 Proceedings of the second ACM
conference on Data and Application Security and Privacy, pages
317-326, 2012.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and
Dawn Song. Juxtapp: A scalable system for detecting code reuse
among android applications. In Ulrich Flegel, Evangelos Markatos,
and William Robertson, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, volume 7591 of Lecture
Notes in Computer Science, pages 62-81. Springer Berlin
Heidelberg, 2013.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong
Zou. Fast, scalable detection of "Piggybacked" mobile applications.
In CODASPY ’13 Proceedings of the third ACM conference on Data
and application security and privacy, pages 185-196, 2013.

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart
Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros,
Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu.
Collaborative verification of information flow for a high-assurance
app store. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages
1092-1104, New York, NY, USA, 2014. ACM.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy:
Semantics-based detection of android malware through static
analysis. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014,
pages 576-587, New York, NY, USA, 2014. ACM.

Lok Kwong Yan and Heng Yin. Droidscope: Seamlessly
reconstructing the os and dalvik semantic views for dynamic android
malware analysis. In Proceedings of the 21st USENIX Conference on
Security Symposium, Security’12, pages 29-29, Berkeley, CA, USA,
2012. USENIX Association.

Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium: Practical
policy enforcement for android applications. In Proceedings of the
21st USENIX Conference on Security Symposium, Security’12, pages
27-27, Berkeley, CA, USA, 2012. USENIX Association.

Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter,
and David Wetherall. These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 639-652, New York, NY,
USA, 2011. ACM.

Vern Paxson. Bro: A system for detecting network intruders in
real-time. Comput. Netw., 31(23-24):2435-2463, dec 1999.

	1 Introduction
	2 Motivation
	2.1 Hardware-based Malware Detectors
	2.2 Pitfalls in Evaluating HMDs

	3 Malware Taxonomy
	3.1 Unique Aspects of Mobile Malware
	3.2 Behavioral Taxonomy of Mobile Malware
	3.3 Constructing Malware Binaries

	4 Real User-driven Execution
	4.1 Benign Apps
	4.2 User Inputs
	4.3 Extracting Hardware Signals
	4.4 Constructing and Evaluating HMDs

	5 Case Studies using EMMA
	5.1 Anomaly detector using EMMA's taxonomy
	5.1.1 Bag-of-words Anomaly Detector
	5.1.2 Markov-model based Anomaly Detector
	5.1.3 HMDs should be app-specific

	5.2 EMMA improves accuracy of supervised 2-class HMDs
	5.3 Composition with Static Analyses

	6 Conclusions
	7 References

