
MLPERF TRAINING BENCHMARK

Peter Mattson 1 Christine Cheng 2 Cody Coleman 3 Greg Diamos 4 Paulius Micikevicius 5 David Patterson 1 6

Hanlin Tang 2 Gu-Yeon Wei 7 Peter Bailis 3 Victor Bittorf 1 David Brooks 7 Dehao Chen 1 Debojyoti Dutta 8

Udit Gupta 7 Kim Hazelwood 9 Andrew Hock 10 Xinyuan Huang 8 Atsushi Ike 11 Bill Jia 9 Daniel Kang 3

David Kanter 12 Naveen Kumar 1 Jeffery Liao 13 Guokai Ma 2 Deepak Narayanan 3 Tayo Oguntebi 1

Gennady Pekhimenko 14 15 Lillian Pentecost 7 Vijay Janapa Reddi 7 Taylor Robie 1 Tom St. John 16

Tsuguchika Tabaru 11 Carole-Jean Wu 9 Lingjie Xu 17 Masafumi Yamazaki 11 Cliff Young 1 Matei Zaharia 3

ABSTRACT
Machine learning (ML) needs industry-standard performance benchmarks to support design and competitive
evaluation of the many emerging software and hardware solutions for ML. But ML training presents three unique
benchmarking challenges absent from other domains: optimizations that improve training throughput can increase
the time to solution, training is stochastic and time to solution exhibits high variance, and software and hardware
systems are so diverse that fair benchmarking with the same binary, code, and even hyperparameters is difficult.
We therefore present MLPerf, an ML benchmark that overcomes these challenges. Our analysis quantitatively
evaluates MLPerf’s efficacy at driving performance and scalability improvements across two rounds of results
from multiple vendors.

1 INTRODUCTION

Machine learning (ML) has revolutionized numerous do-
mains, including computer vision (Krizhevsky et al., 2012),
language processing (Devlin et al., 2018; Radford et al.,
2019), speech recognition (Hinton et al., 2012), and gam-
ing (Silver et al., 2018; Mnih et al., 2013; Chan, 2018).
Much of this progress owes to deep learning (DL), which in-
volves training of large deep-neural-network (DNN) models
on massive data sets. To keep up with this growing com-
putational demand, hardware and software systems have
garnered sizable investments (Amodei & Hernandez, 2018).

As the number of hardware and software systems for DL
training increases (Paszke et al., 2017; Abadi et al., 2016;
Chen et al., 2015; Jia et al., 2014; Jouppi et al., 2017; Chen
et al., 2018; Markidis et al., 2018; Intel, 2019), so does
the need for a comprehensive benchmark. History shows
that benchmarks accelerate progress (Hennessy & Patterson,
2011); for example, breakthroughs in microprocessor and
relational-database systems in the 1980s inspired industry
consortiums to create Standard Performance Evaluation

1Google 2Intel 3Stanford University 4Landing AI 5NVIDIA
6University of California, Berkeley 7Harvard University 8Cisco
9Facebook 10Cerebras 11Fujitsu 12Real World Technologies
13Synopsys 14University of Toronto 15Vector Institute 16Tesla
17Alibaba. Correspondence to: Peter Mattson <petermatt-
son@google.com>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

Corporation (SPEC) for Unix servers (Dixit, 1991) and
the Transaction Processing Performance Council (TPC) for
transaction processing and databases (Council, 2005). These
organizations helped develop and maintain benchmarks that
their respective communities then embraced. Their success
inspired the formation of MLPerf, a consortium of commer-
cial and academic organizations, to design a comprehensive
benchmark suite for DL.

Unlike other computational workloads, DL allows a range
of statistical, hardware, and software optimizations that can
change the mathematical semantics of the underlying opera-
tors. Although these optimizations can boost performance
(i.e., training speed), some change the learning dynamics
and affect the final model’s quality (i.e., accuracy). Even
accommodating different system scales (e.g., varying the
number of chips) requires changing hyperparameters, po-
tentially affecting the amount of computation necessary to
reach a particular quality target. By contrast, other com-
pute benchmarks can evaluate systems through targeted
microbenchmarks.

DL is also intrinsically approximate and stochastic, allow-
ing multiple equally correct solutions—unlike conventional
computing, which tends to allow just one correct solution.
As a result, implementations and training times can vary
while the final quality remains the same. Since it is ap-
proximate, DL requires careful definition of equally valid
solution classes and the appropriate degrees of freedom.

Prior work has varied in granularity but has either left the

ar
X

iv
:1

91
0.

01
50

0v
3 

 [
cs

.L
G

] 
 2

 M
ar

 2
02

0



MLPerf Training Benchmark

above challenges unaddressed or lacked critical workloads
representative of modern ML. Microbenchmarks such as
DeepBench (Baidu, 2017) are affordable to run and enable a
fair comparison of competing systems by isolating hardware
and software from statistical optimizations, but they fail to
reflect the complexity of real workloads and have limited
utility. Although throughput benchmarks like Fathom and
TBD (Adolf et al., 2016; Zhu et al., 2018; Google, 2017)
evaluate full model architectures across a broad range of
tasks to better reflect the diversity and complexity of real
workloads, they limit model architecture and training innova-
tions that advance the state-of-the-art. DAWNBench (Cole-
man et al., 2017) measures end-to-end training time, subject
to a quality threshold (i.e., time to train), and it accommo-
dates innovative solutions (i.e., new model architectures
and training techniques, such as progressive resizing and
cyclic learning rates). It additionally collects source code
to promote reproducibility. DAWNBench’s flexibility, how-
ever, also made it difficult to draw fair comparisons between
hardware and software platforms. MLPerf builds on the
strengths of prior work; it combines a broad set of bench-
marks like Fathom or TBD, an end-to-end training metric
like DAWNBench, and the backing of a broad consortium
like SPEC.

MLPerf aims to create a representative benchmark suite for
ML that fairly evaluates system performance to meet five
high-level goals:

• Enable fair comparison of competing systems while
still encouraging ML innovation.

• Accelerate ML progress through fair and useful mea-
surement.

• Enforce reproducibility to ensure reliable results.

• Serve both the commercial and research communities.

• Keep benchmarking effort affordable so all can partici-
pate.

This paper focuses on the design and rationale for the
MLPerf Training benchmark (a related MLPerf Inference
benchmark is beyond the present scope). Although prior ML
benchmarking efforts (Coleman et al., 2017; Adolf et al.,
2016; Google, 2017; Baidu, 2017; Zhu et al., 2018) each
contributed to meeting one or more of the above goals, we
created MLPerf to address all of them holistically, build-
ing on the lessons learned from these efforts. To this end,
MLPerf Training does the following:

• Establish a comprehensive benchmark suite that covers
diverse applications, DNN models, and optimizers.

• Create reference implementations of each benchmark
to precisely define models and training procedures.

• Establish rules that ensure submissions are equivalent
to these reference implementations and use equivalent
hyperparameters.

• Establish timing rules to minimize the effects of
stochasticity when comparing results.

• Make submission code open source so that the ML
and systems communities can study and replicate the
results.

• Form working groups to keep the benchmark suite up
to date.

The rest of the paper is organized as follows. In § 2, we dis-
cuss the main challenges to benchmarks for DL training, as
well as related prior work. In § 3, we review the benchmarks
in our suite, the time-to-train metric, and quality thresholds.
In § 4, we describe the submission, review, and reporting of
results for the various categories. Finally, in § 5 and § 6, we
review progress between the first two MLPerf benchmarking
rounds, along with future work directions.

2 BACKGROUND

We begin by describing in § 2.1 the unique challenges of
benchmarking ML relative to other compute tasks (Don-
garra, 1988; Council, 2005) and then review prior ML-
benchmarking efforts in § 2.2.

2.1 Unique Challenges of Benchmark Training

ML benchmarking faces unique challenges relative to other
compute benchmarks, such as LINPACK (Dongarra, 1988)
and SPEC (Dixit, 1991), that necessitate an end-to-end ap-
proach. After an ML practitioner selects a data set, opti-
mizer, and DNN model, the system trains the model to its
state-of-the-art quality (e.g., Top-1 accuracy for image clas-
sification). Provided the system meets this requirement, the
practitioner can make different operation, implementation,
and numerical-representation choices to maximize system
performance—that is, how fast the training executes. Thus,
an ML performance benchmark must ensure that systems
under test achieve state-of-the-art quality while providing
sufficient flexibility to accommodate different implemen-
tations. This tradeoff between quality and performance is
challenging because multiple factors affect both the final
quality and the time to achieve it.

2.1.1 Effect of Optimizations on Quality

Although many optimizations immediately improve tradi-
tional performance metrics such as throughput, some can
decrease the final model quality, an effect that is only observ-
able by running an entire training session. For example, the
accuracy difference between single-precision training and



MLPerf Training Benchmark

lower-precision training only emerges in later epochs (Zhu
et al., 2016). Across several representation and training
choices, the validation-error curves may only separate after
tens of epochs, and some numerical representations never
match the final validation error of full-precision training
(lower validation error directly corresponds to higher ac-
curacy: accuracy = 1 − errorvalidation). Thus, even though
microbenchmarks (Baidu, 2017; Chetlur et al., 2014) can
assess an optimization’s performance impact, a complete
training session is necessary to determine the quality impact
and whether the model achieves the desired accuracy. Ow-
ing to the introduction of systems with varying numerics
(Abadi et al., 2016; Banner et al., 2018; Kster et al., 2017;
Micikevicius et al., 2018) and performance optimizations,
ML benchmarks must include accuracy metrics.

2.1.2 Effect of Scale on Time to Train

ML training on large distributed systems with many pro-
cessors typically involves data parallelism and large mini-
batches to maximize system utilization and minimize train-
ing time. In turn, these large minibatches require ad-
justments to optimizer parameters, such as the learning
rate (Krizhevsky, 2014; Goyal et al., 2017). Together, these
changes affect the learning dynamics and can alter the num-
ber of iterations required to achieve the target accuracy. For
example, MLPerf v0.5 ResNet-50 takes about 64 epochs
to reach the target Top-1 accuracy of 74.9% at a minibatch
size of 4K, 1 whereas a minibatch size of 16K can require
more than 80 epochs to reach the same accuracy, increasing
computation by 30%. Larger minibatches, however, per-
mit efficient scaling to larger distributed systems, reducing
the time to train the model. The tradeoffs between system
size, minibatch size, and learning dynamics present another
challenge for a DL-focused performance benchmark.

2.1.3 Run-to-Run Variation

DNN training involves many stochastic influences that man-
ifest in substantial run-to-run variation (Choromanska et al.,
2015; Gori & Tesi, 1992; Auer et al., 1996; Coleman et al.,
2019). Different training sessions for the same model us-
ing the same hyperparameters can yield slightly different
accuracies after a fixed number of epochs. Alternatively,
different training sessions can take a different number of
epochs to reach a given target accuracy. For example, Fig-
ure 1 shows the number of epochs needed to reach target
accuracy for two MLPerf v0.5 benchmarks using reference
implementations and default batch sizes. Several factors
contribute to this variation, such as application behavior
(e.g., random weight initialization and random data traver-
sal) and system characteristics (e.g., profile-driven algorithm

1Source: MLPerf v0.5 results (https://mlperf.org/
training-results-0-5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Experiment ID

0

10

20

Ep
oc

hs
 to

 q
ua

lit
y

(a) NCF.

1 2 3 4 5 6 7
Experiment ID

0

20

40

Ep
oc

hs
 to

 q
ua

lit
y

Seed 1
Seed 2

Seed 3
Seed 4

Seed 5

(b) MiniGo.

Figure 1. Training epochs to reach the target quality for the MLPerf
v0.5 NCF (a) and MiniGo (b) benchmarks. Each experiment uses
identical hyperparameters except for the random seed. For MiniGo,
we observed considerable variability across runs even when fixing
the random seed (same color).

selection and the non-commutative nature of floating-point
addition). Large distributed-training tasks can involve asyn-
chronous updates, altering the gradient-accumulation order.
These variations make it hard to reliably compare system
performance.

2.1.4 Diverse Software

Multiple ML software frameworks have emerged, each of
which executes similar but distinct computations owing to
various implementations and constraints (Abadi et al., 2016;
Paszke et al., 2017; Chen et al., 2015; Jia et al., 2014).
Software frameworks and the underlying math libraries em-
ploy different algorithms to implement the same operation.
For example, convolutional and fully connected layers—
two compute-intensive operators prevalent in modern DNN
models—typically use cache blocking to exploit processor
memory hierarchies. Different block sizes and processing
orders (which optimize for different hardware), although
algebraically equivalent, yield slightly divergent results. In
addition, operators can execute using various algorithms.
For example, convolution layers can be executed using a va-
riety of algorithms, including GEMM-based and transform-
based (e.g., FFT or Winograd) variants. In fact, the cuDNN
v7.6 library provides roughly 10 algorithms for the forward
pass of a convolutional layer, 2 some of which vary in tiling

2Source: cuDNN (https://docs.nvidia.com/
deeplearning/sdk/cudnn-developer-guide).

https://mlperf.org/training-results-0-5
https://mlperf.org/training-results-0-5
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide


MLPerf Training Benchmark

or blocking choices depending on the hardware. Although
mathematically equivalent, different implementations will
produce different numerical results, as floating-point repre-
sentations have finite precision.

Additionally, frameworks occasionally implement the same
function in mathematically different ways. For example,
modern training frameworks implement stochastic gradient
descent with momentum in two ways:

momentum = α ·momentum + η · ∂L
∂w

w = w −momentum
(1)

momentum = α ·momentum +
∂L

∂w
w = w − η ·momentum

(2)

The Caffe framework (Jia et al., 2014) implements the first
approach, whereas PyTorch (Paszke et al., 2017) and Tensor-
Flow (Abadi et al., 2016) implement the second. These ap-
proaches differ mathematically if the learning rate η changes
during training—a common technique. Although this differ-
ence is tiny in many cases, it can hinder training convergence
for larger minibatches.

Variations also arise owing to the frameworks’ programming
interface. For example, PyTorch and TensorFlow interpret
asymmetric padding differently, complicating the task of
porting model weights between them. Data-augmentation
pipelines across frameworks can also apply image augmen-
tations (e.g., crop, zoom, and rotation) in different orders.

Although ONNX (Bai et al., 2019), TVM (Chen et al.,
2018), and similar emerging tools enable interoperability
of model architectures across frameworks, their support re-
mains limited. Moreover, ML systems involve a range of
optimizations that extend beyond the model architecture,
such as preprocessing, precision, and communication meth-
ods. Benchmarks must accommodate the wide diversity
of deployed systems despite this lack of a standard way to
specify every training aspect.

2.2 Prior Work

Prior ML benchmarks vary in granularity and scope. Mi-
crobenchmarks such as DeepBench (Baidu, 2017) measure
kernel-level operations that appear in commonly deployed
models. Benchmarking such low-level operations fails to
address the challenges associated with numerical precision,
hyperparameter choices, and system scale, which we de-
scribed in the previous section. Furthermore, it neither cap-
tures the end-to-end application, nor accounts for memory-
and cache-hierarchy effects across layers and operations,
nor measures the data preprocessing that deep learning com-
monly employs.

Several benchmarks are defined at the granularity of entire
DNN models. Fathom and Google TF Benchmarks (Adolf
et al., 2016; Google, 2017) provide a reference suite of
DNN models that span a wide application space, but they
specifically measure model throughput and fail to account
for accuracy. Similarly, TBD (Training Benchmarks for
DNNs) (Zhu et al., 2018) profiles training on GPUs (but not
other architectures) across diverse workloads, measuring
characteristics such as memory and hardware utilization.
Our benchmark builds on the diversity of applications in
these projects while also capturing the quality and perfor-
mance tradeoffs.

DAWNBench (Coleman et al., 2017) was the first multi-
entrant benchmark competition to use “time to train” (orig-
inally called time to accuracy) to measure the end-to-end
performance of deep-learning systems; it allowed optimiza-
tions across model architectures, optimization procedures,
software frameworks, and hardware platforms. Our bench-
mark follows a similar approach but handles more-diverse
tasks (§ 3.1), and it uses important rules and mechanisms in
the Closed division (§ 4.2.1) to enable fair comparisons of
hardware and software systems.

Several other benchmarks are under development. AI Matrix
measures workloads at different granularities (microbench-
marks, layer-wise benchmarks, end-to-end model bench-
marks, and synthetic benchmarks) (aim). Deep500, al-
though not a benchmark, provides a software framework
for measuring DL-training performance (Ben-Nun et al.,
2019).

3 MLPERF TRAINING BENCHMARK

We now present the MLPerf Training benchmark, detailing
the workloads (§ 3.1), timing rules (§ 3.2), quality-threshold
choices (§ 3.3), and reference implementations and hyper-
parameters (§ 3.4).

3.1 Benchmark Suite

To create a fair and useful benchmark suite for modern
ML workloads, we curated a representative set of tasks
from several major ML areas, including vision, language,
recommendation, and reinforcement learning. Our selec-
tion of benchmarks was primarily based on commercial
and research relevance, representing diverse compute mo-
tifs. To establish relevance, we relied on feedback from the
tens of commercial and academic organizations that support
MLPerf. To keep the suite affordable, we selected a com-
pact but representative set of seven benchmarks, which we
describe below and summarize in Table 1. Although these
benchmarks already cover a wide range of research and
industrial tasks, we are continuously exploring additional
ones to keep the suite relevant to the ML community (§ 6).



MLPerf Training Benchmark

Table 1. MLPerf Training v0.5 benchmarks.

Benchmark Data set Model Quality Threshold

Image classification ImageNet
(Deng et al., 2009)

ResNet-50 v1.5
(MLPerf, 2019b) 74.9% Top-1 accuracy

Object detection
(lightweight)

COCO 2017
(Lin et al., 2014)

SSD-ResNet-34
(Liu et al., 2016) 21.2 mAP

Instance segmentation and
object detection (heavyweight)

COCO 2017
(Lin et al., 2014)

Mask R-CNN
(He et al., 2017a)

37.7 Box min AP,
33.9 Mask min AP

Translation
(recurrent)

WMT16 EN-DE
(WMT, 2016)

GNMT
(Wu et al., 2016) 21.8 Sacre BLEU

Translation
(nonrecurrent)

WMT17 EN-DE
(WMT, 2017)

Transformer
(Vaswani et al., 2017) 25.0 BLEU

Recommendation MovieLens-20M
(GroupLens, 2016)

NCF
(He et al., 2017b) 0.635 HR@10

Reinforcement learning Go
(9x9 Board)

MiniGo
(MLPerf, 2019a) 40.0% Professional move prediction

3.1.1 Image Classification

Image classification is the most common task for evaluat-
ing ML-system performance (Coleman et al., 2017; Adolf
et al., 2016; Zhu et al., 2018; Goyal et al., 2017; Jia et al.,
2018; Mikami et al., 2018; Ying et al., 2018; Google, 2017;
Narayanan et al., 2019). A classifier selects a class that
best describes the contents of a given image. Classification
model architectures also serve as feature extractors for many
other computer-vision workloads, including object detec-
tion, captioning, and style transfer. We use the ILSVRC
2012 ImageNet classification data set, consisting of 1.28
million training images and 50,000 validation images (Deng
et al., 2009). Our model-quality metric is the Top-1 accuracy
on the validation set.

ResNet-50 is a residual network (He et al., 2016a;b); such
networks and their derivatives remain the state of the art
in image classification, and system studies commonly use
them (Goyal et al., 2017; Jia et al., 2018; Mikami et al.,
2018; Ying et al., 2018; Sun et al., 2019). Several slightly
different ResNet-50 implementations appear in training-
framework repositories, preventing comparison of earlier
system-performance claims because of model differences.
To ensure meaningful system comparison, MLPerf uses the
ResNet-50 v1.5 model, which performs addition after batch
normalization, omits 1×1 convolution from the skip connec-
tion of the first residual block, and applies downsampling
by the 3× 3 convolutions. MLPerf also specifies the appro-
priate parameter initialization, optimizer schedule, and data
augmentation.

3.1.2 Object Detection and Segmentation

Object detection and segmentation are crucial components
of many industrial systems for robotics, autonomous driving,
video analytics, and social networks. Object detection is a
regression task as opposed to a classification task: it returns
bounding-box coordinates for objects in a given image. Seg-
mentation assigns an object class to each input-image pixel.
Although pretrained image-classification models commonly
serve as the backbone (feature extractor) for DNN object de-
tectors and segmenters, these DNN tasks differ from image
classification in their compute characteristics. Examples
include additional layer types (upscaling, ROIalign, NMS,
and sorting); moreover, the inputs have greater resolution.
MLPerf uses the 2017 COCO data set (Lin et al., 2014)
consisting of 118,000 training images and 5,000 validation
images. Model-quality measurement uses mAP for both
detection and segmentation.

Mask R-CNN (He et al., 2017a) is a popular object-
detection and instance-segmentation model for images. It
has two stages: the first proposes regions of interest, and
the second processes them to compute bounding boxes and
segmentation masks. Mask R-CNN provides high-accuracy
results for these tasks, but at the cost of higher latency as
well as greater compute and memory requirements. The
benchmark training uses images resized to 800 pixels on the
shorter side and employs ResNet-50 as the backbone.

Single Shot Detection (SSD) (Liu et al., 2016) serves in
real-time applications that require low-latency solutions.
These applications include autonomous driving, robotics,
and video analytics. Compared with Mask R-CNN (Huang
et al., 2016) and other two-stage solutions, SSD trades speed
for accuracy. Instead of full images, training uses 300×300



MLPerf Training Benchmark

crops. We chose a ResNet-34 backbone to represent current
real-time applications. ResNet-34 has a different residual-
block structure than ResNet-50, increasing the diversity of
computational motifs that MLPerf covers.

3.1.3 Translation

Neural machine translation converts a sequence of words
from the source language to a target language; many indus-
trial applications employ this technology. As is common in
translation research, we use the WMT English-to-German
(EN-DE) data set (WMT, 2017), which contains about 4.5
million sentence pairs. Our model-quality metric is the
Bilingual Evaluation Understudy Score (Bleu) score on the
Newstest2014 test set. We include two translation bench-
marks to account for the two model architectures that trans-
lation and other sequence-data tasks often employ.

Transformer (Vaswani et al., 2017) is an attention-based
model that achieves state-of-the-art language-translation
quality. It consists of an encoder and decoder, each being
a stack of six blocks. Every block comprises a multihead
attention layer and point-wise fully connected layers.

GNMT (Wu et al., 2016) is a recurrent neural network
(RNN) for language translation. Even though it achieves
lower accuracy than Transformer on the WMT English-to-
German data set, it appears in the suite to represent RNN
applications. These applications span numerous tasks, but
language-translation data sets and publications are more
common, enabling clearer system comparison. GNMT is
the suite’s only RNN. It consists of an eight-layer encoder
and an eight-layer decoder, each using 1,024 LSTM cells
with skip connections.

3.1.4 Reinforcement Learning

Reinforcement learning (RL) is responsible for the recent
dramatic increase in compute demand (Amodei & Hernan-
dez, 2018), and it serves in control systems. RL algorithms
can train agents (which includes neural networks) that rival
humans at video games, go, and chess—major milestones
in machine learning (Silver et al., 2018; Mnih et al., 2013;
Chan, 2018). RL has a different computational profile than
the other ML benchmarks: it generates training data through
exploration instead of relying on a predetermined data set.

MiniGo (MLPerf, 2019a), inspired by AlphaGo (Silver
et al., 2016; 2017; 2018), trains a single model that rep-
resents both value and policy functions for a 9 × 9 game
board. Training uses self-play (simulated games) between
agents to generate data; rather than using a simulator, it
performs many forward passes through the model to gener-
ate actions. We chose MiniGo to keep MLPerf more ML
oriented, since many other RL problems employ simulators
(physics, video-game environments, etc.) to generate data,

spending most of their time in computations unrelated to
ML. To measure quality, we calculate the percentage of
predicted moves that match human reference games.

3.1.5 Recommendation

Recommendation systems are a major commercial workload
for Internet companies (Naumov et al., 2019; Zhou et al.,
2018; Cheng et al., 2016). These workloads are character-
ized by large embedding tables followed by linear layers.

Neural collaborative filtering (NCF) (He et al., 2017b)
was our choice for the benchmark. It is trained to predict
user-item interactions. More so than for other tasks, this
recommender’s compute characteristics depend on the data
set. For example, the data set defines the embedding-table
size as well as the memory-access patterns. Thus, a repre-
sentative data set is crucial to a representative benchmark.
Unfortunately, however, public data sets tend to be orders
of magnitude smaller than industrial data sets. Although
MLPerf v0.5 adopted the MovieLens-20M data set (Grou-
pLens, 2016) for its NCF benchmark, v0.7 will employ a
synthetically generated data set and benchmark while re-
taining the characteristics of the original data (Belletti et al.,
2019)

3.2 Time-to-Train Performance Metric

To address the ML-benchmarking challenges of system op-
timization and scale that we outlined in § 2.1.1 and § 2.1.2,
MLPerf’s performance metric is the time to train to a defined
quality target. It incorporates both system speed and accu-
racy and is most relevant to ML practitioners. As an end-to-
end metric, it also captures the auxiliary operations neces-
sary for training such models, including data-pipeline and
accuracy calculations. The metric’s generality enables ap-
plication to reinforcement learning, unsupervised learning,
generative adversarial networks, and other training schemes.
Time to train overcomes the challenges in § 2.1.1 and § 2.1.2
by preventing submissions from using quality-reducing op-
timizations while still allowing for extensive system-scale
and software-environment flexibility.

3.2.1 Timing Rules

We chose the timing requirements to ensure fair system
comparisons and to represent various training use cases.
Timing begins when the system touches any training or
validation data, and it stops when the system achieves the
defined quality target on the validation data set.

We exclude from timing several components that can carry
substantial overhead and that are unrepresentative of real-
world differences.

System initialization. Initialization, especially at large



MLPerf Training Benchmark

scales, varies on the basis of cluster-administrator choices
and system-queue load. For example, it may involve run-
ning diagnostics on each node before starting the training
job. Such overheads are unindicative of a system’s training
capability, so we exclude them from timing.

Model creation and initialization. Some frameworks can
compile the model graph to optimize subsequent execution.
This compilation time is insignificant for the longer train-
ing sessions when using industry-scale data sets. MLPerf,
however, uses public data sets that are usually much smaller
than industry ones. Therefore, large distributed systems can
train some MLPerf benchmarks in minutes, making com-
pilation times a substantial portion of the total time. To
make benchmarks representative of training on the largest
industrial data sets, we allow exclusion of up to 20 minutes
of model-creation time. This limit ensures that MLPerf cap-
tures smaller training jobs, and it discourages submissions
with compilation approaches that are too computationally
and operationally expensive to use in practice.

Data reformatting. The raw input data commonly under-
goes reformatting once and then serves in many subsequent
training sessions. Reformatting examples include changing
image-file formats and creating a database (e.g., LMDB,
TFRecords, or RecordIO) for more-efficient access. Be-
cause these operations execute once for many training ses-
sions, MLPerf timing excludes reformatting. But it prohibits
any data processing or augmentation that occurs in training
from moving to the reformatting stage (e.g., it prevents dif-
ferent crops of each image from being created and saved
before the timed training stage).

3.2.2 Number of Timing Runs

To address the stochastic nature and resulting run-to-run
variance of modern deep-learning methods described in
§ 2.1.3, MLPerf requires that submissions provide several
runs of each benchmark to stabilize timing. We determined
the number of runs, which varies among benchmarks, by
studying the behavior of reference implementations. Vision
tasks require 5 runs to ensure 90% of entries from the same
system are within 5%; all other tasks require 10 runs to
ensure 90% of entries from the same system are within 10%.
MLPerf drops the fastest and slowest times, reporting the
arithmetic mean of the remaining runs as the result.

3.3 Choice of Quality Thresholds

For each benchmark, we chose quality metrics near the state
of the art for the corresponding model and data set (Table 1),
basing our choice on experiments with the reference imple-
mentations. Some of these thresholds are slightly lower than
results in the literature, enabling us to benchmark across
software frameworks and to ensure that training sessions

0 20 40 60 80
Epochs

0

25

50

75

100

A
cc

ur
ac

y 
(%

)

Seed 1
Seed 2

Seed 3
Seed 4

Seed 5

Figure 2. Top-1 accuracy of MLPerf v0.5 ResNet-50 benchmark
over 100 epochs for five runs (denoted by color) with identical
hyperparameters but different random seeds. The dashed line
indicates the quality target of 74.9% Top-1 accuracy. The early
training phase exhibits much more variability than later phases.

consistently achieve the quality metric. Although selecting a
lower threshold that is achievable earlier in a training session
reduces submission resources, we chose higher thresholds
that require longer training sessions for two reasons: First,
we must prevent optimizations from adversely affecting the
final results (challenges described in § 2.1.1 and § 2.1.2).
Second, we must minimize run-to-run variation, which tends
to be much higher early in training. For example, Figure 2
shows accuracy for five training sessions of MLPerf v0.5’s
ResNet-50 v1.5 reference implementation, where the first
30 epochs exhibit considerably more noise.

3.4 References and Hyperparameters

MLPerf provides a reference implementation for each bench-
mark, using either the PyTorch or TensorFlow framework.
References also include scripts or directions to download
and preprocess public data sets. References are not opti-
mized for performance (meaning they should not be used
for performance assessment or comparison), as their main
purpose is to define a concrete implementation of a bench-
mark model and training procedure. All submitters must
follow these references—they may reimplement a bench-
mark in their framework of choice as long as the DNN
model and training operations are mathematically equiva-
lent to the reference. Furthermore, MLPerf uses reference
implementations to establish the required quality thresholds.

MLPerf rules specify the modifiable hyperparameters (Ta-
ble 2) as well as restrictions on their modification. These
restrictions are intended to balance the need to tune for dif-
ferent systems with limiting the size of the hyperparamter
search space to be fair to submitters with smaller compute
resources. For example, to accommodate a wide range of
training-system scales, submissions must be able to adjust
the minibatch size used by SGD in order to showcase maxi-
mum system efficiency (this approach is similar in concept
to the Top500 LINPACK benchmark, which allows systems
to choose the problem size). To ensure that training still



MLPerf Training Benchmark

Table 2. MLPerf modifiable hyperparameters.

Model Modifiable Hyperparmeters

All that use SGD Batch size, Learning-rate schedule
parameters

ResNet-50 v1.5

SSD-ResNet-34 Maximum samples per training
patch

Mask R-CNN Number of image candidates

GNMT

Learning-rate decay function,
Learning rate, Decay start, Decay

interval, Warmup function, Warmup
steps

Transformer
Optimizer: Adam (Kingma & Ba,

2015) or Lazy Adam, Learning rate,
Warmup steps

NCF Optimizer: Adam or Lazy Adam,
Learning rate, β1, β2

Go (9x9 board)

converges to the required threshold, other hyperparameters—
such as the learning rate schedule—may need adjustment to
match. For example, a common ResNet training practice is
to to increase the learning rate linearly with the minibatch
size (Goyal et al., 2017). Although these hyperparameter
searches are a common ML task, MLPerf’s focus is on sys-
tem optimization rather than hyperparameter exploration
and we do not want to penalize submitters who are unable to
do extensive searches. Therefore we restrict hyperparamter
tuning to subset of all possible parameters and values.

Further, we allow “hyperparameter borrowing” during the
post-submission review process in which one submitter
may adopt another submitter’s hyperparamters for a spe-
cific benchmark and resubmit their result (with no other
hardware or software changes allowed). In the first two
rounds, hyperparameter borrowing was used successfully to
improve several submissions indicating hyperparamters are
somewhat portable. Typically borrowing occured across sys-
tems of similiar scale, but did result in convergence across
different numerics (FP16, bfloat16, and FP32), architec-
tures (CPU, GPU, and TPU), and software implementations
(TF, cuDNN, and MKL-DNN). MLPerf working groups re-
view the hyperparameter choices and requirements for each
benchmark round to account for advances in training ML
models at scale.

4 BENCHMARKING PROCESS

Next, we outline the process for submission and review
(§ 4.1) and for reporting results (§ 4.2) to account for inno-
vative solutions, availability, and scale. We have run two

rounds of the MLPerf benchmark: v0.5 and v0.6. The time
between rounds is about a few months, allowing us to up-
date the suite after each one. Every round has a submission
and review period followed by publication of results.

4.1 Submission and Review

An MLPerf submission consists of a system description,
training-session log files, and all code and libraries required
to reproduce the training sessions. All of this information is
publicly available on the MLPerf GitHub site, along with the
MLPerf results, allowing for reproducibility and enabling
the community to improve the results in subsequent rounds.
A system description includes both the hardware (number
of nodes, processor and accelerator counts and types, stor-
age per node, and network interconnect) and the software
(operating system as well as libraries and their versions).
A training-session log file contains a variety of structured
information including time stamps for important workload
stages, quality-metric evaluations at prescribed intervals,
and hyperparameter choices. These logs are the foundation
for analyzing results.

Before publishing results, submissions are peer-reviewed
for compliance with MLPerf rules. Submitters receive noti-
fication of noncompliance, where applicable, and they may
resubmit after addressing any such problems. Additionally,
we permit some hyperparameter borrowing as described
earlier during this period.

4.2 Reporting Results

Each MLPerf submission has several labels: division (open
or closed), category (available, preview, or research), and
system type (on-Premises or cloud).

4.2.1 Submission Divisions

MLPerf has two submission divisions: closed and open.
Both require that submissions employ the same data set and
quality metric as the corresponding reference implementa-
tion.

The closed division is intended for direct system compari-
son, so it strives to ensure workload equivalence by requiring
that submissions be equivalent to reference implementations.
Equivalence includes mathematically identical model imple-
mentations, parameter initialization, optimizer and training
schedules, and data processing and traversal. To ensure
fairness, this division also restricts hyperparameter modifi-
cation.

The open division is intended to encourage innovative so-
lutions of important practical problems and to encourage
hardware/software co-design. It allows submissions to em-
ploy model architectures, optimization procedures, and data
augmentations that differ from the reference implementa-



MLPerf Training Benchmark

tions.

4.2.2 System Categories

To allow for a broad range of research and industry systems,
we defined three submission categories: available, preview,
and research. These categories encourage novel techniques
and systems (e.g., from academic researchers), but they also
distinguish between shipping products and proof-of-concept
or early engineering samples.

The available category imposes requirements on both hard-
ware and software availability. Hardware must be either
available for third-party rental on a cloud service or, in the
case of on-premises equipment, available for purchase. Sup-
ply and lead times for renting or purchasing should befit
the system scale and company size. To ensure that bench-
mark submissions are widely consumable and to discourage
benchmark-specific engineering, we also require that soft-
ware in this category be versioned and supported for general
use.

Preview systems contain components that meet the available-
category criteria within 60 days of the submission date or by
the next submission cycle, whichever is later. Any preview
system must also be submitted to the available category by
that time.

Research submissions contain components unintended for
production. An example is an academic-research prototype
designed as a proof of concept rather than a robust product.
This category also includes systems that are built from pro-
duction hardware and software but are larger in scale than
available-category configurations.

4.2.3 Reporting Scale

Modern ML training spans multiple orders of magnitude
in system power draw and cost. Therefore, comparisons
are more useful if the reported performance includes the
scale. A common scale metric, such as cost or power, is
not definable across a wide range of systems (cloud, on-
premises, and preproduction), so it requires differentiation
by system type.

In the first two MLPerf rounds, we included the system con-
figuration (number of processors and/or accelerators) along-
side the performance scores. For on-premises examples,
future versions will include a power-measurement specifica-
tion. For cloud systems, we derived a “cloud-scale” metric
from the number of host processors, amount of host memory,
and number and type of accelerators. We empirically veri-
fied that cloud scale correlates closely with cost across three
major cloud providers. Reporting of these scale metrics was
optional in MLPerf v0.5 and v0.6.

ResNet-50 SSD Mask
R-CNN

GNMT Transformer

Model

0

1

2

Sp
ee

du
p 

fr
om

v0
.5

 to
 v

0.
6

(a) Speedup.

Model Metric v0.5 v0.6

ResNet-50 Top-1 accuracy 74.9 75.9
SSD mAP 21.2 23
Mask R-CNN Box / Mask min AP 37.7 / 39.9 Same
GNMT Sacre BLEU 21.8 24
Transformer BLEU 25 Same

(b) Quality targets.

Figure 3. Speedup in the fastest 16-chip entry from MLPerf version
v0.5 to v0.6 for various benchmarks common to both (Figure 3a),
along with quality-target increases (Figure 3b).

4.2.4 Reporting Scores

An MLPerf results report provides the time to train for each
benchmark. Although a single summary score that spans
the entire suite may be desirable for system comparisons,
it is unsuited to MLPerf for two main reasons. First, a
summary score implies some weighting of individual bench-
mark scores. Given the diversity of system users and the
wide range of applications that MLPerf covers, no weighting
scheme is universally representative. Second, a summary
score becomes less meaningful if a submitter declines to
report results on all benchmarks. Submitters can have mul-
tiple reasons for omitting some benchmarks—not all are
practical at every system scale (for example, some models
are untrainable at the minibatch sizes that the largest sys-
tems require for data-parallel training). Additionally, some
processors may target only certain applications.

5 RESULTS

MLPerf, like all benchmarks, aims to to encourage innova-
tion through constructive competition; we measure progress
by comparing results across submission rounds. We have
conducted two MLPerf Training rounds thus far: v0.5 and
v0.6. They were six months apart, and the underlying hard-
ware systems were unchanged. The results that were ei-
ther unmodified or underwent minor modifications between
rounds show that MLPerf is driving rapid performance and
scaling improvement in both the implementations and soft-
ware stacks. Figure 3 shows that between the two sub-
mission rounds, the best performance results for a 16-chip
system increased by an average of 1.3× despite the higher



MLPerf Training Benchmark

ResNet-50 SSD Mask
R-CNN

GNMT Transformer

Model

0

500

1000
N

um
be

r o
f c

hi
ps

v0.5 v0.6

Figure 4. Number of chips necessary to produce the fastest time to
solution for MLPerf versions v0.5 to v0.6. This number increased
by as much as 5.5×.

quality targets. Figure 4 reveals that the number of chips
necessary to produce the best overall performance result
increased by an average of 5.5×. Some of this improvement
owes to better benchmark implementations and some to
rule changes, such as allowing the LARS (You et al., 2017)
optimizer for large ResNet batches. But we believe sub-
mitters incorporated much of the performance and scaling
improvements into the underlying software infrastructure
and passed them on to users. We expect MLPerf to drive
similar improvements through focused hardware innovation.

6 CONCLUSIONS

MLPerf Training is a suite of ML benchmarks that represent
both industrial and academic use cases. In addition to being
the only widely used ML-training benchmark suite boasting
such coverage, it has made the following contributions:

• Precise definition of model architectures and training
procedures for each benchmark. This feature enables
system comparisons for equivalent workloads, whereas
previous results often involved substantially different
variants of a given model (for example, ResNet-50 has
at least five variants).

• Reference implementations and rule definitions to ad-
dress the challenges unique to benchmarking ML train-
ing. These challenges include the stochastic nature of
training processes, the necessity of training to comple-
tion to determine the quality impact of performance
optimizations, and the need for workload variation at
different system scales (§ 2.1).

Although MLPerf focuses on relative system performance,
as the online results demonstrate, it also offers general
lessons about ML and benchmarking:

• Realistic data-set size is critical to ensuring realis-
tic memory-system behavior—for example, the initial
NCF data set was too small and could reside entirely
in memory. Furthermore, when benchmarking data

sets that are smaller than industrial scale, training time
should exclude the startup time, which would be pro-
portionally less in actual use.

• Small hyperparameter changes can produce consider-
able performance changes. But, based on our experi-
ence with hyperparameter borrowing, hyperparameters
are relatively portable at similiar system scales, even
across architectures, numerics, or software stacks.

• Frameworks exhibit subtle optimizer-algorithm varia-
tions that affect convergence.

ML is an evolving field, however, and we have much more
to learn. To keep pace, MLPerf establishes a process to
maintain and update the suite. For example, MLPerf v0.6
includes several updates: the ResNet-50 benchmark added
LARS (You et al., 2017), GNMT’s model architecture im-
proved to increase translation quality, and the MiniGo ref-
erence switched from Python to C++ to increase perfor-
mance. The MLPerf organization welcomes input and con-
tributions: https://mlperf.org/get-involved

ACKNOWLEDGEMENTS

In this section, we acknowledge all those who helped pro-
duce the first set of results or supported the overall bench-
mark development.

Intel: Cong Xu, Deng Xu, Feng Tian, Haihao Shen, Mingx-
iao Huang, Rachita Prem Seelin, Teng Lu, Xin Qiu, and
Zhongyuan Wu.

Facebook: Maxim Naumov, Dheevatsa Mudigere, Mustafa
Ozdal, Misha Smelyanskiy, Joe Spisak, Sy Choudhury, and
Brian Gamidos.

Stanford: Work at Stanford received support in part
from affiliate members and other Stanford DAWN project
participants—Ant Financial, Facebook, Google, Infosys,
NEC, and VMware—as well as Toyota Research Institute,
Northrop Grumman, Cisco, SAP, NSF CAREER grant CNS-
1651570, and NSF Graduate Research Fellowship grant
DGE-1656518. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

Harvard: Work at Harvard received partial support from
the Applications Driving Architectures (ADA) Research
Center, a JUMP Center cosponsored by the SRC and
DARPA, NSF CCF#1704834, and Intel Corporation. We
would also like to thank Brandon Reagen.

University of Toronto: Work at the University of Toronto
received partial support from an NSERC Discovery grant,
the Canada Foundation for Innovation JELF grant, the Con-
naught Fund, and Huawei grants.

https://mlperf.org/get-involved


MLPerf Training Benchmark

REFERENCES

AI Matrix. URL https://aimatrix.ai.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
TensorFlow: A System for Large-Scale Machine Learn-
ing. In OSDI, volume 16, pp. 265–283, 2016.

Adolf, R., Rama, S., Reagen, B., Wei, G.-Y., and Brooks, D.
Fathom: Reference Workloads for Modern Deep Learn-
ing Methods. In Workload Characterization (IISWC),
2016 IEEE International Symposium on, pp. 1–10. IEEE,
2016.

Amodei, D. and Hernandez, D. AI and Com-
pute, 2018. URL https://blog.openai.com/
ai-and-compute/.

Auer, P., Herbster, M., and Warmuth, M. K. Exponentially
Many Local Minima for Single Neurons. In Advances
in neural information processing systems, pp. 316–322,
1996.

Bai, J., Lu, F., Zhang, K., et al. ONNX: Open Neural
Network Exchange. https://github.com/onnx/
onnx, 2019.

Baidu. DeepBench: Benchmarking Deep Learning Op-
erations on Different Hardware. https://github.
com/baidu-research/DeepBench, 2017.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scal-
able Methods for 8-bit Training of Neural Networks. In
Advances in Neural Information Processing Systems, pp.
5145–5153, 2018.

Belletti, F., Lakshmanan, K., Krichene, W., Chen, Y.-F.,
and Anderson, J. Scalable Realistic Recommendation
Datasets through Fractal Expansions. arXiv preprint
arXiv:1901.08910, 2019.

Ben-Nun, T., Besta, M., Huber, S., Ziogas, A. N., Peter, D.,
and Hoefler, T. A Modular Benchmarking Infrastructure
for High-Performance and Reproducible Deep Learning.
arXiv preprint arXiv:1901.10183, 2019.

Chan, B. OpenAI Five, Jun 2018. URL https://
openai.com/blog/openai-five/.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M.,
Xiao, T., Xu, B., Zhang, C., and Zhang, Z. MXNet:
A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint
arXiv:1512.01274, 2015.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H.,
Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}: An
Automated End-to-End Optimizing Compiler for Deep

Learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578–594, 2018.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,
Ispir, M., et al. Wide & Deep Learning for Recommender
Systems. In Proceedings of the 1st workshop on deep
learning for recommender systems, pp. 7–10. ACM, 2016.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. CuDNN:
Efficient Primitives for Deep Learning. arXiv preprint
arXiv:1410.0759, 2014.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B.,
and LeCun, Y. The Loss Surfaces of Multilayer Net-
works. In Artificial Intelligence and Statistics, pp. 192–
204, 2015.

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J.,
Nardi, L., Bailis, P., Olukotun, K., Ré, C., and Zaharia,
M. DAWNBench: An End-to-End Deep Learning Bench-
mark and Competition. NIPS ML Systems Workshop,
2017.

Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T.,
Zhang, J., Bailis, P., Olukotun, K., Ré, C., and Zaharia,
M. Analysis of DAWNBench, a Time-to-Accuracy Ma-
chine Learning Performance Benchmark. ACM SIGOPS
Operating Systems Review, 53(1):14–25, 2019.

Council, T. P. P. Transaction Processing Performance Coun-
cil. Web Site, http://www. tpc. org, 2005.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-scale Hierarchical Image
Database. In 2009 IEEE conference on computer vision
and pattern recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv preprint arXiv:1810.04805,
2018.

Dixit, K. M. The SPEC Benchmarks. Parallel computing,
17(10-11):1195–1209, 1991.

Dongarra, J. The LINPACK Benchmark: An Expla-
nation. In Proceedings of the 1st International Con-
ference on Supercomputing, pp. 456–474, London,
UK, UK, 1988. Springer-Verlag. ISBN 3-540-18991-
2. URL http://dl.acm.org/citation.cfm?
id=647970.742568.

Google. TensorFlow Benchmarks. https://www.
tensorflow.org/performance/benchmarks,
2017.

https://aimatrix.ai
https://blog.openai.com/ai-and-compute/
https://blog.openai.com/ai-and-compute/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench
https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/
http://dl.acm.org/citation.cfm?id=647970.742568
http://dl.acm.org/citation.cfm?id=647970.742568
https://www.tensorflow.org/performance/benchmarks
https://www.tensorflow.org/performance/benchmarks


MLPerf Training Benchmark

Gori, M. and Tesi, A. On the Problem of Local Minima in
Backpropagation. IEEE Transactions on Pattern Analysis
& Machine Intelligence, (1):76–86, 1992.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. arXiv preprint arXiv:1706.02677, 2017.

GroupLens. MovieLens 20M Dataset, Oct 2016.
URL https://grouplens.org/datasets/
movielens/20m/.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity Mappings
in Deep Residual Networks. In European conference on
computer vision, pp. 630–645. Springer, 2016b.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask
R-CNN. In Proceedings of the IEEE international con-
ference on computer vision, pp. 2961–2969, 2017a.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua,
T.-S. Neural Collaborative Filtering. In Proceedings of
the 26th international conference on world wide web,
pp. 173–182. International World Wide Web Conferences
Steering Committee, 2017b.

Hennessy, J. L. and Patterson, D. A. Computer Architecture:
A Quantitative Approach. Elsevier, 2011.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r.,
Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Kings-
bury, B., et al. Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition. IEEE Signal processing
magazine, 29, 2012.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S.,
and Murphy, K. Speed/Accuracy Trade-offs for Modern
Convolutional Object Detectors, 2016.

Intel. BigDL: Distributed Deep Learning Library for
Apache Spark, 2019. URL https://github.com/
intel-analytics/BigDL.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F.,
Xie, L., Guo, Z., Yang, Y., Yu, L., et al. Highly Scalable
Deep Learning Training System with Mixed-Precision:
Training ImageNet in Four Minutes. arXiv preprint
arXiv:1807.11205, 2018.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:

Convolutional Architecture for Fast Feature Embedding.
In ACM International Conference on Multimedia, pp.
675–678. ACM, 2014.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-Datacenter Performance Analysis of a Tensor
Processing Unit. In 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pp. 1–12. IEEE, 2017.

Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. ICLR, 2015.

Krizhevsky, A. One Weird Trick for Parallelizing Convolu-
tional Neural Networks, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Kster, U., Webb, T. J., Wang, X., Nassar, M., Bansal, A. K.,
Constable, W. H., Elibol, O. H., Gray, S., Hall, S., Hornof,
L., Khosrowshahi, A., Kloss, C., Pai, R. J., and Rao, N.
Flexpoint: An Adaptive Numerical Format for Efficient
Training of Deep Neural Networks. NIPS, 2017.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft COCO:
Common Objects in Context. In European Conference
on Computer Vision, pp. 740–755. Springer, 2014.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. SSD: Single Shot Multibox
Detector. In European conference on computer vision,
pp. 21–37. Springer, 2016.

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and
Vetter, J. S. NVIDIA Tensor Core Programmability, Per-
formance & Precision. arXiv preprint arXiv:1803.04014,
2018.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed Precision Training. In
Proceedings of the International Conference on Learning
Representations, 2018.

Mikami, H., Suganuma, H., U-chupala, P., Tanaka,
Y., and Kageyama, Y. Massively Distributed SGD:
ImageNet/ResNet-50 Training in a Flash. arXiv preprint
arXiv:1811.05233, 2018.

MLPerf. MLPerf Reference: MiniGo. https:
//github.com/mlperf/training/tree/
master/reinforcement, 2019a.

https://grouplens.org/datasets/movielens/20m/
https://grouplens.org/datasets/movielens/20m/
https://github.com/intel-analytics/BigDL
https://github.com/intel-analytics/BigDL
https://github.com/mlperf/training/tree/master/reinforcement
https://github.com/mlperf/training/tree/master/reinforcement
https://github.com/mlperf/training/tree/master/reinforcement


MLPerf Training Benchmark

MLPerf. MLPerf Reference: ResNet in TensorFlow.
https://github.com/mlperf/training/
tree/master/image_classification/
tensorflow/official, 2019b.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602, 2013.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: Generalized Pipeline Parallelism
for DNN Training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pp. 1–15,
2019.

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.-J.,
Azzolini, A. G., et al. Deep Learning Recommendation
Model for Personalization and Recommendation Systems.
arXiv preprint arXiv:1906.00091, 2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic Differentiation in PyTorch. 2017.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language Models are Unsupervised Multi-
task Learners. OpenAI Blog, 1(8), 2019.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
nature, 529(7587):484, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the Game of Go without
Human Knowledge. Nature, 550(7676):354, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A General Reinforcement Learning Algo-
rithm that masters Chess, Shogi, and Go through Self-
Play. Science, 362(6419):1140–1144, 2018.

Sun, P., Feng, W., Han, R., Yan, S., and Wen, Y. Optimizing
Network Performance for Distributed DNN Training on
GPU Clusters: ImageNet/AlexNet Training in 1.5 Min-
utes. arXiv preprint arXiv:1902.06855, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is All You Need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

WMT. First Conference on Machine Translation, 2016.
URL http://www.statmt.org/wmt16/.

WMT. Second Conference on Machine Translation, 2017.
URL http://www.statmt.org/wmt17/.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., et al. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Transla-
tion. arXiv preprint arXiv:1609.08144, 2016.

Ying, C., Kumar, S., Chen, D., Wang, T., and Cheng, Y. Im-
age Classification at Supercomputer Scale. arXiv preprint
arXiv:1811.06992, 2018.

You, Y., Gitman, I., and Ginsburg, B. Large Batch
Training of Convolutional Networks. arXiv preprint
arXiv:1708.03888, 2017.

Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., Yan,
Y., Jin, J., Li, H., and Gai, K. Deep Interest Network for
Click-through Rate Prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1059–1068. ACM, 2018.

Zhu, C., Han, S., Mao, H., and Dally, W. J. Trained Ternary
Quantization. arXiv preprint arXiv:1612.01064, 2016.

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Jayarajan,
A., Phanishayee, A., Schroeder, B., and Pekhimenko,
G. Benchmarking and Analyzing Deep Neural Network
Training. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pp. 88–100. IEEE,
2018.

https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
http://www.statmt.org/wmt16/
http://www.statmt.org/wmt17/


MLPerf Training Benchmark

A ARTIFACT APPENDIX

A.1 Abstract

This artifact description contains information about the com-
plete workflow to reproduce Nvidia’s v0.5 image classifi-
cation submissions to MLPerf. We describe how to run
this submission on a single-node DGX-1 system. More de-
tails for DGX-2 and multi-node systems are provided in the
official MLPerf results repositories:

• Nvidia’s v0.5 ResNet-50 submissions

Results from other tasks and submitters are also available:

• MLPerf v0.5 training results

• MLPerf v0.6 training results

However, these results have not been independently verified
for reproducibility. Please see the MLPerf website (https:
//mlperf.org/) for the most up-to-date information
and feel free to report issues on Github.

A.2 Artifact check-list (meta-information)
• Algorithm: Image classification ResNet-50 CNN

• Program: MLPerf (https://mlperf.org/)

• Compilation: nvidia-docker

• Model: ResNet-50 v1.5 3

• Data set: ImageNet (http://image-net.org/)

• Hardware: NVIDIA DGX-1 or DGX-2

• Metrics: Time-to-Train: minutes to reach accuracy thresh-
old (74.9% Top-1 for v0.5)

• Output: MLPerf compliant log file with timestamps and
evaluation accuracy. Execution ends once the accuracy
threshold is reached.

• Experiments: shell script included with the code (./run.sub)

• How much disk space required (approximately)?: 300
GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• How much time is needed to complete experiments (ap-
proximately)?: 8 hours

• Publicly available: Yes

• Code licenses: Apache License 2.0

• Workflow framework used?: MXNet

• Archived (provide DOI)?:
http://doi.org/10.5281/zenodo.3610717

3https://github.com/mlperf/training/tree/
master/image_classification/tensorflow/
official

A.3 Description

A.3.1 How to access

MLPerf v0.5 training results on Github:
https://github.com/mlperf/training_results_
v0.5.

A.4 Installation

See the README.md for Nvidia’s v0.5 ResNet-50 submission:
https://github.com/mlperf/training_results_
v0.5/tree/master/v0.5.0/nvidia/submission/
code/image_classification/mxnet/README.md.

A.5 Evaluation and expected result

Time-to-Train: 134.6 minutes.

https://github.com/mlperf/training_results_v0.5/tree/master/v0.5.0/nvidia/submission/code/image_classification/mxnet
https://github.com/mlperf/training_results_v0.5
https://github.com/mlperf/training_results_v0.6
https://mlperf.org/
https://mlperf.org/
https://mlperf.org/
https://github.com/NVIDIA/nvidia-docker
http://image-net.org/
http://doi.org/10.5281/zenodo.3610717
https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
https://github.com/mlperf/training/tree/master/image_classification/tensorflow/official
https://github.com/mlperf/training_results_v0.5
https://github.com/mlperf/training_results_v0.5
https://github.com/mlperf/training_results_v0.5/tree/master/v0.5.0/nvidia/submission/code/image_classification/mxnet/README.md
https://github.com/mlperf/training_results_v0.5/tree/master/v0.5.0/nvidia/submission/code/image_classification/mxnet/README.md
https://github.com/mlperf/training_results_v0.5/tree/master/v0.5.0/nvidia/submission/code/image_classification/mxnet/README.md

