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Abstract

We introduce a few-shot transfer learning method for key-
word spotting in any language. Leveraging open speech corpora
in nine languages, we automate the extraction of a large multi-
lingual keyword bank and use it to train an embedding model.
With just five training examples, we fine-tune the embedding
model for keyword spotting and achieve an average F1 score of
0.75 on keyword classification for 180 new keywords unseen by
the embedding model in these nine languages. This embedding
model also generalizes to new languages. We achieve an aver-
age F1 score of 0.65 on 5-shot models for 260 keywords sam-
pled across 13 new languages unseen by the embedding model.
We investigate streaming accuracy for our 5-shot models in two
contexts: keyword spotting and keyword search. Across 440
keywords in 22 languages, we achieve an average streaming
keyword spotting accuracy of 85.2% with a false acceptance
rate of 1.2%, and observe promising initial results on keyword
search.
Index Terms: speech recognition, keyword spotting, low-
resource languages

1. Introduction
Training keyword spotting (KWS) models requires the manual
collection and curation of thousands of target samples across a
diverse pool of speakers and accents for each keyword of in-
terest [1] — a prohibitive requirement for under-resourced lan-
guages. In this paper, we relax the training data for a KWS
model to just five training examples in any language.

We train an embedding model on keyword classification
using Common Voice’s [2] multilingual crowd-sourced speech
dataset, by applying forced alignment [3] to automatically ex-
tract 760 frequent words across nine languages. We then fine-
tune this embedding model to classify a target keyword with
just five sample utterances, even if the model has never seen
the target language before. We evaluate our embedding repre-
sentation’s performance on 440 keywords across 22 languages
to demonstrate the generalization of our approach to languages
and words previously unseen by the embedding model.

Our contributions are as follows: (1) we show promising
5-shot keyword detection accuracy across 22 languages via a
multilingual embedding representation; (2) we find that mul-
tilingual embeddings improve accuracy and generalize to new
languages; (3) we demonstrate that general speech recognition
datasets can be repurposed for KWS through forced alignment,
highlighting the value of crowd-sourced data in low-resource

§Partially conducted while the author was at Artie Inc. and the
Mozilla Foundation

(a) Multilingual embedding model (b) 5-shot keyword spotting

Figure 1: Multilingual Embedding Representation: (a) To
learn a multilingual embedding for keyword feature extraction,
we train a classifier on 760 keywords totaling 1.4M samples
in nine languages, and use the output of the penultimate layer
of our classifier as a feature vector for arbitrary keywords in
any language. (b) To train a new KWS model, we fine-tune a
3-category classifier using just 5 target examples and 128 non-
target samples from a precomputed “unknown” keyword bank.

settings; and (4) we open-source our code and models and pro-
vide a Colab for easy reproduciblity and extension.1

These contributions lay the groundwork towards a fully au-
tomated, rapid time-to-solution pipeline for generating voice-
based command interfaces for arbitrary keywords in low-
resource languages. Our current aim is to enable a volunteer
to record just 5 examples of a target keyword in a zero-resource
language and obtain a robust multi-speaker KWS model. Our
existing approach can run on mobile devices, and our longer-
term efforts will target deployment on low-cost, memory-
constrained, power-efficient microcontrollers to enable always-
on KWS support.

2. Related Work
Many approaches to keyword spotting have been proposed.
Prior art focused on developing small footprint models for key-
word spotting tasks using deep neural networks [4], convolu-
tional neural networks [5, 6, 7, 8], and long short-term mem-
ory neural networks [9]. Similarly, we use a CNN based ar-
chitecture for our classifier, however, these previous methods
require thousands of samples of the target keyword. In contrast,
our work only requires 5 keyword samples in a target language,
which enables keyword spotting in low resource languages.

1https://github.com/harvard-edge/multilingual kws
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For KWS in low-resource languages, existing methods [10,
11] employ multilingual bottleneck features, dynamic time
warping, and autoencoders, requiring roughly 30 samples per
keyword in addition to a few hours of untranscribed data. In
[12] the authors demonstrate high KWS accuracy with 3 exam-
ples for English and Korean. Bluche et al. [13] shows promis-
ing accuracy in English for a zero-shot approach to detecting
any keyword, and San et al. [14] explores spoken term search
across ten languages. Our work utilizes a simpler embedding
model and considers few-shot performance across a compara-
tively large number of languages and speakers, including lan-
guages in which our training data only consists of 5 samples
of a target keyword. A recent approach to data generation for
KWS utilizes speech synthesis [15] for training an embedding
model. In comparison, our work targets languages which lack
sufficient data for synthesis.

3. Multilingual Keyword Spotting
In this section, we describe our system for training a multilin-
gual embedding model, performing transfer learning, and au-
tomating the extraction of a large keyword dataset.

3.1. Multilingual Embedding Model

Our network architecture is summarized in Fig. 1a. We repur-
pose the output of the penultimate layer of a simple keyword
classifier as our embedding representation in our few-shot ex-
periments. Our classifier uses TensorFlow Lite Micro’s [16] mi-
crofrontend spectrogram [17] as 49x40x1 inputs. It contains ap-
proximately 11 million parameters and consists of a randomly-
initialized EfficientNet-B0 implementation from Keras [18],
followed by a global average pooling layer, two dense layers of
2048 units with ReLU activations, and a penultimate 1024-unit
SELU activation [19] layer, before the classifier’s 761-category
softmax output. We chose SELU activations for their self-
normalizing properties. The classifier is trained on 760 words
across nine languages (listed in Table 1) and 1.4 million samples
in total (Sec. 3.3). We select the most common words in each
language and filter by character length of 3 or higher to discard
brief words and stop words. Each extraction is padded with si-
lence to one second in length. We also include a background
noise category in the output, with 10% of all training samples
consisting solely of noise sampled from background noise ex-
amples in Google’s Speech Commands dataset [1]. Keyword
samples are augmented with random 100ms timeshifts, back-
ground noise multiplexed at 10% SNR, and SpecAugment [20].

3.2. Few-shot Transfer Learning

For 5-shot transfer learning (Fig. 1b), we use five target sam-
ples to fine-tune a 3-class softmax layer (with target, unknown,
and background categories) on the output feature vector of the
embedding layers, along with 128 non-target samples drawn
from a precomputed bank of 5,000 “unknown” utterances in
the nine embedding languages. When training KWS models
in languages not seen by the embedding model (e.g., in Welsh),
non-target samples are still drawn from this bank, i.e., to train a
KWS model in Welsh a user would only need to collect 5 target
samples of a Welsh keyword, without also needing to collect
non-target examples in Welsh. The weights in the embedding
layers are frozen when fine-tuning; we only update the softmax
layer. Across 256 total training samples, approximately 45%
are in the target category (random augmentations of the five
target examples using the same strategy as Sec. 3.1), 45% are

negative samples drawn from the precomputed set of non-target
words, and 10% are background noise (Sec. 5.1.2).

3.3. Dataset Generation

Our extracted keywords are entirely sourced from Common
Voice [2]. We use the Montreal Forced Aligner [3] to esti-
mate word-level alignments for each < audio,transcript > pair
in Common Voice.2 We performed forced alignment from a flat
start only on the data itself, with no prior acoustic models or
external data. We automate keyword extraction using the align-
ment timings. For our experiments, we extracted 4,383,489
samples across 3,126 keywords in 22 languages.

4. Experiments
We evaluate our capabilities for KWS in multiple languages
through classification and streaming accuracy experiments.

4.1. Classification Accuracy

We assess classification performance for the embedding model,
and for five-shot KWS models evaluated on a large number of
extracted target and non-target keywords.

4.1.1. Multilingual embeddings trained on extracted keywords

In order to evaluate the quality of our embedding representation
trained on extracted keywords (Sec 3.1), we assess the top-one
accuracy of the classifier on a validation set of 161,700 sam-
ples. Furthermore, we report the validation accuracy for each
language to inspect whether it is skewed. We train the embed-
ding model for 94 epochs using the Adam optimizer from Keras
with a learning rate of 0.001.

We also inspect the potential domain gap between extracted
and manually recorded keywords. We cross-compare the test
accuracy of a tinyconv model [21] trained on the keyword “left”
chosen randomly from the Google Speech Commands (GSC)
dataset [1] and a model trained on keyword extractions of “left”
from Common Voice English data. After training a tinyconv
model on Common Voice data, we assess the model’s classifi-
cation performance on GSC data and vice versa.

4.1.2. Monolingual vs. multilingual embeddings

We explore the accuracy of a multilingual embedding relative to
individual language embedddings, by comparing KWS models
fine-tuned on each. We train six monolingual embedding mod-
els by selecting 165 frequent words per language and using a
penultimate layer width of 192 units. We evaluate KWS mod-
els for 20 out-of-vocabulary words (i.e., words unseen when
training the embedding representation) in the target language.
We select up to 2,000 samples per keyword and train a KWS
model by fine-tuning on 5 samples. We evaluate classification
performance by validating on the remaining 1,995 samples as
positive class examples, along with 30,000 samples across 90
non-target words as negative examples. To assess keyword clas-
sification accuracy for the multilingual embedding, for each of
the nine languages in the embedding, we randomly select 20
target words distinct from the 760 keywords used to train the
multilingual representation (Sec. 3.1), and evaluate classifica-
tion performance for 5-shot models against all other positive
samples of each keyword and 30,000 negative samples across
90 non-target words. Negative examples are divided evenly be-

2https://github.com/JRMeyer/common-voice-forced-alignments
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tween keywords previously used to train the embedding model
(these should now be categorized as non-targets by the 5-shot
model, and not misclassified as the target), keywords sampled
from the bank of unknown samples used when finetuning 5-
shot models (Sec. 3.2), and prevously unencountered keywords
which are novel to both the embedding and KWS models.

4.1.3. Out-of-embedding classification

We investigate whether the multilingual embedding can be used
to perform keyword spotting in languages not seen by the em-
bedding model, i.e., we establish whether a precomputed mul-
tilingual embedding can generalize to other languages without
collecting additional training data in that language beyond five
samples of a target keyword. We consider classification accu-
racy across two settings: (1) out-of-vocabulary words not pre-
viously seen by the multilingual embedding model, but spoken
in the languages used to train the embedding, and (2) out-of-
embedding words in languages unseen when training the multi-
lingual embedding model.

4.2. Few-Shot Streaming Accuracy

In practice, KWS models operate on a continuous stream of au-
dio, thus we inspect streaming accuracy in two regimes. (1) We
concatenate individual words with an average gap of 2 seconds
(filled with random background noise), to simulate wake-word
or command interaction with a voice assistant. For each KWS
model, we evaluate on 10 minutes of audio containing approxi-
mately 100 keywords and 100 random non-target words. (2) We
search for keywords in continuous spoken audio, by concatenat-
ing approximately 20 minutes of full sentences from Common
Voice. In each case we consider out-of-vocabulary and out-of-
embedding words chosen at random across 22 languages. Our
streaming post-processing approach follows Sec. 7.2 in [1].

5. Results
We summarize our classification and streaming accuracy evalu-
ations for 5-shot KWS models. We note that in all of our auto-
mated KWS evaluations, the five training samples are randomly
selected from forced alignment extractions and are not manu-
ally inspected beforehand, hence performance for some models
will be negatively affected by poor extractions or errors in the
original Common Voice recordings.

5.1. Classification Accuracy Results

We evaluate (1) the training performance of our multilingual
embedding model, (2) improvements to KWS classification ac-
curacy when using a multilingual embedding representation
versus monolingual embeddings, and (3) KWS classification
accuracy in languages outside of the multilingual embedding.

5.1.1. Embedding model accuracy

Table 1 summarizes the accuracy of our multilingual embed-
ding model (Sec. 3.1) on a validation set for each of the nine
languages used in training. The embedding model achieves an
overall classification accuracy of 79.81%.

As a microbenchmark to compare extracted samples versus
manually recorded samples, Table 2 reports our cross compar-
ison of two tinyconv models trained on Common Voice extrac-
tions and GSC data for the keyword “left.” The model trained
on Common Voice extractions performs worse on the GSC test
set than vice versa, dropping to roughly 78%. Future work will

Table 1: Classification Accuracy for Multilingual Embedding
Model. We show the number of words per language and num-
ber of training samples the embedding model was trained on,
followed by the number of validation samples and the valida-
tion accuracy of the embedding model for each language.

Language # words # train # val val acc

English 265 518760 57640 78.95
German 152 287100 31900 79.90
French 105 205920 22880 79.16
Kinyarwanda 68 134640 14960 73.64
Catalan 80 132660 14740 87.63
Persian 35 69300 7700 85.70
Spanish 31 61380 6820 79.65
Italian 17 31680 3520 81.16
Dutch 7 13860 1540 72.60

Model 760 1455300 161700 79.81

Table 2: Domain gap between our extracted keyword dataset
(Extracted) and the manually recorded Google Speech Com-
mands (GSC). The row indicates the training dataset for the
model; the column indicates the testing dataset.

Training
Test GSC Extracted

GSC 93.42% 90.49%
Extracted 78.07% 92.23%

seek to reduce this apparent domain gap.

5.1.2. Monolingual vs multilingual embedding results

We find that using the multilingual embedding in Sec. 5.1.1
improves KWS classification accuracy versus monolingual em-
beddings. Fig. 2 shows receiver operating characteristic (ROC)
curves where the false positive rate is visualized against the true
positive rate as the threshold for the target keyword is varied for
each 5-shot KWS model (Fig. 1b). Twenty previously unseen
words were chosen as random KWS targets for each language
evaluated. Each model was fine-tuned on 256 samples across 4
epochs with a batch size of 64 (Sec 3.2). The number of sam-
ples, epochs, batches, and batch size were chosen empirically
via a hyperparameter sweep.

Fig. 2a shows classification accuracy for 5-shot models us-
ing six monolingual embedding models. Fig. 2b shows the clas-
sification accuracy achieved on 5-shot models using the mul-
tilingual embedding representation. Accuracy improves when
using the multilingual embedding representation. With an em-
pirically chosen threshold of 0.8, the average (unweighted) F1

score across all KWS models increases from 0.58 to 0.75. For
example, despite there being no additional data in Kinyarwanda
between Fig. 2a and Fig. 2b, classification accuracy for Kin-
yarwanda still improves. This suggests that keyword classifica-
tion accuracy improves for each language through generalizable
features from other languages, as was suggested in [10, 22].

5.1.3. Out-of-embedding classification results

Fig. 2c depicts classification accuracy for 20 common words
chosen randomly from each of 13 languages unobserved when
training the embedding model. Accuracy remains high for the
majority of these languages, with an average F1 score of 0.65



(a) 6 Per-Language Embeddings (b) Multilingual Embedding (c) Generalization to New Languages

Figure 2: 5-Shot KWS Classification Accuracy. ROC curves for 5-shot KWS models with 20 randomly selected keywords per language.
For each language, the mean is drawn as a bolded curve over the shaded standard deviation (all keywords are shown as a hairline trace).
(a) 5-shot KWS models using an embedding representation trained per language for six languages. [Average F1@0.8 = 0.58] (b) 5-
shot models using a multilingual embedding trained on nine languages — accuracy improves relative to (a). [Avg. F1@0.8 = 0.75] (c)
5-shot models using the same multilingual embedding from (b) for random keywords in 13 languages which are out-of-embedding (i.e.,
which the feature extractor has never encountered), showing that our embedding generalizes to new languages. [Avg. F1@0.8 = 0.65]

(a) Keyword Spotting

(b) Keyword Search

Figure 3: Streaming Accuracy. 5-shot KWS models evaluated
on (a) a stream of target and non-target words emulating a
wakeword setting, and (b) keyword search on a stream of spoken
sentences. At a threshold of 0.8, (a) achieves an average TPR of
85.2% and FPR of 1.2% over 22 languages, including 13 out-
of-embedding languages. (b) shows potential keyword search
capabilities, with an average @0.8 TPR of 19% and FPR of
0.2%, despite our system not being optimized for this objective.

at a threshold of 0.8, suggesting the multilingual embedding
model generalizes beyond the languages seen when training it.

5.2. Five-Shot Streaming Accuracy Results

Fig. 3 reports streaming accuracy as the false acceptance rate
(FAR) vs. the false rejection rate per instance of true positives
(FRR) in each streaming regime (Sec. 4.2). In Fig. 3a, for some
keywords, we achieve perfect precision and recall, even in out-
of-embedding languages and despite having only one to five
speakers in our training set. Fig. 3b depicts our performance
on keyword search in full sentences of spoken audio. We re-
liably find approximately 20%-40% of keywords, despite not
optimizing our system for this use-case. We pad all extractions
out to 1 second with silence, but including the surrounding au-
dio context when extracting 1 second around each keyword may
increase performance in keyword search applications.

6. Conclusions
We demonstrate 5-shot KWS for arbitrary keywords in 22 lan-
guages, using an embedding representation pre-trained on an
automatically generated dataset. Our embedding generalizes
beyond the nine languages it was trained on, and in future
work we will investigate support for languages in which word-
level alignment is impractical. We utilize a simple fine-tuning
scheme for few-shot learning, and continuation studies will ex-
plore natural extensions in existing literature (e.g., [23]). We
will also pursue a smaller embedding representation via knowl-
edge distillation for on-device deployment.
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