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Artificial intelligence and machine learning are experiencing widespread adoption in industry and academia.

This has been driven by rapid advances in the applications and accuracy of AI through increasingly complex

algorithms and models; this, in turn, has spurred research into specialized hardware AI accelerators. Given

the rapid pace of advances, it is easy to forget that they are often developed and evaluated in a vacuum

without considering the full application environment. This article emphasizes the need for a holistic, end-to-

end analysis of artificial intelligence (AI) workloads and reveals the “AI tax.” We deploy and characterize Face

Recognition in an edge data center. The application is an AI-centric edge video analytics application built using

popular open source infrastructure and machine learning (ML) tools. Despite using state-of-the-art AI and ML

algorithms, the application relies heavily on pre- and post-processing code. As AI-centric applications benefit

from the acceleration promised by accelerators, we find they impose stresses on the hardware and software

infrastructure: storage and network bandwidth become major bottlenecks with increasing AI acceleration.

By specializing for AI applications, we show that a purpose-built edge data center can be designed for the

stresses of accelerated AI at 15% lower TCO than one derived from homogeneous servers and infrastructure.

CCS Concepts: • Computing methodologies → Machine learning; Artificial intelligence; • Software

and its engineering → Software performance;

Additional Key Words and Phrases: AI tax, end-to-end AI application

This work extends a previous article published in the HPCA 2020 Industry Session: Missing the Forest for the Trees: End-to-

End AI Application Performance in Edge Data Centers [70]. This article adds (1) a discussion on the need for end-to-end AI

benchmarks; (2) additional data and explanation for the deployment choices made in Face Recognition; (3) examination of

one of the causes of broker waiting time; and (4) AI tax and acceleration analysis of a second edge data center workload.
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1 INTRODUCTION

Artificial intelligence (AI), especially the field of machine learning (ML), is transforming the mar-
ketplace. Sparked by advances in computer system design, enterprises are leveraging AI in ev-
ery possible manner to provide unprecedented new services to their end users, ranging from
recommendation-based online shopping and personalized social network services to virtual per-
sonal assistants and better health care.

To enable ML, there has been a flurry of work at two extremes. At one extreme is the effort that
focuses on hardware acceleration of ML kernels [11, 17, 18, 22, 43]. At the other extreme is the effort
that focuses on engineering the system and its supporting infrastructure, such as the associated
networking and storage. The former is essential for enabling microprocessor advancements, while
the latter is essential for allowing cloud-scale deployment.

But recent years have seen a shift in the needs of the industry. While much research has been
dedicated to maximizing and accelerating ML performance, recent industry perspectives have
urged for a more holistic understanding of ML development and performance. Facebook, for exam-
ple, has discussed some of the challenges it has faced running AI at scale and encouraged research
on mitigating those challenges [54]. Instead of focusing solely on the AI kernel computation time,
there is a need to look at the bigger picture. Enabling AI applications involves several stages: in-
gesting the data, pre-processing the data, offloading the data to an AI accelerator, waiting for data,
post-processing the result, and so forth, all of which affect the requests’ end-to-end latency and
total system throughput.

At the same time, the industry is witnessing AI services migrate from warehouse-scale systems
to smaller purpose-built data centers located at the edge, closer to end users [48]. These edge
data centers complement existing cloud- or large-scale services by being physically closer to the
data source, which enables faster responses to latency-sensitive or bandwidth-hungry application
services [51]. There are also data sovereignty and regulatory compliance rules to safeguard data
privacy that are addressed with edge data centers [52]. Moreover, many mid-size organizations
find it more economical to invest in on-premise data centers that are purpose-built for executing
a particular type of task [34]. So despite the continued growth in public cloud solutions, spending
for edge data centers is predicted to increase [30].

In this work, we study the intersection of user-facing AI computing—the inference side of ML—
and smaller, edge data centers to reveal the often overlooked “AI tax”: the additional compute
cycles, infrastructure, and latency required to support the AI at the application’s heart. In the
context of a data center, execution of a fully developed, deployment-ready AI-centric application
relies on more than just AI algorithms. End-users’ requests demand pre-processing to ready them
for the pipeline; intermediate data must be communicated between stages, often over a network us-
ing custom protocols; the communication framework often has built-in data reliability safeguards
that impose overheads on data movement; and each stage faces its own overhead for moving data.
All of these components together add to the overhead of executing AI.

We study a full deployment of Face Recognition, an end-to-end video analytics AI-centric appli-
cation at the edge. Our setup is an industry deployment of the Google FaceNet [71] architecture
in an edge data center. Our application is entirely focused on the inference side of ML, where
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it is exposed to end users and faces associated latency constraints. As an AI-centric application,
Face Recognition is a good choice as it employs three distinct artificial intelligence algorithms, in-
cluding two neural networks and a classification algorithm. Furthermore, it is representative of
the reality of a considerable portion of AI and ML applications: many AI applications exist as
streaming services, deployed in data centers, serving real-time needs of consumers. Coordinating
the many activities required to transform raw data into useful, easily consumable conclusions re-
quires the intricacies and nuances of any distributed application: networking equipment, storage
devices, coordination, data durability, power distribution, cooling, communication protocols, data
compression, and so forth [58].

We find that in today’s edge data centers, already the communication framework can constitute
over 33% on the latency of the application. Face Recognition is built on top of Apache Kafka [5],
which is widely adopted both directly and as a fabric upon which advanced streaming frameworks
are built [47, 59, 65, 66, 75, 77]. Kafka is also representative of alternative frameworks that utilize
communication hot spots. The simplicity and impressive performance of Apache Kafka have es-
tablished it as a common denominator for many industry-quality projects. Despite this, requests
can spend substantial time passing through the framework.

Moreover, we show that as accelerator technologies advance and integrate into production en-
vironments, the supporting portions of the pipeline will soon supplant AI as the primary deter-
minant of performance. We measure the implications of greater AI inference acceleration. Apache
Kafka becomes increasingly stressed to move the vastly increased volume of data ingested by the
application. Even at relatively low acceleration factors, the added stress will quickly overwhelm
Kafka’s current capabilities. We demonstrate that at a very modest 8× acceleration factor, Kafka
overwhelms the capabilities of its underlying storage.

These findings present a unique opportunity on the compute research spectrum: rather than
neglecting the execution context of AI and without moving into the realm of cloud compute where
resources must be generic and homogeneous enough to handle all kinds of workloads, we show a
proof-of-concept for the economic value of edge data centers. We demonstrate how a data center
that is custom-built for the needs of a streaming AI workload can accommodate the anticipated
requirements of accelerated AI without over-provisioning, thereby realizing an overall decrease
in the total cost of ownership (TCO) in excess of 15% over a homogeneous edge data center.

Although our deep-dive analysis primarily focuses on edge video analytics with Face Recognition

(as the poster child application), we also conduct a basic analysis of a second application, Object

Detection, deployed similarly to Face Recognition, and show that it faces comparable AI tax chal-
lenges. In other words, our analyses and conclusions are not specific to one application; we further
discuss how the underlying infrastructure of an end-to-end AI application will present mainly the
same bottlenecks regardless of the AI application.

In summary, our main contributions and insights are as follows:

(1) Where much focus is devoted to tuning and accelerating AI inference to enable faster
compute, we instead evaluate the larger system-level implications of end-to-end AI

applications and expose the AI tax.
(2) We show that the general-purpose CPU performance remains a significant deter-

minant of overall request performance because processing an end-user request re-
quires more than just AI kernel computation.

(3) The communication layer of an AI application imposes a large overhead on the
latency of processing.

(4) The increased throughput from AI acceleration will overwhelm the communica-

tion substrate.
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Fig. 1. Increasing levels of abstraction in understanding AI applications. At its most basic level, a machine

learning AI application is computation of layers through common operations like matrix multiplication. Lay-

ers are used in combination to create an ML model. One or more models combine with supporting compute

to compose AI tasks. And finally, AI tasks and additional supporting infrastructure is distributed in a data

center to create a complete application.

(5) A purpose-built data center can adapt to the upcoming challenges of accelerated

AI at a lower TCO than a generic, homogeneous data center.

There are, of course, innumerable ways to deploy a data center AI application. In this research,
we focus on a scheme that concentrates communication in a few data brokers. We expect that
our main takeaways will be applicable to any deployment that utilizes some sort of data broker.
Namely, with the increasing data throughput of increasingly effective AI accelerators, the brokers
will become a point of failure. The amount of data moving through the application can quickly
overwhelm the capabilities of the brokers.

The proper solutions to the AI tax may reside in a customized edge data center, as we suggest,
or they may depend on a different deployment scheme. In any case, our work clearly demonstrates
the criticality of understanding AI applications from an end-to-end viewpoint. Without that per-
spective, we would have no comprehension of the AI tax or any reason to suspect that it would
become the limiting factor to performance.

The remainder of this article is structured as follows. In Section 2, we motivate study of AI
applications in a full, end-to-end, data center context. In Section 3, we introduce our primary
application, Face Recognition, and explain its deployment and optimization in our edge data center.
In Section 4, we elucidate the AI tax, characterizing the performance and limitations of the end-
to-end AI application. In Section 5, we conduct a forward-looking analysis of Face Recognition

under accelerated AI compute and identify significant impediments to improving performance.
In Section 6, we show that the AI tax exposition is not unique to Face Recognition by similarly
deploying and evaluating a second application. In Section 7, we show that an edge data center
can be purpose-built to address the upcoming challenges of AI while reducing TCO. We then
distinguish our work from prior art in Section 8 and conclude in Section 9.

2 AI IN EDGE DATA CENTERS

With the explosive growth of AI applications, much work has been done to try to characterize
and understand them through numerous proposed benchmark suites. Ranging from device-level
computations to complete applications, these benchmarking efforts cover a range of abstraction
levels, each recognizing the need to understand AI applications from a variety of abstraction
levels (Figure 1). In this section, we explore the range of abstractions and explain the need for the
next level of abstraction: edge data center, end-to-end AI applications. In Section 2.1, we look at
benchmarking efforts aimed at understanding ML layers. Section 2.2 looks at complete ML models
built from potentially many layers of compute. Section 2.3 considers entire AI tasks composed of
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potentially multiple ML models operating in tandem. Finally, Section 2.4 takes the next logical
step and motivates the study of a complete AI application as it exists in an industry-quality edge
data center.

2.1 ML Layers

At its heart, an AI application is a set of computations done on some piece of hardware, and, though
this seems simplistic, it is critical to understand what computations compose the application and
how they fit together (Figure 1, “ML Layers”). DeepBench [14] enables researchers to benchmark
the primitive layers of ML models (matrix multiplies, convolutions, and recurrent operations) at
the lowest level—on CPU and GPU using primitive ML libraries. It exists below any ML frame-
work (such as TensorFlow [39] and Caffe [8]). Its goal is to elucidate the performance of the most
common operations on various hardware devices.

Taken in isolation, though, DeepBench is incomplete. Basic operations like matrix multiplication
are essential in ML, but in practice they occur only in certain model layers and within specific data
access patterns that can vary from one ML framework to another. These details, available only in
the next level of abstraction, give important context for the basic operations of benchmarks like
DeepBench.

2.2 ML Model

The next level of abstraction is the ML model, built from fundamental operations and layers
(Figure 1, “ML Model”). A complete model will typically operate on its input (such as an image)
to produce a useful evaluation (such as identifying the objects in the image). Benchmarking com-
plete models is critical because it determines precisely which operations are to be performed, how
common each operation is, and the computational intensity of operating.

There are numerous benchmark suites that address this level of abstraction. AI Matrix [19, 79]
introduces numerous complete ML models, covering such diverse application domains as image
classification and neural machine translation, and also provides for synthetic models that are gen-
erated to mimic desired workload characteristics. MLMark, an EEMBC benchmark, is focused on
benchmarking ML inference on embedded or edge devices [73]. AI-Benchmark [1] is designed
specifically to target smartphone performance [55, 56]. AIIA-Benchmark targets accelerator de-
vices and aims to provide a useful means of comparison.

While these benchmark suites are indispensable, they are also incomplete. ML models do not
exist or execute in a vacuum but rely on supporting compute. In practice, this often means that, un-
like these benchmarks, ML model execution cannot operate uninterrupted but must be supported
by additional models or even non-ML compute.

2.3 AI Task

For ML to be useful, it needs the help of supporting compute, i.e., pre- and post-processing. Ad-
ditionally, a model is often only one piece of a series of models working as a unit to produce a
result. Together, these compose an AI task (Figure 1, “AI Task”). For example, before a model can
operate on an input image, the image must be transformed into the proper size, with the proper
color encoding, in the proper layout, to match the requirements of the model; the model output
must similarly undergo transformation to be prepared for the next stage of processing or to be
returned to the user. At this level of abstraction, the real behavior of an AI application starts to
become apparent.

Without the pre- and post-processing steps, the AI kernel is basically useless. Even so, we are
aware of no benchmarking suite that captures this more complete, context-aware, AI task-level
view.
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Table 1. Comparison of Various ML Benchmarks Showing How Much

of the End-to-End AI Application is Captured by Each

Benchmark ML ML AI Task Orchestration Pre- Post- Network Storage

Layers Model Software Processing Processing

DeepBench �
AI Matrix � �
MLMark � �
AI-Benchmark � �
AIIA-Benchmark � �
DAWNBench � �
MLPerf � �
End-to-End ? ? ? ? ? ? ? ?

While most benchmarks thoroughly cover the ML layers and model space, a complete application is far larger than these

computational kernels, and none of the existing benchmarks capture the whole picture.

While an AI task may represent a complete application, if it is executing on a single device,
much of the AI compute in practice takes place as real-time services provided by industry players
for end users. In such a scenario, an AI task is itself incomplete, as an AI task will be part of a
larger application that spans multiple servers and interacts over the network both internally and
with end users.

2.4 End-to-End Application

The highest level of abstraction is the data center level, where we finally see the end-to-end appli-
cation (Figure 1, “End-to-End Application”). The various AI tasks are deployed to different nodes
throughout the data center along with their supporting compute. Additionally, some nodes may be
entirely dedicated to non-AI, supporting compute. Of critical importance, at the data center level, the

networking equipment, storage devices, communication protocols, data center management software,

and application coordination software all become part of the AI application.

The numerous past ML benchmarking efforts are invaluable for understanding the heart of AI
applications; however, they all fall short of this highest level of abstraction. Table 1 illustrates, for
a small sampling of benchmarks, how much of an AI application is not captured and not understood

as a result of failing to rise to this level of abstraction. All the benchmarks we have mentioned in
this section do a good job of benchmarking ML compute details, but they all leave gaping holes in
the understanding of end-to-end application performance. DAWNBench [38] and MLPerf [27] are
noteworthy for trying to introduce greater realism into benchmarking ML models; unfortunately,
they do not go far enough. DAWNBench recognizes the importance of batch sizing [46], which is
widely known and adopted in realistic deployments of AI applications to maximize performance.
MLPerf takes this further and introduces a number of “scenarios” under which ML models can
be evaluated. These scenarios incorporate the essential concept of latency-bounded throughput—
maximizing throughput while honoring latency constraints. They try to mimic a setup that would
exist in a real-world data center where AI applications are deployed [57].

Ultimately, however, even though these benchmarks acknowledge that ML models are executed
in a server-like scenario, they sidestep the issue. MLPerf, for example, attempts to mimic a server
setup by having requests arrive at random intervals according to a Poisson distribution, but this
ignores the portion of the pipeline that actually provides and pre-processes the requests.

AIBench is an ambitious undertaking that recognizes the need for end-to-end benchmarks [49].
Designed to be easily extensible by building from a common framework, AIBench has implemented
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two scenarios: e-commerce searching and online language translation. Both scenarios operate in a
data center, utilize multiple stages of compute and inference coordinated by orchestration software,
rely on network and storage, and utilize pre- and post-processing. However, as it stands, AIBench is
insufficient to cover the breadth and depth of AI applications and has not undergone the extensive
and holistic evaluation for which we argue in this article. For these reasons, we consider it more
of a standalone application than a true benchmark.

To fully understand an AI application requires taking a holistic view at this highest level of
abstraction. We are not aware of any effort to capture this complete understanding. While we do
not present a new benchmark suite, in this work we undertake to present a thorough, forward-
looking, end-to-end evaluation of a complete AI application.

3 END-TO-END VIDEO ANALYTICS APPLICATION

Given the importance of understanding the end-to-end AI application as deployed in a data center,
we describe in this section the AI-centric Face Recognition application we developed and how we
deployed it. It is based on Google’s FaceNet algorithm [71]. However, Face Recognition is much
more than just FaceNet—it is a full data center application. Going from the algorithm to the full
workload requires algorithm partitioning, containerization, work coordination, and communica-
tion management. We explain how the logical flow of Face Recognition is transformed into a func-
tional streaming data center application.

We chose a video analytics application for our studies of AI tax due to the rising importance
of this domain. The global market for video analytics is expected to hit US$25 billion by 2026
due to rapid adoption of video technologies across industries such as retail, manufacturing, and
smart cities [40]. Video analytics uses AI to provide cost-efficient business intelligence insights
to its users. The domain is slated for deployment in edge data centers, as opposed to traditional
cloud- or warehouse-scale systems due to latency constraints, network bandwidth, and privacy
regulations.

In Section 3.1, we introduce and describe Face Recognition. Section 3.2 summarizes our edge data
center setup. In Section 3.3, we explore different ways of deploying it to the data center nodes. In
Section 3.4, we introduce the Apache Kafka framework, which we use to coordinate the applica-
tion steps and manage communication between them. Section 3.5 explores the design space for
individual containers while considering both latency and throughput constraints. In Section 3.6,
we explain how Face Recognition is deployed at scale.

We detail the deployment of a second data center–level application in Section 6.

3.1 Video Analytics Pipeline

Video analytics is the automatic analysis of video data. For our analysis, we developed and de-
ployed a video analytics application for edge usage called Face Recognition (Figure 2). Though it
uses ML, this application is strictly user-facing, i.e., it uses inference rather than training.

Our implementation of Face Recognition relies heavily on artificial intelligence and ML algo-
rithms implemented in TensorFlow [41]. Given a number of input video streams, the application
parses the videos into individual frames, locates faces within the frames, and identifies each face
as a certain individual. The video streams could represent a surveillance system’s cameras [68],
offline processing of recorded videos, a transaction\less shopping environment [2], or many other
applications where multiple streams are concurrently being fed into the system.

The Face Recognition application consists of four primary processing stages (Figure 2) and
is built from MT-CNNs (multi-task cascaded convolutional networks) [78] along with Google’s
FaceNet [16, 71]. Like many real-world use cases, the application involves multiple inferences per
query.
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Fig. 2. Algorithmic flow of Face Recognition. A video stream enters ingestion for separation into individual

frames. Face detection finds any faces within a frame and produces a thumbnail for each. Feature extraction

generates identifying features for each face. Finally, classification finds a nearest match to known faces to

produce an identity. The shaded ovals indicate the stages where AI compute takes place.

(1) Ingestion is a pre-processing stage that ingests a video stream and parses it into individ-
ual frames. This stage is critical as FaceNet cannot operate directly on video.

(2) Face detection (AI) relies on MT-CNNs to detect any faces within a frame without mak-
ing any effort to identify them. It determines bounding boxes for and produces a 160x160
thumbnail of each face in a frame.

(3) Feature extraction (AI) is built using the Inception-Resnet [72] architecture and pro-
duces a 128-byte vector of essential features that describe each face.

(4) Classification (AI) compares the feature vector for a face against a set of known face
vectors to find the best match by means of a support vector machine (SVM), yielding an
identification.

Face Detection is designed as a pipelined streaming application—it ingests video streams at or
near their native frame rate, injects them into the pipeline, and yields facial identities for frames
after some delay. Even though the overall latency may exceed the time between adjacent frames
in a video stream, because the application is pipelined, the throughput is at or near the native
frame rate.

3.2 Edge Data Center

For our experiments, we utilize a small edge data center built from high-performance servers (see
Table 2). We use over 2,200 processor cores spread across 40+ nodes to ensure that we have a
realistic deployment whose characteristics can scale to larger setups. Each node is equipped with
56 physical cores spread across two sockets, 384 GB of RAM, high-speed local NVMe storage, and
100 Gbps Ethernet. The nodes are connected in a fat tree topology [60].

We rely on industry-standard, open source tools for our deployment. After dividing the appli-
cation algorithm into steps, we deploy the different steps in lightweight Docker [12] containers.
Depending on the resource requirements of a container, it may be deployed in isolation on a data
center node or it may be deployed alongside other containers on the same node. The deployment
of the various containers is managed using Kubernetes [32]. As the application steps are separated
from each other, data has to be communicated between them; for this, we rely on Apache Kafka [5].
We explore these and other details in the remainder of this section.

3.3 Stage Count

As an application, Face Recognition separates its algorithmic steps into discrete stages that coor-
dinate with one another while running independently on separate nodes to produce a legitimate
data center application. Separating the algorithm into multiple coordinated steps allows different
stages of the application to adapt to the speed and requirements of other stages.
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Table 2. Server Details

Component Details

CPU 2× Intel Xeon Platinum 8,176 [25]
Cores 28

Base Frequency 2.10 GHz

Max Turbo Frequency 3.80 GHz

SMT 2-way

LLC 38.5 MB

Memory 384 GB DDR4-2666 [24]
Storage Intel SSD P4510

Read BW 2.85 GB/s

Write BW 1.1 GB/s

Read Latency 77 us

Write Latency 18 us

Network Full duplex 100 Gbps Ethernet

Each server in our data center is well-equipped, using leading-edge technology. Our nodes

are powered by Intel Xeon Platinum 8,176 or comparable CPUs.

Fig. 3. Two possibilities for deploying Face Recognition as a data center application.

Even though there are four logical steps in the Face Recognition algorithm (ingestion, face de-
tection, feature extraction, and classification), in practice this reduces to three. Feature extraction
and classification are tightly coupled and their code is hard to separate. We term the combined
steps, “identification.” This simplification results in a reduced design exploration space.

In optimizing Face Recognition, we explored two designs for separating the algorithm into stages,
shown in Figure 3. In Figure 3(a), the application is separated into its three logical components:
ingestion, face detection, and identification. The ingestion stage, like the algorithmic step of the
same name, is fed a video stream that is parsed into separated video frames. Because the ingestion
and face detection stages exist in separate containers, likely on physically distinct nodes within
the data center, the separated video frames must be transferred between them over the network.
Similarly, the cropped face thumbnails produced by the face detection stage are sent over the
network to the identification stage.

The alternative deployment for Face Recognition is shown in Figure 3(b): ingestion and face
detection are combined into a single ingest/detect stage that operates along with identification. In
this design, ingestion and face detection processes operate within the same container, so frames are
transferred directly between them, leaving only the face thumbnails to be sent over the network
to the identification stage.
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Beyond the obvious difference between the two- and three-stage designs (the three-stage
design imposes greater demands on the network), there is a subtler and more profound difference
that must be considered. In the three-stage design, the junction between the ingestion and face
detection stages is very simple: ingestion always produces one frame at a time at a particular
rate and each frame must run through face detection exactly once. In contrast, the junction
between face detection and identification transfers a variable number of faces and this face count
determines the amount of work to be done in identification. Hence, the compute demands placed
on the identification stage will vary based on the nature of the video streams—a video stream that
captures many faces will demand greater identification processing power. Thus, by decoupling
face detection from identification, we create a point of flexibility where a single face detection (or
ingest/detect) container can be serviced by potentially many identification containers—i.e., load
balancing. The junction between ingestion and face detection has no such requirement.

Both in order to reduce the demands on the network and to combine processing steps where it
makes sense to do so, we adopt the two-stage design (Figure 3(b)). We also utilize one additional
container, the broker, that we discuss in Section 3.4.

The ingest/detect container runs two processes internally, one for ingestion and the other for
face detection. Ingestion processes a video stream (in our experiments, we use a 1920x1080 video
file for deterministic operation) and parses the stream into frames. It resizes the frames to 960x540
before passing them to the face detection process. Face detection produces a thumbnail for each
face in a frame, if any (our video yields zero to five faces and averages 0.64 faces per frame, with face
thumbnails averaging 37 kB each). If no faces are found, identification is not needed; otherwise,
the faces are transferred to the identification container. It consists of a single process (the combined
feature extraction and classification, as mentioned earlier) that processes face thumbnails to yield
an identity.

In accordance with industry practice, we execute all inference directly on the CPU [54]. This
yields the lowest latency, which is critical in a user-facing application.

3.4 Apache Kafka

Communication between containers running on separate nodes within a data center requires in-
telligence and elegance. We rely on Apache Kafka [5] to manage the communication between
ingest/detect and identification, allowing for load balancing and offering rapid adaptation in the
presence node failures. Though there exists a variety of open source tools for building and man-
aging streaming applications [3, 4, 6, 7, 13, 35], we note that these tools tend to rely on a separate
framework for enabling communication between containers. It is common in practice to rely on
Apache Kafka to serve this purpose, and each of these projects has proponents extolling the ben-
efits of using Kafka [47, 59, 65, 66, 75, 77]. We therefore use Kafka directly to coordinate commu-
nication between our containers.

Apache Kafka implements the publish-subscribe pattern of communication [42]. This pattern
operates by relying on an intermediate staging area for data, instead of data producers sending
data directly to data consumers. The intermediate staging area is divided into topics to distinguish
different kinds of data. Data producers publish data (send it to the intermediate staging area) with-
out any knowledge of the data consumers or even a guarantee that any consumers exist. They
simply publish the data as a topic. Similarly, consumers subscribe to a topic, oblivious to all details
about the producers. As producers publish data to a given topic, the data become visible to the
consumers subscribed to the same topic; consumers are then free to process the data.

In Kafka, the intermediate staging area where topic data is stored is implemented in brokers

(these are the brokers mentioned earlier being deployed in their own containers). A topic is imple-
mented by creating partitions—open file handles—typically spread across multiple brokers. When
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Fig. 4. Data center deployment of Face Recognition. Algorithms run as standalone processes in lightweight

Docker containers deployed on separate nodes throughout the data center. Ingestion and face detection both

run in the ingest/detect container while feature extraction and classification are combined in identify. Com-

munication between steps within a container happens internally while communication between containers

is coordinated through Apache Kafka brokers.

a producer publishes data to a topic, it may send that data to any of the partitions, which the
corresponding broker receives and writes to the open file. When a consumer requests data from
a partition, the broker reads it from the same file. In contrast to producers, partitions may have
a maximum of one consumer. Thus, an application should divide a topic into at least as many
partitions as there are consumers in order to maximize parallelism.

The topic partition also serves as the basic unit of replication. Kafka assumes and encourages
data replication for reliability should a broker go down. Each partition has a “leader” and, in the
presence of replication, some number of followers. After new data is written to a leader partition,
it is replicated to the followers. Producers and consumers interact with the broker that holds the
leader partition, while the follower partitions are spread among the remaining brokers. In the event
of a broker failure, one of the follower partitions will become the new leader partition. Unlike
partitions, there are no “leader brokers” or “follower brokers”; both leader and follower partitions
are spread among all available brokers; thus, no one broker is more important or heavily utilized
than any other.

Our data center deployment of Face Recognition is depicted in Figure 4. The ingest/detect con-
tainers function as producers, sending face thumbnails extracted from each frame to brokers as
the “faces” topic. The identification containers are the corresponding consumers, subscribing to
the “faces” topic. The placement of brokers between ingest/detect and identification containers
was chosen to provide load balancing. As we will show in Section 4, the two containers have dif-
ferent latencies; we thus instantiate more identification than ingest/detect containers. By placing
brokers between them, Kafka ensures that the work is spread among the consumers evenly. Each
of the three container images is deployed a set number of times and distributed throughout the
data center. Because of the extremely low network utilization relative to capacity (Section 5.4), the
placement of containers relative to one another in the data center is unimportant. We use a mini-
mum of three broker nodes in all cases to allow for three-way data replication, reflecting common
practice in industry-quality deployments.

When we experimented with the three-stage (four containers: ingestion, face detection, identi-
fication, and brokers) setup, the communication of video frames between ingestion and face detec-
tion was also passed through the brokers. We simply created an additional topic—frames—within
the same set of brokers.

3.5 Container Resources

An important consideration in deploying containers is determining what resources each should
be allocated. Figure 5 shows how the ingest/detect and identification containers perform with
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Fig. 5. Relative computational latency of Face Recognition containers with core scaling. Core scaling shows

very limited effectiveness in decreasing the latency, particularly in identification containers.

increasing core counts. With more cores, both containers complete their operations at lower la-
tency, but they do not scale linearly. Doubling the core count from one to two yields only a 16%
reduction in latency in ingest/detect and a 36% reduction in identification. At larger core counts,
the computational latency actually increases for both containers.

The “correct” allocation of cores to containers depends on the workload requirements. Often in
a data center application the key metric is latency-bounded throughput: maximize the throughput
of the application as long as the latency of individual queries remains below some upper bound.
This is a prominent metric used in MLPerf Inference [57].

For Face Recognition, where we lack a clear latency bound and given the very poor core-scaling
behavior, we optimize for throughput by assigning a single core to each container and arbitrarily
declare that the resulting latency is acceptable. This may not be the case in other applications and
deployments.

3.6 Container Ratios

As discussed in Section 3.3, identification can take a variable amount of time, depending on the
number of faces that need processing. Furthermore, we will see in Section 4 that identification
takes significantly longer to perform its calculations than ingest/detect, even when identifying
only a single face. To ensure that identification can keep up with ingest/detect, we allocate many
more identification than ingest/detect containers.

The precise ratio of identification to ingest/detect containers is dependent upon the characteris-
tics of the video streams and the latency bound. If video streams never contain more than one face
at a time, fewer identification containers are needed. However, even if video streams tend to show
low face counts on average but have large spikes where there are many faces at once, this can
temporarily overwhelm the identification containers and so requires that more such containers
are instantiated. We will see this in our experiments (Section 4.2).

4 AI TAX

We start our exposition of the AI tax by evaluating the end-to-end performance of Face Recognition.
We aim to understand what fraction of the cycles in an AI application go to AI processing versus
the non-AI components. To this end, we examine the lifetime of a frame as it flows through the
AI-centric Face Recognition application. In Section 4.1, we explain how we measure frame progress.
Section 4.2 breaks down the end-to-end progress of a frame in each stage of the pipeline and shows
that AI computation is not so central as one would expect in an AI application. In Section 4.3, we
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Listing. 1. Simplified code showing the basic operation and event gathering of face detection within an

ingest/detect container. The function produce_faces (line 9) operates in an infinite loop (line 11). frame_
queue (line 14) is a multiprocessing data structure to pass frames between the ingestion process and this

process, which operate in the same container. detect_faces is called on line 16 and does the heavy-lifting to

extract faces from frames. Interaction with Kafka brokers (line 19) is extremely simple. We capture high-level

event information, such as the execution time of detect_faces (lines 15 and 17), the number of faces found

(line 24), and the size of the face data (line 25). These events are logged for later processing (line 22).

break down the application behavior in each container and reveal how much supporting compute
is needed to enable AI processing. We show that it is vitally important to view AI application
performance holistically, as it involves much more than just AI processing, and the supporting
code and infrastructure tax have a profound impact on latency.

4.1 Instrumenting the End-to-End Execution

To really understand an AI application deployed in even an edge data center, we must raise the
level of abstraction from how applications are traditionally evaluated. While we do not claim to
have the right level of abstraction for all end-to-end workloads, for Face Recognition, we believe
that we have identified a good level of abstraction for tracking and measuring application progress
without perturbing the application’s original behavior.

Application progress is a sequence of unit steps that are necessary for a frame to progress
through the application. We term the units of application progress “events”; these are high-level
steps in the application and correspond to the stages described in Section 3: video ingestion,
face detection, broker waiting time, and identification. Listing 1 shows simplified Python code
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Fig. 6. Breakdown of end-to-end frame latency. With inference steps in detection and identification stages,

less than 60% of the latency arises from AI stages. Over a third of a frame’s lifetime is spent in brokers.

demonstrating the operation of the face detection process with event-logging code inserted. The
event-logging code in the listing is only slightly simplified from our actual code. Event-based log-
ging lets us track end-to-end application progress. This higher level of abstraction is critical in
enabling engineers to architect at a cluster level, where the complete application executes, instead
of just at a node level.

We log all the events during execution of the application using Elasticsearch [31] and
Logstash [26] running on a separate server. We measure the execution time of each step as well
as the sizes of data that are transferred between stages. This is done using timestamps around the
major regions of interest, e.g., the time to do the face identification excluding the supporting code
(e.g., iteration management). In essence, events capture the major steps that a frame goes through
from beginning to end. We use built-in language functions to measure the size of the data that are
transferred through the brokers. Due to the infeasibility of instrumenting a complex program such
as Kafka, we approximate the broker waiting time event by calculating the time delta between the
end of face detection and the beginning of identification.

Our instrumentation method has negligible overhead and resource requirements, since we are
only logging events. It has minimal impact on the application (see Figure 8).

4.2 AI Applications Are More than Just AI

One of the end user’s primary concerns is latency. In Face Recognition, this is the total time of a
frame progressing serially from ingestion through identification; the latency of any stage that is
not performing AI contributes to the AI tax.

We conduct experiments with 840 ingest/detect processes (producers) executing on 15 nodes
(56 processes per node), 1,680 identification processes (consumers) executing on 30 nodes (56 pro-
cesses per node), and 3 brokers (each given its own node). We require the brokers to maintain
3× data replication, which is standard practice for disaster recovery.

We measure an average face size of 37.3 kB and an end-to-end latency of 351 ms. While this
latency may seem large, there are two points to remember. First, the throughput per stream is
around 10 frames per second (FPS)—and a single stream could be divided among three ingest/detect
instances for 30 FPS operation—regardless of the latency, since the application is pipelined; the
output video still displays smoothly, just with a small delay. Second, there are multiple inferences
per frame, performed sequentially, with the inference stages located on different nodes to improve
performance [50]; the communication between the stages imposes additional latency.

Figure 6 summarizes the average latency for each stage. Ingestion operates quickly, taking only
18.8 ms, while the AI stages, face detection and identification, take 74.8 and 131.5 ms, respectively.
Remarkably, over a third of the end-to-end latency is spent waiting between stages, at 126.1 ms.
As in any real-time application, tail latency is an important factor to consider. We measure a 99th
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Fig. 7. Latency tracks the total number of faces in the system. As the experiment runs, average end-to-end

latency is clearly correlated to the number of average faces per frame; with higher average faces per frame,

the total number of faces in the system is pushed upward, causing more delay through the communication

system.

percentile tail latency of 2.21 s, with the standalone 99th percentile tail latencies of ingestion, detec-
tion, waiting time, and identification at 27 ms, 116 ms, 1.84 s, and 380 ms, respectively. We remind
the reader that these latencies can be improved somewhat by allocating additional cores to each
stage of processing; in our implementation, however, we have chosen to optimize for throughput
over latency.

From the tail latency breakdowns, we see that the end-to-end tail latency derives almost entirely
from the waiting time in the brokers. This waiting time in turn results, at least in part, from con-
gestion in the application. As shown in Figure 7, when ingest/detect processes collectively produce
a surplus of faces, identification has a hard time keeping up, leaving the faces in the brokers for
a longer time. When there are almost no faces detected, identification containers are almost idle
and so are able to fetch the few faces quickly.

In summary, deep learning inference performance is more than just the performance of an indi-
vidual node in the system. Even with a well-balanced system, there is a substantial AI tax latency
imposed in managing the transfer of data between the nodes (i.e., the detection and identification
stages). Without looking at the end-to-end latency, one would not realize that a large portion of
time is spent waiting at brokers. This observation is not unique to our application; any application
built on Apache Kafka (or a similarly brokered communication mechanism) will face this reality.

4.3 Overhead of Pre- and Post-Processing AI

Most AI research papers focus only on the core AI component, neglecting the other associated parts
that are essential to end-to-end AI processing. However, there are pre- and post-processing steps
that are unavoidable. Both play a critical role in the overall latency and both contribute to the AI
tax. Pre-processing involves preparing the data for the AI kernel execution, while post-processing
is loosely defined as any processing that is performed to convert the generated AI result(s) into
something meaningful to the user or next stage.

To quantify the AI tax for pre- and post-processing, we refine our view of a frame’s processing
by looking at the time breakdown of each process using code profiling tools. Figure 8 shows, for
each of the main processes (ingestion, detection, and identification), where time is spent.

Ingestion is exclusively a pre-processing stage. It shows a nearly even split between frame ex-
traction and frame resizing (Figure 8(a)). Extraction refers to parsing the incoming video stream
into individual frames. Resizing converts frames from 1920x1080 to 960x540 for the detection
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Fig. 8. Process CPU time breakdowns. Though ingestion uses no AI algorithms, it consists of straightforward

image processing algorithms, which should be easily accelerated [62]. Face identification is overwhelmingly

AI-centric. In contrast, face detection relies heavily on supporting code to enable its AI processing.

stage. The remaining time is split between the overhead of event logging and other supporting
code, including transferring frames to the co-located detection process.

During face detection (Figure 8(b)), despite being an AI-centric stage, only 42% of the time is
spent executing the AI algorithm in TensorFlow. Cropping and resizing faces (to 160x160) for iden-
tification takes 25% of the time; supporting TensorFlow and NumPy code (pre- and post-processing
for each frame) take 6% and 4%, respectively; and “other” code takes a whopping 13% of the time.
Code in the “other” category includes inter-process communication (from the ingest stage), addi-
tional matrix manipulation, loop management, bounding box calculation, image encoding, and so
forth.

The AI-centric identification stage has a markedly different breakdown. It spends 88% of its
time directly executing AI algorithms; Kafka code, though, takes 8% of the time. The remaining
components contribute little to the total time.

Beyond the pre-processing of the ingestion stage, end-to-end Face Recognition requires substan-
tial pre- and post-processing within the AI-centric stages. In face detection, non-AI computation
constitutes 57.6% of the compute cycles. In identification, that figure drops to 12.4%, which is still
far from trivial. In a complex and diverse AI-centric application such as Face Recognition, AI compu-
tation constitutes 55.2% of end-to-end cycles, with the remainder going to supporting code: 17.8%
to resizing, 9.0% to networking, 5.2% to tensor preparation, 3.6% to Kafka processing (outside of
the brokers), and the rest to other supporting tasks.

In summary, despite the massive excitement surrounding AI algorithms, AI workloads are more
than just tensors and neural networks: without the supporting code, AI is impotent. We emphasize
that the supporting code, far from being a minor player in a complete application, constitutes over
40% of the compute cycles, not counting the compute time in the brokers. The pre- and post-
processing code is executed on the general-purpose CPU, so it motivates the need to understand
the role of the CPU as AI acceleration increases.
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Fig. 9. Projected speedups of individual processes. Amdahl’s law predicts that the realized speedups of ac-

celerated AI diminish quickly, approaching an asymptote far short of the speedups of AI accelerators.

5 ACCELERATING AI AND ITS IMPLICATION ON AI TAX

There are numerous efforts underway to accelerate AI [9, 15, 18, 22, 29, 43, 63, 76]. But given
the significance of the AI tax in end-to-end AI performance and in pre- and post-processing, it
is important to understand how the tax evolves as AI is accelerated and its impact on the overall
end-to-end application performance; there are performance limitations that arise beyond a certain
point of AI acceleration. To build a balanced system, it is important to understand these limits.

We therefore study how varying degrees of AI speedup affect the end-to-end performance of
our video analytics workload. In general, we could foresee accelerated AI coming about in var-
ious ways: CPU manufacturers may decide to integrate ML-centric hardware directly into the
CPU execution pipeline; or dedicated off-chip accelerators may be utilized, including highly par-
allel pipelines (such as GPUs) and dedicated inference engines (such as Intel’s Neural Compute
Stick [22], Habana’s Goya inference processor [21], or Google’s Coral Edge TPU [9]). Compar-
isons of the efficacy of each of these solutions is the subject of other work. In this work, we look
at the impact of theoretical speedups, regardless of how the speedups are achieved.

In this section, we explore the impact of accelerating AI applications up to 32×, based on the per-
formance of existing accelerators. Habana reports that its Goya processor achieves 13.5× speedup
over a two-socket Intel Xeon Platinum 8,180 [74].1 We explore speedups approximately twice as
great as this (up to 32×) in order to account for future advances.

Section 5.1 analytically estimates accelerated AI performance to show its asymptotic limits.
Section 5.2 introduces our technique for emulating accelerated workloads on current hardware.
In Section 5.3, we evaluate the performance of accelerated processing and discover a quickly ap-
proaching bottleneck. Section 5.4 shows that the bottleneck results from overwhelming the sys-
tem’s capacity to write to storage. We finish by showing in Section 5.5 how frames’ waiting time
in brokers grows as a fraction of end-to-end latency.

5.1 Analytical Speedups for AI Acceleration

The AI tax means that a significant portion of an AI application’s compute cycles are spent on
tasks other than AI and ML, and Amdahl’s law dictates that the overall speedup of a system is
limited by the portion of execution that is not accelerated. Application of Amdahl’s law (Figure 9)
shows that each of the three primary processes—ingestion, detection, and identification—is limited
in how much real-world speedup it can enjoy if AI is accelerated in isolation. Ingestion, which

1Other than its faster clock, the 8,180 CPU is identical to the 8,176 CPUs we use.
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performs no AI compute, naturally derives no benefit from acceleration. Detection, which is 42%
AI, rapidly approaches its asymptotic speedup of just 1.74×, achieving 1.59× overall speedup at
8× acceleration and 1.66× overall speedup at 16× acceleration. Identification, at 88% AI, has an
asymptotic speedup limit of just 8×. At 16× AI acceleration it achieves 5.6× overall speedup, and
even at 32× AI acceleration it shows just 6.6× overall speedup.

The exciting speedups promised by up-and-coming inference accelerators will be severely mod-
erated by the reality of the supporting, non-AI code—the AI tax. With the fervor surrounding ac-
celeration of AI and ML, these results from Amdahl’s law serve as an important reminder that
AI applications are more than ML computation. Supporting and enabling code is a critical compo-
nent of an end-to-end application and this should serve as a call to action to address the limitations
imposed by that code.

5.2 Emulating AI Acceleration on Hardware

It is instructive to see how the AI tax evolves as compute is universally accelerated (i.e., overcom-
ing the asymptotic limits of Section 5.1) on a real system. To do so, we emulate the behavior of
accelerated processing. Only the most basic loop controls and Kafka code are left in their original
state.

Our emulated acceleration technique relies on the observation that, from the perspective of
application progress, the perspective of network traffic, and the perspective of the brokers, it is
impossible to distinguish between (1) running the real application as has been described and char-
acterized and (2) implementing artificial delays reflective of the actual compute times (Section 4)
and sending meaningless data over the network of the same size as in the real application. In accel-
erated Face Recognition, rather than accelerating and executing the real algorithms, we replace the
compute with calls to sleep, where the sleep duration is reflective of measured execution times
(Section 4.1). Accordingly, rather than sending face thumbnails to brokers, we send meaningless
data whose size matches the measured sizes. We can accelerate processing (both ingest/detect and
identification) by an arbitrary factor by dividing the sleep times by the speedup factor. In this way,
we maintain the behavior of the brokers, network, storage, and supporting code while exploring
how acceleration changes the AI tax.

We emphasize that this AI acceleration emulation provides realistic performance estimation
under acceleration because (1) the most basic general-purpose processing (the support code to
iterate through available frames, code to coordinate communication with Kafka brokers, the bro-
kers themselves, etc.) remains in place and is executed as usual without the benefits of acceleration;
(2) from the perspective of the data center, compute time spent executing real algorithms and wait-
ing in sleep are identical; and (3) the brokers are completely ignorant of and unconcerned with
the execution details of both producers and consumers. Thus, our setup to accelerate AI through
emulation provides a realistic and believable look at the impact of faster AI on the data center and
on the workload as a whole.

5.3 Accelerated AI Impact on Total Speedup

We explore how the end-to-end frame latency will evolve as AI benefits from increasingly powerful
acceleration. For this analysis, we assume that the AI algorithms will experience no latency over-
head from acceleration-i.e., we assume that the latency to communicate with dedicated off-chip
accelerators is factored into the emulated speeds, or, equivalently, that future CPU architectures
will directly integrate accelerator hardware into their execution pipelines.

For these experiments, we maintain the same application organization as depicted in Figure 4.
As we accelerate producers and consumers equally, the imbalance between the two will persist, so
it is important to utilize Kafka’s load balancing features at the interface between the two.
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Fig. 10. Average frame latency and throughput under increasing AI acceleration. Beyond 8x speedup, the

increased throughput leads to an unbalanced system. Queueing theory dictates that if elements enter the

system faster than they leave, the latency increases to infinity.

For the sake of simplicity and repeatability and without loss of generality, we configure these
emulation experiments so that each frame produces exactly one face. This has two impacts on
performance: (1) on average, this is more faces per frame than produced by the video file used
previously, which yields 0.64 faces per frame on average; and (2) because the rate of face production
is constant, we do not have to provision our cluster to handle sudden spikes in traffic, allowing us
to deploy fewer identification instances than for the video file. None of the conclusions we draw
from these experiments is invalidated by these these two observations.

Figure 10 shows the effects of accelerating the AI components of Face Recognition. Note that
because we assume one face per frame, which is significantly higher than the 0.64 faces per frame
average produced by our default video file, the average end-to-end latency is somewhat higher at
1× speed than in Section 4.2. At higher speedups, we see a twofold benefit: first, the latency is very
clearly reduced; second, the throughput is commensurately increased.

At 8× speedup, we see a new manifestation of the AI tax, with latency tending toward infinity—
the longer the experiment runs, the larger the latency grows. This is an example of an unstable
system in queueing theory: faces are entering the system more quickly than they are leaving.
This is a major limitation that can severely hamper the prospects of AI acceleration and demands
further investigation.

5.4 Network and Storage Bandwidth Limits

With state-of-the-art industry accelerators claiming improvements of up to 15× in inference
speedup over CPUs [18], it is critical to understand why the system becomes unbalanced at 8×
acceleration. Without this insight, it will be difficult to build systems to accommodate higher ac-
celeration factors.

Intuitively, we suspect the imbalance results from the increased throughput of the system over-
whelming one of two resources with limited bandwidth: either network or storage bandwidth. We
measure the utilization of both bandwidths to understand the problem at increased acceleration
factors (i.e., greater than 8×). In Figure 11(a), the network bandwidth utilization of all container
types rises with increasing acceleration factor. Unsurprisingly, producer (ingest/detect containers)
network read bandwidth is next to zero, as is consumer (identification containers) write bandwidth.
Conversely, producer write and consumer read bandwidths are comparable. But the real network
bandwidth hot spot is the brokers—as the point of communication between producers and con-
sumers, they must process all network traffic generated by the producers or read by the consumers.
However, even the combined network traffic flowing through the brokers constitutes a small
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Fig. 11. Network and storage bandwidth utilization under acceleration. Whereas network utilization never

exceeds 6% of network capacity, storage bandwidth utilization exceeds 67% of capacity at 8x acceleration.

Storage bandwidth becomes a bottleneck much sooner than network bandwidth.

portion of the available bandwidth: at 8× accelerated AI, the read bandwidth is only 6 Gbps, a
mere 6% of the available 100 Gbps.

Figure 11(b) shows the storage bandwidth requirements of the brokers. We omit the data for the
producer and consumer containers, as their storage behaviors are not preserved by our emulation
technique and are nevertheless expected to be near zero, as they work largely out of memory. The
brokers, however, have rather high bandwidth requirements. Even at native (1×) speed, the write
bandwidth is 10% of capacity (1.1 GB/s). At 8× acceleration, that rises to over 67%.

With the overhead of the operating system, managing the file system, and coordinating all the
small requests to be written to storage, by 8× acceleration, 67% utilization has effectively saturated
the available bandwidth. Returning to queueing theory, the inability of storage to write data to
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storage (and make it available to the consumers) as fast as it is supplied leads to the imbalance and
growing latency.

We note that data reads, however, use essentially none of the available bandwidth. This is easily
understood: brokers are tasked with ensuring data reliability, so they must write producer data to
storage, but the operating system can also cache the data in memory, allowing reads directly from
memory and bypassing the storage read path.

Doubtless, fine-tuning the brokers’ parameters could allow them to better utilize the storage
bandwidth. An in-depth exploration of the Apache Kafka parameter space is not, however, the
purpose of this article. Regardless of the ability of the brokers to utilize available bandwidth, they
will hit a hard limit at the specifications of the hardware devices.

In a setup with a more conservative network bandwidth (e.g., 10 Gbps), both the storage and
the network would quickly become bottlenecks when accelerating compute.

Thus, the increased throughput of a moderately accelerated end-to-end system creates a new
AI tax that quickly overwhelms the communication substrate, counteracting the gains achieved
through hardware acceleration of AI.

5.5 Increase in Waiting Time

Furthermore, whereas the waiting time at 1× speed constitutes 64.6% of the total latency of a
frame (Figure 10), it grows to 66.4% at 2×, 68.0% at 4.0×, and 79.1% at 6×. This trend can be par-
tially understood by Kafka’s automatic batching between brokers and consumers and producers.
A message from a producer can be held in the producer for a small amount of time until a larger
group of messages has been accumulated to be sent as a batch. Similarly, when a consumer re-
quests available messages from a broker, the broker can withhold messages until there exists some
minimum amount of data. Thus, the broker time grows with the decrease in compute time to im-
prove batching. Both batching behaviors are limited by timeouts to ensure that neither producer
nor consumer waits excessively long. We have tuned these parameters to find settings that ensure
good behavior across a variety of experiments. Nevertheless, the time spent waiting between pro-
ducers and consumers approaches some lower limit beyond which no amount of tuning can help;
in an application that has many more stages than Face Recognition, this minimum waiting time
could accumulate across stages and prove prohibitively long.

6 GENERALIZABILITY OF FINDINGS

We recognize that our research is a case study of a single application. While case studies are often
undervalued—despite shedding light on an application that is valuable in its own right and pio-
neering an evaluation approach [67]—we nevertheless acknowledge that evaluation of additional
applications is beneficial. We therefore discuss some findings on a second application, Object De-

tection, that was deployed similarly using Kafka in our edge data center. While we do not study
Object Detection in the same detail as Face Recognition, we discuss here some results showing that
this additional application faces AI tax bottlenecks as well. In Section 6.1, we describe the purpose
and design of the application. We look at the AI tax in Object Detection when running natively
(Section 6.2) and when accelerated (Section 6.3).

6.1 Object Detection

Like Face Recognition, Object Detection analyzes video streams in real-time. Instead of recognizing
faces, though, Object Detection uses an R-CNN [69] to identify multiple objects in each frame. Also
like Face Recognition, Object Detection is split into two stages with Kafka brokers serving to transfer
data between them. The two stages are termed ingestion and detection. Ingestion ingests a video
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Fig. 12. Relative computational latency of Object Detection’s detection containers with core scaling. Core

scaling shows very good efficiency in reducing runtime, particularly compared to Face Recognition.

Fig. 13. Breakdown of Object Recognition average end-to-end frame latency. Unlike Face Recognition, Object

Detection performs no AI computation in its initial stage (Ingestion); hence, it is orders of magnitude faster

than the Recognition stage, where all the AI computation is performed.

stream, parsing it into separate frames, and passes those frames through Kafka to detection. AI
compute is exclusively performed in this later stage in the R-CNN.

Unlike Face Recognition, wherein the presence or absence of faces in a frame dictates whether
and how much data is sent through Kafka, in this application each frame is always sent. This
decreases the variability in system load, as each detection instance always has to process precisely
one frame at a time.

As shown in Figure 12, the detection stage of Object Detection shows near linear speedups with
increasing core count. Through testing, we determined to allocate 14 cores per container; this
allows us to instantiate four detection containers per server. Despite this, the ingestion stage op-
erates orders of magnitude faster than the detection stage (see Section 6.2); we limit the ingestion
rate to 30 frames per second. To balance that ingestion rate, we instantiate 96 detection containers
for each ingestion container.

6.2 AI Tax

Figure 13 shows the end-to-end frame latency breakdown. The first stage, ingestion, performs no
AI. As such, it completes very quickly, in only 4.5 ms. As stated, we limit the ingestion rate to
30 FPS, so for practical purposes this time is really 33.3 ms. In contrast, the final stage, detection,
does all of the AI processing and weighs in at an impressive 687 ms. Waiting time in the brokers
is nearly as long, averaging 629 ms.
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Fig. 14. Object Detection average frame latency and throughput under increasing AI acceleration.

6.3 Acceleration

Using our acceleration emulation methodology, we explore the implications of accelerating
Object Detection. Given the large number of cores needed for each detection instance, and given
the limited size of our cluster, we assign only a single core to each detection instance for these
experiments, allowing us to deploy significantly more ingestion instances than we would be able
to otherwise. This is feasible because the emulation methodology does not care about number
of cores and because in an accelerated data center setup, it may be very possible to support the
higher instance count.

We maintain the same ratio of producers to consumers as in our real setup, but by increasing
the density of consumers we are able to scale up the experiments significantly. We use a single
producer node but instantiate 21 producers on it and we use 36 consumers nodes, each with 56
consumers. We continue to use three brokers.

Since we already decided to limit the frame rate to 30 FPS, we continue this practice. With
increasing acceleration, we increase the number of frames we send—effectively, the acceleration
factor dictates the number of simultaneous video feeds each producer can process. Thus, at 2×
acceleration, each producer sends frames at 30 FPS but it sends two frames at a time instead of
one; similarly, at 8× acceleration, a producer sends eight frames at 30 FPS, and so on.

Figure 14 shows the results of acceleration. Despite the significantly lower count of producers
compared to Face Recognition, we still see performance begin to degrade after 4× acceleration. By
12×, the average latency is not yet infinite, though it does exceed 3,000 ms. But at 16× and above,
the average end-to-end latency again tends toward infinity.

While we see the broker waiting time begin to grow at 6× and particularly 12× acceleration
(suggesting that the brokers are probably again facing a storage bottleneck), the real bottleneck
in this application arises from a new category entirely. In Figure 14, we have added a “Delay”
category for latency components; this component represents the time between when a frame (or
set of frames) was supposed to start processing in ingestion and when it actually starts processing.
This delay arises from a set of frames taking longer than 33.3 ms (30 FPS) and delaying the start
of the subsequent set of frames.

This ingestion delay represents a new manifestation of the AI tax we had not seen previously.
For every set of frames, we have opted to send each frame to the brokers separately; this ensures
that they can be fully load balanced by the brokers. However, the time required to send the full set
of frames rapidly grows with the larger set sizes, so that it soon exceeds the time allotted to each
set: at 4.5 ms per frame, sending just eight frames should take approximately 36 ms, exceeding
the allotted 33.3 ms. Kafka is well designed, however, so the producers and the brokers manage to
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intelligently batch the frames before sending them; this means that at 8× and 12× speedup, Kafka
manages to keep the “Delay” time manageable. But by 16× speedup, the AI tax from sending so
many items so rapidly overwhelms the capacity of the producers to keep up.

We see this bottleneck reflected in the throughput as well. At 1×, the throughput is 630 FPS, as
expected. That scales pretty well up to 8× speedup, but it falls short of what is expected at 12×
and the system saturates by 16× speedup.

7 AI-CENTRIC DATA CENTER DESIGN

As future accelerators emerge, we seek to unlock higher speedups. In Section 5, we saw that in
an accelerated AI environment, the AI tax overwhelms the communication mechanism; in partic-
ular, the storage medium is quickly saturated at relatively modest emulated compute acceleration
speeds. So in Section 7.1, we explore two avenues to overcoming this bottleneck. Implementing
these solutions to the tax translates to actual monetary cost, as shown in Section 7.2. We show in
Section 7.3 that a purpose-built edge data center can address the tax with increased capacity to
handle accelerated compute at lower TCO.

7.1 Unlocking Higher Speedups

There are three ways to deal with the limitation in the storage bandwidth: (1) utilize faster storage
in the existing brokers, either through a faster storage medium (e.g., Intel Optane [23]) or through
multiple drives operating in parallel; (2) create more storage bandwidth by allocating additional
brokers; or (3) decrease the size of the face thumbnails, thus demanding less bandwidth. We explore
all three methods (Figure 15), first increasing the installed drive count from one to four to provide
greater bandwidth to each broker node, then increasing the broker count from three to eight across
distinct broker nodes, and finally decreasing the face thumbnails down to one-eighth their original
size.

Increasing the Bandwidth. The effect of additional storage bandwidth on the existing nodes is
captured in Figure 15(a). For these experiments, we instantiated additional broker instances on
each broker node (one for each drive) to ensure that each drive is given the same access to com-
pute and memory resources; in practice, only one broker should be instantiated per node to avoid
replicating data on the same node. In the figure, we start with 8× speedup—the speedup that sent
latency to infinity in the previous experiments—and increase the emulated speedup to 32×. With
just one NVMe drive, the average end-to-end frame latency is infinite (depicted by the latency bar
extending beyond the limits of the chart) at 8× and all higher speedups. These experiments rely on
additional drives being installed only in the brokers—in our case, there are three of them; the re-
mainder of the servers remain unaltered from their original configuration. In increasing the storage
bandwidth by going from one drive to two drives, both 8× and 12× speedups are “unlocked”—the
system gains the ability to support compute of these speeds. With three drives, the system supports
up to 24× speedup, and with four drives, 32× is unlocked.

Spreading the Load. Rather than installing additional drives in each of the brokers, we can instan-
tiate additional brokers in the data center. This spreads out the load on storage to more brokers and
hence more drives. Returning each broker to its default storage configuration (one NVMe drive),
we repeat our experiments with four, six, and eight brokers.

With three brokers, as we saw before, any acceleration factor at or above 8× leads to infinite la-
tency. A small 33% increase in the broker count (going from three to four brokers), however, allows
the system to handle the 8× factor, while a 2× broker increase allows for up to 16× acceleration.
At eight brokers, the system can handle a 32× factor.

ACM Transactions on Computer Systems, Vol. 37, No. 1–4, Article 3. Publication date: March 2021.



AI Tax: The Hidden Cost of AI Data Center Applications 3:25

Fig. 15. Average frame latency under accelerated AI. The higher bandwidth demands can be accommodated

by allocating extra bandwidth or reducing face thumbnail sizes.

We find an important distinction between adding additional drives to existing brokers and
adding additional brokers: the latter is more efficient. To achieve the ability for the system to
support 32× accelerated AI compute, we had to increase the number of drives by a factor of 4;
in contrast, we had to increase the broker count by 2.7× (going from three brokers to eight) for
the same performance achievement. The significantly lower increase in storage bandwidth in the
increased-brokers approach indicates that brokers may also benefit from having additional com-
pute capacity, memory bandwidth, or network bandwidth available.

Decreasing the Demand. There exists one additional possibility for reining in the bandwidth
demands on the storage: decrease the volume of data that needs to be stored. Rather than spreading
the data among additional brokers, the data volume can be reduced by decreasing the average size
of face thumbnails. Figure 15(c) shows the effect of face sizes at one-half, one-quarter, and one-
eighth their original size. Similar to increasing the bandwidth in each broker, we see that the
smaller face sizes use a smaller portion of the available bandwidth and so increase the maximum
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Table 3. Homogeneous Data Center Equipment

Component Price (US$) Quantity

Dell PowerEdge R740xd (base server) $28,731 1,024
Intel Xeon Platinum 8,176 Included 2
32 GB DDR4 SDRAM Included 12
Intel SSD DC P4510 1 TB (NVMe SSD) $399 1
Mellanox MCX415A (100 GbE adapter) $660 1

Mellanox MSN2700-CS2F (100 GbE switch for fat-tree topology) $17,285 160
Mellanox MCP1600 (100 GbE cable) $100 3,072
Total $33,577,760

In a homogeneous data center similar to (but larger than) our own, there is considerable expense in ensuring that all

components are equally equipped. The equipment cost of a 1,024-node data center would be around US$30.9 million.

supportable speedup, but without instantiating additional brokers or installing additional storage
devices.

This solution, however, comes with serious tradeoffs. Decreasing face size using compression
would require additional compute time, potentially offsetting much or all of the accelerator gains.
Decreasing face size by using smaller thumbnails changes the algorithm and can detrimentally
impact accuracy. Due to these severe limitations of this approach, we will focus on the previous
two solutions.

7.2 The Cost of the AI Tax in the Data Center

A typical and simple approach that customers rely on to build an edge data center is to aim for
homogeneity across servers (i.e., all of the server components are literally identical across the
machines). But in a specialized application domain, such as edge video analytics, this ignores the
unique characteristics of the applications and either significantly over-provisions some resources
or severely handicaps application performance, leading to suboptimal TCO.

Table 3 shows the basic computing and networking equipment needed to build a homogeneous
1,024-node edge data center similar in compute capabilities to our own setup. This design gives
each node comparable equipment to that used in our experiments: two 28-core processors, 384 GB
of RAM, 100 Gbps interconnect, and a single NVMe drive. The nodes are connected in a three-level
fat-tree topology using 32-port Mellanox Ethernet switches. This topology ensures full-speed non-
blocking network connectivity to each node.

Using an open source TCO calculator from Coolan [36] to include power (servers, networking
equipment, cooling, etc.), rack equipment, cabling costs, and so forth, and assuming a 3-year amor-
tization life, we estimate a yearly cost of US$10.2 million for server equipment, US$1.3 million for
network equipment, and US$1.4 million for power, for a total yearly cost of US$12.9 million.

While common wisdom regarding data centers suggests that the majority of the TCO is spent on
power (including powering cooling equipment), simple analysis shows this is not necessarily the
case. Each of the servers in our hypothetical data center is equipped with a 750 W power supply,
while Mellanox reports that its routers can consume a maximum of 398 W [37]. This yields a total
maximum power consumption of 921 kW. Cooling is estimated to require approximately as much
power as the compute resources [10, 20], bringing the total to 1,842 kW. Assuming US$0.10 per
kilowatt hour, operating the data center would cost US$184 per hour or US$1.61 million per year
under maximum load.

To accommodate up to 32× accelerated compute in AI, we must either install three additional
drives in each node (to maintain homogeneity) or designate a large number of the nodes as brokers.

ACM Transactions on Computer Systems, Vol. 37, No. 1–4, Article 3. Publication date: March 2021.



AI Tax: The Hidden Cost of AI Data Center Applications 3:27

Table 4. Video Analytics-Targeted Data Center Equipment

Component Price (US$) Quantity

Dell PowerEdge R740xd (compute server) $28,731 867
Intel Xeon Platinum 8,176 Included 2
32 GB DDR4 SDRAM Included 12
Mellanox MCX411A (10 GbE adapter) $180 1

Dell PowerEdge R740xd (broker server) $11,016 157
Intel Xeon Bronze 3,104 Included 2
32 GB DDR4 SDRAM Included 12
Mellanox MCX413A (50 GbE adapter) $395 1
Intel SSD DC P4510 1 TB (NVMe SSD) $399 4

Mellanox MSN2700-CS2F (100 GbE switch) $17,285 28
Mellanox MSN2700-BS2F (40 GbE switch) $10,635 14
Mellanox MFA7A20-C010 (optical splitter 100 GbE to 2× 50 GbE) $1,165 7
Mellanox MC2609130-003 (copper splitter 40 GbE to 4× 10 GbE) $90 217
Mellanox MCP7H00-G002R (copper splitter 100 GbE to 2× 50 GbE) $140 79
Mellanox MFA1A00-C030 (optical 100 GbE interconnect) $515 192
Total $27,878,431

We use network splitter cables to supply 50 Gbps network to the brokers and, in combination with slower switches,

10 Gbps network to the compute nodes. This offers significant savings on network equipment. Further, we only install

NVMe drives in the broker nodes, which are equipped with less compute power than the compute nodes.

Adding the additional NVMe drives costs US$1.23 million. Instead, we designate 157 of the nodes
as brokers, 289 as producers, and 578 as consumers. This maintains the ratio of each node type as
in our original Face Recognition experiments (15 producer and 30 consumer nodes, though with
8 brokers instead of 3) to enable support for 32× accelerated AI. Extrapolating from Figure 11(a),
we estimate each producer and consumer node will consume approximately 4 Gbps of network
bandwidth and each broker node 24 Gbps. The broker nodes demand less than 9 Gbps (or 1.1 GB/s)
of storage write bandwidth.

7.3 AI-Specific Edge Data Center

The homogeneous data center was designed to be generic, capable of executing a variety of ap-
plication classes; hence, we had to adapt the application to the data center, resulting in hugely
over-provisioned network and storage. The producers and consumers constitute over 84% of the
data center and use only 4% of the available network capacity and essentially none of the stor-
age bandwidth. The brokers use a respectable 24% of the network capacity and basically all of the
storage bandwidth but use very little of the compute capacity. This shows extremely inefficient
allocation of limited resources in the data center. But we can do better.

Instead of forcing the application to fit into an existing data center, we propose building a data
center that fits the application. We recommend a purpose-built data center that specifically targets
the broker-specific AI tax (the demand for storage bandwidth). The AI tax, if not accounted for, can
translate to non-trivial real-world costs that can drastically affect end users’ needs. In contrast, by
understanding the AI tax and designing to it, we demonstrate that a moderately sized edge data
center can be purpose-built to better address the AI tax while yielding meaningful cost savings.

In Table 4, we see the equipment needed for this setup, designed to support up to 32× AI accel-
eration. In this scenario, we utilize the same highly parallel servers as in Table 3 for producers and
consumers but limit the network bandwidth on these nodes to only 10 Gbps and install only basic
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Fig. 16. Possible network configuration for an accelerated AI-centric edge data center. This network con-

figuration is fundamentally a fat-tree built from 100 Gbps switches. However, since no node needs the full

100 Gbps bandwidth, we subdivide it. Mellanox offers splitter cables that split, for example, a 100 Gbps con-

nection into two 50 Gbps or four 25 Gbps connections. Each pair of broker nodes shares a 100 Gbps port.

Rather than providing each producer/consumer node with 50 or even 25 Gbps, we further subdivide the net-

work connection speed using 32-port 40 Gbps switches. To provide full bandwidth to the 40 Gbps switches,

each 100 Gbps port is split into two 50 Gbps connections, both of which are connected to the same 40 Gbps

switch. Thus, the aggregate bandwidth provided to a 40 Gbps switch is 800 Gbps, of which the switch can use

640 Gbps. A 100 Gbps switch can connect two 40 Gbps switches. The slower switches use four-way splitter

cables providing each producer/consumer node with a 10 Gbps network.

storage for operating each server. The broker nodes, in contrast, are built on far less parallel but
still impressive CPUs, while enjoying 50 Gbps network connections and four NVMe SSDs.

We illustrate in Figure 16 a simple network solution that could provide the designated band-
widths to each server. At its heart, the network is still a fat-tree built from 100 Gbps Mellanox
switches, but, using Mellanox splitter cables and slower 40 Gbps switches, broker nodes are
provided with 50 Gbps connections while producer and consumer nodes get 10 Gbps connections.
A single edge switch can connect 32 broker nodes or 128 producer/consumer nodes. We can thus
build the complete data center using a two-level fat-tree of just 28 100 Gbps switches (12 edge and
16 core); seven edge switches connect to a total of fourteen 40 Gbps switches and five connect to
the 157 brokers.

In designing this purpose-built data center, we wanted to avoid limiting potential advancements
or upgrades during the lifetime of the data center. We designed it with double the anticipated
requirements for network and storage bandwidth. The brokers were designed to accommodate the
32× speedup in two separate ways. First, we maintained the higher ratio of brokers to compute
nodes, just as we did in the homogeneous design; second, we allocated four times the storage
devices and bandwidth to each broker. Either one of these solutions on its own would have been
adequate to accommodate the compute speedup. Furthermore, by giving 50 Gbps and 10 Gbps
network connections to the broker and compute nodes, respectively, we have allowed them to
grow to double their anticipated needs. In combination, we have given the data center the ability
to adapt to unanticipated application speedups during its intended lifetime.

Our purpose-built data center incurs an equipment cost of US$27.9 million with a yearly power
cost of US$1.4 million for a 3-year amortized yearly total cost of ownership of US$10.8 million.
This is 16.6% lower than the TCO of the homogeneous data center while being better equipped to
handle future accelerated compute.

8 RELATED WORK

We build on prior work that enabled and rapidly expanded AI and ML applications. Unlike most
of the prior work, however, we explore the implications of accelerating AI computation and how
it affects an end-to-end application flow. We present related work in five categories: (1) AI and ML
benchmarking, (2) integrating AI and ML, (3) end-to-end application flow studies, (4) exploiting
heterogeneity, and (5) edge data centers.
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Benchmarking. MLPerf is one of the leading resources for benchmarking ML-related com-
pute [28, 57]. It provides flexibility for benchmarking a variety of hardware across a variety of
ML kernels, but it entirely ignores the issue of end-to-end application behavior and performance.
In our work, we demonstrate the central importance of understanding the end-to-end application,
showing that each ML kernel can constitute a relatively small portion of the pipeline and that truly
optimizing ML performance requires a more holistic view of the system.

Integrated AI. In presenting the scale and deployment of ML workloads at Facebook, Hazelwood
et al. acknowledged the importance of pre-processing data for training and emphasized its stress
on storage, network, and CPU [54]. They acknowledged the potentially high latency of inference
for top quality models but did not expose the overhead of pre- and post-processing. Nor did they
discuss the resource requirements of streaming inference workloads. We emphasize both of these
to show how they can pose a barrier to overall performance improvement from AI acceleration.

Microsoft recognizes the importance of latency in the data center particularly as it applies to
deep neural networks [33]. Chung et al. presented Microsoft’s Project Brainwave, which imple-
ments DNNs largely in FPGAs distributed throughout the data center, emphasizing the importance
of accelerating increasingly complex DNNs [45]. In contrast, this work emphasizes the importance
of the enabling code for AI and assumes that accelerating AI and ML will be successful, instead
looking at its ultimate impact on the larger workflow.

End-to-End Application Flows. Though not specific to AI workloads, Kanev et al. offered a com-
prehensive look at the trends of warehouse-scale computing at Google [58]. They quantified data
center “taxes”—overheads that come with applications but do not directly contribute to the end
result, including compression, communication serialization, and remote procedure calls. We show
that the brokers act as a tax, coordinating the activities of a distributed application.

Other work has broken down the end-to-end latency of requests, at various levels of granularity,
ranging from evaluation of Internet speed and programming language patterns to operating sys-
tem scheduling and memory latency [44, 61]. This more closely matches our contribution, though
our analysis is restricted to latency within the data center and is focused specifically on the com-
mon communication base (Apache Kafka) of open source streaming frameworks in an effort to
bring perspective to end-to-end AI application flows.

Heterogeneous Execution. Prior works sought to exploit the heterogeneity in a data center, pro-
ducing benefits in speed, energy consumption, and operating costs [53, 64]. Where these papers
sought to capitalize on unintentional heterogeneity (arising from workload co-location and, e.g.,
later upgrades), we extol the benefits of intentionally designing an on-premise data center with
heterogeneous servers and network. We thereby add hardware cost savings to the existing benefits
of data center heterogeneity.

Edge Data Centers. Hewlett Packard Enterprise recently demonstrated that cloud-based com-
puting is often not the most cost-effective solution [48]. Their analysis showed for a well-utilized
edge data center, TCO can be drastically lower than comparable capabilities in the cloud. Our work
extends that idea, showing how the on-premise data center can be specifically tailored to the needs
of AI applications.

9 CONCLUSION

It is easy to get caught up in the excitement of AI and ML; this work has brought context to those
advancements, elucidating an AI tax, and serves as a call to action to address limiters of perfor-
mance in realistic, edge data center deployments of AI applications. Streaming AI applications are
only possible with the support of pre- and post-processing code, which is far from trivial in both
latency and compute cycles and relies almost exclusively on the CPU for all of the processing. AI
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applications will likely be composed of multiple inference stages, each with its own characteristics
and overheads. And the enabling substrate for managing AI applications in a data center sees hot
spots in both network and storage that could soon become bottlenecks if not addressed.
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