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Reinforcement Learning Training

Training reinforcement learning models is fundamentally resource intensive due
to

1. The computationally expensive nature of deep neural networks

2. The sample inefficiency of reinforcement learning algorithms
Applying quantization to reinforcement learning is nontrivial and different from
traditional neural network.

1. In the context of policy inference, due to the sequential decision making na-
ture of reinforcement learning, errors made at one state might propagate to
subsequent states.

2. In the context of reinforcement learning training, quantization seems difficult
to apply due to the myriad of different algorithms (A2C, DDPG, DQN, etc)
and the complexity of these optimization procedures.

On the former point, our insight is that reinforcement learning policies are re-
silient to quantization error as policies are often trained with noise for exploration,
making them robust. On the latter point, we leverage the fact that reinforcement
learning procedures may be framed through the actor-learner training paradigm,
and rather than quantizing learner optimization, we may achieve speedups while
maintaining convergence by quantizing just the actors’ experience generation.
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1. Learner on GPUs; Actors on CPUs: Learners perform batched optimiza-
tion on GPUs; Multiple parallel actors perform inference to generate data

2. Tensorflow On Learner; Pytorch on Actors: Pytorch’s Quantized Inference
allows the actors to speedup data generation.

3. Quantize Compute v/s Quantize Communication: Actors can be quan-
tized to perform 8-bit or 16-bit and generate data faster. Or Communication
can be quantized to any number of bits.

4. Separate Parameter Quantizer Process: Aids in not burdening the learning
with the conversion processes.

5. Asynchronous Model Pushes on Learner Side; Synchronous Model
Pulls on Actor Side: Asynchronous Pushes maximizes learner resource
usage. Synchronous Model Pulls on Actors to avoid stale models

Results

We evaluate the ActorQ algorithm for speeding up quantized distributed reinforcement learning across
various environments. Overall, we show that: 1) we see significant speedup (>1.5 ×-2.5 ×) in train-
ing reinforcement learning policies using ActorQ and 2) convergence is maintained even when actors
perform down to 8 bit quantized execution. Note in ActorQ while actors perform quantized execution,
the learner’s models are full precision, hence we evaluate the learner’s full precision model quality. We
evaluate ActorQ on a range of environments from the Deepmind Control Suite. We choose the envi-
ronments to cover a wide range of difficulties to determine the effects of quantization on both easy and
difficult tasks. Each episode has a maximum length of 1000 steps, so the maximum reward for each
task is 1000 (though this may not always be attainable).

Speedups for Cheetah Run, Reacher Hard and Humanoid Walk
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Convergence for Cheetah Run, Reacher Hard and Humanoid Walk
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Policy architectures are fully connected networks with 3 hidden layers of size 2048. We apply a gaus-
sian noise layer to the output of the policy network on the actor to encourage additional exploration;
sigma is uniformly assigned between 0.0 and 0.2 according to the actor being executed. On the learner
side, the critic network is a 3 layer hidden network with size 512. We train policies using D4PG on
continuous control environments and DQN on discrete control environments. All experiments are run
on a single machine setup (but distributed across the GPU and the multiple CPUs of the machine). A
V100 GPU is used on the learner, while we use 4 actors (1 core for each actor) each assigned a Intel
Xeon 2.20GHz CPU for distributed training. We run each experiment and average over at least 3 runs
and compute the running mean (window=10) of the aggregated runs.

Task Reward Achieved
FP32

Time to Reward (s)
Int8

Time to Reward (s)
Int8

Speedup
Cartpole Balance 941.22 870.91 279.00 3.12

Walker Stand 947.74 871.32 534.37 1.63
Hopper Stand 836.41 2660.41 1699.17 1.57
Reacher Hard 948.12 1597.00 875.34 1.82
Cheetah Run 732.31 2517.30 891.84 2.82
Finger Spin 810.32 3256.56 1065.52 3.06

Humanoid Stand 884.89 13964.92 9302.82 1.51
Humanoid Walk 649.91 17990.66 6223.35 2.89
Cartpole (Gym) 198.22 963.67 260.10 3.70

Mountain Car (Gym) -120.62 2861.80 1284.32 2.22
Acrobot (Gym) -107.45 912.24 168.44 5.41

Comparison

Communication Heavy v/s Computation Heavy
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We further break down the various components contributing to runtime on a single
actor. Runtime components are broken down into:

1. Step time is the time spent performing neural network inference

2. Pull time is the time between querying the Replay Buffer for a model and re-
ceiving the serialized models weights

3. deserialize time is the time spent to deserialize the serialized model dictionary

4. load_state_dict time is the time to call PyTorch load_state_dict.

Communication Heavy v/s Computation Heavy
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As evident, the step time (neural network inference time) is the biggest bottleneck
during training. This can be optimized by running the actors at a quantized preci-
sion. It is observed that quantizing actors also leads to lesser pull time and deseri-
alize time due to reduction in memory.

Effect of Model Pull Frequency
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Finally, we investigate how much model staleness can affect the convergence of an
agent. The figure above shows that in distributed RL training, model full frequency
can be one of the most important hyperparameters affecting the final reward by 5×.
In a large scale distributed RL setup with a networked cluster, quantizing commu-
nication can help reducing congestion and free up bandwidth for faster training.


