
36 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

V
viewpoints

I
M

A
G

E
 B

Y
 T

E
C

H
I

N
S

I
G

H
T

S
 A

N
D

 C
H

I
P

R
E

B
E

L

tools for specific tasks. Smartphones
foreshadow this future by employing
many accelerators concurrently, but
unlike a Swiss Army knife these accel-
erators often operate in parallel using
separately developed software stacks.

We assert there is as yet no “sci-
ence” for debating and systematically
answering basic questions for how to
best facilitate broad, flexible, and effec-

W
HILE PAST INFORMATION

technology (IT) advanc-
es have transformed
society, future ad-
vances hold great ad-

ditional promise. For example, we have
only just begun to reap the changes
from artificial intelligence—especially
machine learning—with profound ad-
vances expected in medicine, science,
education, commerce, and govern-
ment. All too often forgotten, under-
lying the IT impact are the dramatic
improvements in the programmable
hardware. Hardware improvements
deliver performance that unlocks new
capabilities. However, unlike in the
1990s and early 2000s, tomorrow’s
performance aspirations must be
achieved with much less technological
advancement (Moore’s Law and Den-
nard Scaling). How then does one de-
liver AR/VR, self-driving vehicles, and
health wearables at costs that enable
great customer value?

One approach that has emerged is
to use accelerators: hardware compo-
nents that execute a targeted computa-
tion class faster and usually with much
less energy. An accelerator’s flexibil-
ity can vary from high (GP-GPU) to low
(fixed-function block). Recent work
tends to focus on targeting specific ap-
plication domains, such as graphics
(before GPUs generalized), deep ma-
chine learning, physics simulations,
and genomics. Moreover, most work
on accelerators, including in articles

appearing in Communications,2,5,6 has
focused on CPUs using a single accel-
erator, with one early forecast of mul-
tiple accelerator use.1

In our view, many future computing
systems will obtain greater efficiency by
employing multiple accelerators where
each accelerator efficiently targets an
aspect of the ongoing computation,
much as a Swiss Army knife has specific

Viewpoint
Accelerator-Level
Parallelism
Charging computer scientists to develop the science needed to
best achieve the performance and cost goals of accelerator-level
parallelism hardware and software.

DOI:10.1145/3460970 Mark D. Hill and Vijay Janapa Reddi

HiSilicon
Kirin 970

Apple
A11 Bionic

Samsung
Exynos 9810

Qualcomm
Snapdragon 845

Modern System-on-Chip (SoC) architectures. The CPUs in modern SoCs (shown in white)
occupy only a small percentage of the die area. The rest of the SoC is committed to a potpourri
of different accelerators, such as the DSP, GPU, ISP, NPU, video, and audio codecs.

http://dx.doi.org/10.1145/3460970

DECEMBER 2021 | VOL. 64 | NO. 12 | COMMUNICATIONS OF THE ACM 37

viewpoints

V Mobile SoCs as Harbingers of
Multiple Accelerators Using ALP
Driven by the need for extreme en-
ergy efficiency, mobile SoCs are the
very early adopters of ALP. For SoCs
from four major vendors—Apple,
Qualcomm, Samsung, and Hua-
wei—much less than 50% of the die
is dedicated to the CPUs, as shown
in the image on the first page of this
Viewpoint. The majority of the area is
dedicated to specialized accelerators,
such as a Digital Signal Processor,
Image Signal Processor, GPU, Neural
Processing Unit, and Video Encoder/
Decoder, as well as I/O interfaces for
audio, networking, video.

It is common in smartphone SoCs
for workloads to exhibit ALP with mul-
tiple accelerators in concurrent—not
exclusive—use. Figure 2 shows a 4K,
60 frame-per-second video capture
use case with two paths. One path
goes to the display, rendering real-
time content to the end user, and the

tive use of multiple accelerators. In this
Viewpoint, we expose this opportunity
(the what), but charge our readers with
determining how best to address it. We
review past computer system improve-
ments exploiting levels of parallelism,
and introduce Accelerator-Level Paral-
lelism (ALP) as a way to frame new chal-
lenges, and expand on the “point” suc-
cess of smartphone ALP.

Past, Present, and
Future Parallelism
As technology scaling provided more
and smaller transistors, computer
processor architects transformed the
transistor bounty into faster processing
by using the transistors in parallel. Ef-
fectively using repeated transistor dou-
bling required new levels of transistor
parallelism. Figure 1 looks at the past
and present, and depicts the different
levels of parallelism (y-axis) that have
emerged as computing evolved over the
decades (x-axis).

In Figure 1, Bit-level parallelism
(BLP) refers to performing basic opera-
tions (arithmetic, and so forth) in par-
allel. It was common in early comput-
ers and was later enhanced with larger
word sizes in commodity systems.
Instruction-level parallelism (ILP) is
the execution of logically sequential
instructions concurrently with pipelin-
ing, superscalar, and increasing specu-
lation. Thread-level parallelism (TLP)
is the use of multiple processor cores,
which initially started with discrete pro-
cessors and were later integrated as on-
chip cores. Data-level parallelism (DLP)
pertains to performing similar opera-
tions on multiple data operands via ar-
rays and pipelines that achieved broad
success via general-purpose graphics
processing units (GP-GPUs).

In this Viewpoint and in Figure 1,
we assert that another major paral-
lelism level is emerging: Accelerator-
Level Parallelism (ALP). We define
ALP as the parallelism of workload
components concurrently executing on
multiple accelerators. A goal of ALP
is to unlock many accelerators at the
same time in a manner analogous to
how ILP concurrently employs mul-
tiple functional units. ALP does not
replace other parallelism levels but
builds upon them, as most accelera-
tors internally employ one or more
of BLP, ILP, TLP, and DLP. Moreover,

much like ILP that has been exploited
at different levels of the stack, ranging
from superscalar and out-of-order ex-
ecution at the microarchitecture level
up to instruction scheduling at the
compiler level, ALP opens up many
degrees of freedom for novel hard-
ware and software design and optimi-
zation. It also opens up possibilities
for new runtime resource manage-
ment, which is analogous to hetero-
geneous scheduling across CPUs and
GPUs, but with the added complexity
of scheduling tasks in real time across
a sea of hardware accelerators.

ALP is emerging today. Modern
chipsets for mobile, edge, and cloud
computing are beginning to concur-
rently employ multiple accelerators.
We next present a case study of ALP in
mobile SoCs to understand how ALP is
currently used, albeit in a somewhat
limited form, and then lay a founda-
tion for future work that can exploit
ALP more generally.

Figure 1. A snapshot of parallelism over the years, showing how the various forms of
parallelism were exploited through different types of architectural mechanisms.

1940 1950 1960 1970 1980 1990 2000 2010 2020

ALP

DLP

TLP

ILP

BLP

 pipeline s-scalar speculate

 multiprocessor SMP multicore

 SIMD vector subword GPU-SIMT

 SoC

 started-early common-64b

End of
Dennard
Scaling

Figure 2. ALP in action in a 4K video capture use case on a smartphone.7

Raw
Frame

DRAM DRAM

DRAM

DRAM

DRAM NVM

DRAM

Display

Audio

Camera
Sensor

ISP
Stage 1

ISP
Stage 2

ISP
Stage 2

GPU

Video
Enc

DSP

GPU

Preview

Video

38 COMMUNICATIONS OF THE ACM | DECEMBER 2021 | VOL. 64 | NO. 12

viewpoints

from a compute perspective, we lack
the fundamental science on how we
must select, size, make efficient, and
sometimes combine similar accel-
erators? Similarly, from a memory
perspective, when should on-chip
memory be private to accelerators or
shared? When should this memory be
a software-visible scratchpad or soft-
ware-transparent cache? From an in-
tegration perspective, how do we best
communicate data (shared memory
or queues) and control (polling, in-
terrupts, other) among accelerators?
From an operational perspective, once
an SoC is deployed, can we schedule
heterogeneous parallel resources with
(non-convex) optimization or must
heuristics suffice? In sum, a more sys-
tematic approach is needed to design
many accelerators as blocks to create
holistic ALP systems that excel at per-
formance and cost goals.

Conclusion
This Viewpoint has argued that em-
ploying multiple accelerators with ALP
has much promise for enhancing fu-
ture computing efficiency, that we do
not yet know how to do it well beyond
niches, and that we can work together
to make this happen. We have identi-
fied what the opportunity is, but leave
to our readers how best to solve it.

References
1. Borkar, S. and Chien, A.A. The future of

microprocessors. Commun. ACM 54, 5 (May 2011),
67–77; doi: 10.1145/1941487.1941507

2. Dally, W.J., Turakhia, Y., and Han, S. Domain-specific
hardware accelerators. Commun. ACM 63, 7 (July
2020), 48–57; doi: 10.1145/3361682

3. Hennessy, J.L. and Patterson, D.A. A new golden age
for computer architecture. Commun. ACM 62, 2 (Feb.
2019), 48–60; doi: 10.1145/3282307

4. Hill, M.D. and Reddi, V.J. Gables: A roofline model for
mobile SoCs. In Proceedings of the High-Performance
Computer Architecture (HPCA), 2019 IEEE 25th
International Symposium. 2019.

5. Jouppi, N.P. et al. A domain-specific architecture for
deep neural networks. Commun. ACM 61, 9 (Sept.
2018), 50–59; 10.1145/3154484

6. Nowatzki, T., Gangadhar, V., and Sankaralingam,
K. Heterogeneous von Neumann/dataflow
microprocessors. Commun. ACM 62, 6 (June 2019),
83–91; 10.1145/3323923

7. Reddi, V.J., Yoon, H., and Knies, A. Two billion devices
and counting. IEEE Micro (Jan.–Feb. 2018), 6–21.

Mark D. Hill (markhill@cs.wisc.edu) is Hardware Partner
Architect at Microsoft and Professor Emeritus at the
University of Wisconsin-Madison, Madison, WI, USA.

Vijay Janapa Reddi (vj@eecs.harvard.edu) is an
associate professor in the John A. Paulson School of
Engineering and Applied Sciences (SEAS) at Harvard
University, Cambridge, MA, USA.

Mark D. Hill contributed to this work before joining Microsoft.

Copyright held by authors.

other path goes to flash storage to save
the content for offline viewing. In this
example, data traverses accelerators
with both parallelism (two paths) and
pipelining, all choreographed by CPUs
(not shown). In other use cases like an
interactive multiparty videoconferenc-
ing application, data flow, and CPU
choreographing can be even more
dynamic and complex. Nevertheless,
we expect accelerators to increasingly
handle “data plane” computation
while CPUs retain the “control plane”
tasks. Doing so will enable richer com-
putation from a fixed power budget,
valuable from smartphones to cars to
the cloud.

Mobile SoCs are clearly relying on
ALP for low-power and efficient execu-
tion. However, they are not yet exploit-
ing the full potential of ALP, which
we see as needed for recouping the
flexibility that the CPU delivered for
decades. For instance, in the above ex-
ample, the dataflow and the binding
between the application tasks and ac-
celerators is fixed. The ISP cannot be
programmatically repurposed for tasks
aside from processing camera image
inputs. To this end, we believe we need
better science and engineering toward
ALP utilization.

Toward a Science for
Multiple-Accelerator
Systems Using ALP
John Hennessy and David Patterson
asserted in their 2018 Turing Award
Lecture that we are upon a new golden
age for computer architecture.3 We
assert that the challenge put forth by
Hennessy and Patterson ought to be
generalized to a new golden age for
computer science and engineering and
that employing multiple accelerators
with ALP is an opportunity that opens
up new vistas for research as accelera-
tors are integrated into complex SoCs.
We do not know all of the possibilities,
but we discuss some ideas here to seed
research directions.

A key challenge is developing ab-
stractions and implementations to en-
able programmers to target the whole
SoC and implementers to holistically
design its software and hardware.
We take inspiration from the Single
Instruction Multiple Thread (SIMT)
model that effectively abstracts GPU
hardware’s cornucopia of parallelism

and scheduling mechanisms. SIMT
both enabled GPUs to expand from
graphics workloads to general-purpose
DLP use and enabled software-hard-
ware implementation improvements
beneath the abstraction.

As ALP emerges, we expect new
paradigms must be invented to flex-
ibly and effectively exploit its po-
tential. This is not the case today. In
contrast to a SIMT-like holistic view,
today’s SoCs only exploit ALP in limit-
ed niches with each accelerator acting
as a “silo” with its own programming
model, and often its own (domain-
specific) language, runtime, software
development kit (SDK), and driver
interface. While employing multiple
accelerators with no abstraction can
work in restricted situations (for ex-
ample, for 10–20 phone use cases),
it is unlikely to make ALP generally
useful. How can we transcend per-
accelerator software silos of different
languages, SDKs, and so forth? What
are abstractions and mechanisms for
scheduling/sequencing accelerators
or partitioning/virtualizing them (per-
haps stream data flow)? What belongs
in runtimes versus above/below the
OS hardware abstraction layer?

Even more than previously paral-
lel levels, ALP exploitation will likely
require software-hardware co-design
due to the heterogeneous nature of
accelerators and ALP. Moreover, this
is also likely to incentivize computer-
aided design tool chain innovations
to facilitate the rapid exploration of
heterogeneous design spaces. ALP im-
plementations should aspire toward
globally optimal software-hardware
systems, whereas much good work to-
day focuses on making each accelera-
tor “locally” optimal. While good ac-
celerators are essential, a collection of
locally optimal accelerators is unlikely
to be globally optimal. For this reason,
we need better models4 and methods
for holistically designing SoCs from
accelerator, memory, and intercon-
nect components, more like how pro-
cessor cores are crafted from ALUs,
register files, and buses. Analysis in
both cases centers on parallel opera-
tion: ALP for SoCs and ILP for cores.

In more detail, there are many ALP
questions that need better answers
and better methods for systematically
determining answers. For instance,

