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tools for specific tasks. Smartphones 
foreshadow this future by employing 
many accelerators concurrently, but 
unlike a Swiss Army knife these accel-
erators often operate in parallel using 
separately developed software stacks.

We assert there is as yet no “sci-
ence” for debating and systematically 
answering basic questions for how to 
best facilitate broad, flexible, and effec-

W
HILE PAST INFORMATION  

technology (IT) advanc-
es have transformed  
society, future ad-
vances hold great ad-

ditional promise. For example, we have 
only just begun to reap the changes 
from artificial intelligence—especially 
machine learning—with profound ad-
vances expected in medicine, science, 
education, commerce, and govern-
ment. All too often forgotten, under-
lying the IT impact are the dramatic 
improvements in the programmable 
hardware. Hardware improvements 
deliver performance that unlocks new 
capabilities. However, unlike in the 
1990s and early 2000s, tomorrow’s 
performance aspirations must be 
achieved with much less technological 
advancement (Moore’s Law and Den-
nard Scaling). How then does one de-
liver AR/VR, self-driving vehicles, and 
health wearables at costs that enable 
great customer value?

One approach that has emerged is 
to use accelerators: hardware compo-
nents that execute a targeted computa-
tion class faster and usually with much 
less energy. An accelerator’s flexibil-
ity can vary from high (GP-GPU) to low 
(fixed-function block). Recent work 
tends to focus on targeting specific ap-
plication domains, such as graphics 
(before GPUs generalized), deep ma-
chine learning, physics simulations, 
and genomics. Moreover, most work 
on accelerators, including in articles 

appearing in Communications,2,5,6 has 
focused on CPUs using a single accel-
erator, with one early forecast of mul-
tiple accelerator use.1

In our view, many future computing 
systems will obtain greater efficiency by 
employing multiple accelerators where 
each accelerator efficiently targets an 
aspect of the ongoing computation, 
much as a Swiss Army knife has specific 
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V Mobile SoCs as Harbingers of 
Multiple Accelerators Using ALP
Driven by the need for extreme en-
ergy efficiency, mobile SoCs are the 
very early adopters of ALP. For SoCs 
from four major vendors—Apple, 
Qualcomm, Samsung, and Hua-
wei—much less than 50% of the die 
is dedicated to the CPUs, as shown 
in the image on the first page of this 
Viewpoint. The majority of the area is 
dedicated to specialized accelerators, 
such as a Digital Signal Processor, 
Image Signal Processor, GPU, Neural 
Processing Unit, and Video Encoder/
Decoder, as well as I/O interfaces for 
audio, networking, video.

It is common in smartphone SoCs 
for workloads to exhibit ALP with mul-
tiple accelerators in concurrent—not 
exclusive—use. Figure 2 shows a 4K, 
60 frame-per-second video capture 
use case with two paths. One path 
goes to the display, rendering real-
time content to the end user, and the 

tive use of multiple accelerators. In this 
Viewpoint, we expose this opportunity 
(the what), but charge our readers with 
determining how best to address it. We 
review past computer system improve-
ments exploiting levels of parallelism, 
and introduce Accelerator-Level Paral-
lelism (ALP) as a way to frame new chal-
lenges, and expand on the “point” suc-
cess of smartphone ALP.

Past, Present, and 
Future Parallelism
As technology scaling provided more 
and smaller transistors, computer 
processor architects transformed the 
transistor bounty into faster processing 
by using the transistors in parallel. Ef-
fectively using repeated transistor dou-
bling required new levels of transistor 
parallelism. Figure 1 looks at the past 
and present, and depicts the different 
levels of parallelism (y-axis) that have 
emerged as computing evolved over the 
decades (x-axis).

In Figure 1, Bit-level parallelism 
(BLP) refers to performing basic opera-
tions (arithmetic, and so forth) in par-
allel. It was common in early comput-
ers and was later enhanced with larger 
word sizes in commodity systems. 
Instruction-level parallelism (ILP) is 
the execution of logically sequential 
instructions concurrently with pipelin-
ing, superscalar, and increasing specu-
lation. Thread-level parallelism (TLP) 
is the use of multiple processor cores, 
which initially started with discrete pro-
cessors and were later integrated as on-
chip cores. Data-level parallelism (DLP) 
pertains to performing similar opera-
tions on multiple data operands via ar-
rays and pipelines that achieved broad 
success via general-purpose graphics 
processing units (GP-GPUs).

In this Viewpoint and in Figure 1, 
we assert that another major paral-
lelism level is emerging: Accelerator-
Level Parallelism (ALP). We define 
ALP as the parallelism of workload 
components concurrently executing on 
multiple accelerators. A goal of ALP 
is to unlock many accelerators at the 
same time in a manner analogous to 
how ILP concurrently employs mul-
tiple functional units. ALP does not 
replace other parallelism levels but 
builds upon them, as most accelera-
tors internally employ one or more 
of BLP, ILP, TLP, and DLP. Moreover, 

much like ILP that has been exploited 
at different levels of the stack, ranging 
from superscalar and out-of-order ex-
ecution at the microarchitecture level 
up to instruction scheduling at the 
compiler level, ALP opens up many 
degrees of freedom for novel hard-
ware and software design and optimi-
zation. It also opens up possibilities 
for new runtime resource manage-
ment, which is analogous to hetero-
geneous scheduling across CPUs and 
GPUs, but with the added complexity 
of scheduling tasks in real time across 
a sea of hardware accelerators.

ALP is emerging today. Modern 
chipsets for mobile, edge, and cloud 
computing are beginning to concur-
rently employ multiple accelerators. 
We next present a case study of ALP in 
mobile SoCs to understand how ALP is 
currently used, albeit in a somewhat 
limited form, and then lay a founda-
tion for future work that can exploit 
ALP more generally.

Figure 1. A snapshot of parallelism over the years, showing how the various forms of  
parallelism were exploited through different types of architectural mechanisms.
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Figure 2. ALP in action in a 4K video capture use case on a smartphone.7 
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from a compute perspective, we lack 
the fundamental science on how we 
must select, size, make efficient, and 
sometimes combine similar accel-
erators? Similarly, from a memory 
perspective, when should on-chip 
memory be private to accelerators or 
shared? When should this memory be 
a software-visible scratchpad or soft-
ware-transparent cache? From an in-
tegration perspective, how do we best 
communicate data (shared memory 
or queues) and control (polling, in-
terrupts, other) among accelerators? 
From an operational perspective, once 
an SoC is deployed, can we schedule 
heterogeneous parallel resources with 
(non-convex) optimization or must 
heuristics suffice? In sum, a more sys-
tematic approach is needed to design 
many accelerators as blocks to create 
holistic ALP systems that excel at per-
formance and cost goals.

Conclusion
This Viewpoint has argued that em-
ploying multiple accelerators with ALP 
has much promise for enhancing fu-
ture computing efficiency, that we do 
not yet know how to do it well beyond 
niches, and that we can work together 
to make this happen. We have identi-
fied what the opportunity is, but leave 
to our readers how best to solve it. 
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other path goes to flash storage to save 
the content for offline viewing. In this 
example, data traverses accelerators 
with both parallelism (two paths) and 
pipelining, all choreographed by CPUs 
(not shown). In other use cases like an 
interactive multiparty videoconferenc-
ing application, data flow, and CPU 
choreographing can be even more 
dynamic and complex. Nevertheless, 
we expect accelerators to increasingly 
handle “data plane” computation 
while CPUs retain the “control plane” 
tasks. Doing so will enable richer com-
putation from a fixed power budget, 
valuable from smartphones to cars to 
the cloud.

Mobile SoCs are clearly relying on 
ALP for low-power and efficient execu-
tion. However, they are not yet exploit-
ing the full potential of ALP, which 
we see as needed for recouping the 
flexibility that the CPU delivered for 
decades. For instance, in the above ex-
ample, the dataflow and the binding 
between the application tasks and ac-
celerators is fixed. The ISP cannot be 
programmatically repurposed for tasks 
aside from processing camera image 
inputs. To this end, we believe we need 
better science and engineering toward 
ALP utilization.

Toward a Science for  
Multiple-Accelerator 
Systems Using ALP
John Hennessy and David Patterson 
asserted in their 2018 Turing Award 
Lecture that we are upon a new golden 
age for computer architecture.3 We 
assert that the challenge put forth by 
Hennessy and Patterson ought to be 
generalized to a new golden age for 
computer science and engineering and 
that employing multiple accelerators 
with ALP is an opportunity that opens 
up new vistas for research as accelera-
tors are integrated into complex SoCs. 
We do not know all of the possibilities, 
but we discuss some ideas here to seed 
research directions.

A key challenge is developing ab-
stractions and implementations to en-
able programmers to target the whole 
SoC and implementers to holistically 
design its software and hardware. 
We take inspiration from the Single 
Instruction Multiple Thread (SIMT) 
model that effectively abstracts GPU 
hardware’s cornucopia of parallelism 

and scheduling mechanisms. SIMT 
both enabled GPUs to expand from 
graphics workloads to general-purpose 
DLP use and enabled software-hard-
ware implementation improvements 
beneath the abstraction.

As ALP emerges, we expect new 
paradigms must be invented to flex-
ibly and effectively exploit its po-
tential. This is not the case today. In 
contrast to a SIMT-like holistic view, 
today’s SoCs only exploit ALP in limit-
ed niches with each accelerator acting 
as a “silo” with its own programming 
model, and often its own (domain-
specific) language, runtime, software 
development kit (SDK), and driver 
interface. While employing multiple 
accelerators with no abstraction can 
work in restricted situations (for ex-
ample, for 10–20 phone use cases), 
it is unlikely to make ALP generally 
useful. How can we transcend per-
accelerator software silos of different 
languages, SDKs, and so forth? What 
are abstractions and mechanisms for 
scheduling/sequencing accelerators 
or partitioning/virtualizing them (per-
haps stream data flow)? What belongs 
in runtimes versus above/below the 
OS hardware abstraction layer?

Even more than previously paral-
lel levels, ALP exploitation will likely 
require software-hardware co-design 
due to the heterogeneous nature of 
accelerators and ALP. Moreover, this 
is also likely to incentivize computer-
aided design tool chain innovations 
to facilitate the rapid exploration of 
heterogeneous design spaces. ALP im-
plementations should aspire toward 
globally optimal software-hardware 
systems, whereas much good work to-
day focuses on making each accelera-
tor “locally” optimal. While good ac-
celerators are essential, a collection of 
locally optimal accelerators is unlikely 
to be globally optimal. For this reason, 
we need better models4 and methods 
for holistically designing SoCs from 
accelerator, memory, and intercon-
nect components, more like how pro-
cessor cores are crafted from ALUs, 
register files, and buses. Analysis in 
both cases centers on parallel opera-
tion: ALP for SoCs and ILP for cores.

In more detail, there are many ALP 
questions that need better answers 
and better methods for systematically 
determining answers. For instance, 




