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Big data analytics is the application of varied techniques 
to very large and diverse data sets in order to uncover 
hidden patterns and produce meaningful insights.

Big data analytics deals with data sets too large, 
problems too complex, and patterns too subtle to be 
handled by conventional relational databases.
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BigDataBench

YCSB

CloudSuite

DCBench HiBench

LinkBench
AMPLab Benchmarks

There are ample big data-related benchmarks.

TPCx-BB BigBench

What is it and why should computer architects care?
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Proposed at SIGMOD 2013, BigBench was developed with input 
from many industry partners.

BigBench was standardized as TPCx-BB in 2014.
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It simulates a modern retailer with a 
physical and online store presence.

It gathers copious data on products, 
customers, and competitors.

It uses complex queries to extract 
value from its collected data.

Data size is configurable from 1 TB 
to 1 PB.
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BigBench data includes
structured (e.g. customer demographics) data,
semi-structured (e.g. web site click streams) data, and
un-structured (e.g. online product reviews) data.

BigBench operates on the data using
MapReduce,
machine learning,
user-defined functions,
query language operations,
and natural language processing.

Most queries take multiple steps, and many cover multiple data 
types and operation types.
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It is essential to understand, emulate, and study industry 
perspectives in order to produce believable and relevant insights.

There is a lot of heterogeneity in the applications, something that 
has been oversimplified in past benchmarking efforts.

Thread-limited execution is still pervasive even in scale-out big 
data analytics and demands better scale-up performance 
(Amdahl’s law).
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3+1 setup: 3 workers, 1 master.

Worker nodes: 
Intel Xeon E5-2699 v3 
384 GB RAM 
SSD Storage 
10 Gbps Ethernet

BigBench
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Only the front and back end-bound cycles are stable across queries.

Compute Caches Bandwidth

Big Data Analytics applications are too varied to represent 
with just a few programs.
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Hadoop makes reliable, scalable, distributed computing possible 
on industry-standard servers…Hadoop is also designed to scale 
from a single server to thousands of machines.“ ”Microsoft Azure’s Hadoop Page

Apache Hadoop is a highly scalable storage platform designed to 
process very large data sets across hundreds to thousands of 
computing nodes that operate in parallel.“ ”IBM’s Hadoop Page

Architecturally, the reason you’re able to deal with lots of data is 
because Hadoop spreads it out…You’ve got all of these 
processors, working in parallel, harnessed together.“ ”Cloudera Co-Founder Mike Olson

We see these claims about Hadoop scaling to thousands 
of machines and we have a tendency to think 

we don’t need to worry about scale-up.

In reality, scale-up performance is just as important in 
big data analytics as it has ever been.
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Despite common wisdom that big data is perfect for scale-out, 
these applications show universal TLP shortcomings.
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RunTime1 � RunTime2

RunTime1 · (1� Resource1
Resource2

)

We measure the change in runtime as we scale resources:
• Number of cores
• Operating frequency

We report the efficiency of resource scaling.

Change in run time
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Core scaling shows limited efficiency, sometimes providing no benefit at all.Frequency scaling is more efficient than core scaling.
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What About Turbo Boost?
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Turbo Boost uses slack in thermal and current margins to 
increase the operating frequency of CPUs.

With so many halted cycles, Turbo Boost should be 
perfect for BigBench, right?

Not quite…

The Turbo Boost ceiling is a function of the number of 
active cores.  The fewer the cores, the higher the ceiling.
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The Turbo Boost ceiling does not increase until most 
cores have been disabled.

Prior Turbo Boost studies have 
focused on CPUs in this region
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Despite having very little TLP, nearly all the cores are kept 
busy most of the time.
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Hardware: Slack in thermal and current margins does not 
translate to a higher Turbo Boost ceiling until most cores 
are disabled. 

Software: The abundant software threads are being 
scheduled onto virtually all available cores, whether they 
are actually needed or not.

Hardware and software cooperatively prevent                            
Turbo Boost from ever exceeding its baseline ceiling.
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Query 10 could finish in 416 seconds: a 13.5% speedup.

Furthermore, energy consumption decreases by 30%.
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freqTB = freq0 + (1� TLP) · (freqMax � freq0)

Assuming a linear increase in Turbo Boost ceiling for each 
deactivated core, at what frequency can each query run?

freq0

(1� TLP)

(freqMax � freq0)

Base (current) frequency

Available slack in cores

Turbo Boost ceiling room
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speedup =
freqTB � freq0

freq0
· e�ciency freq

Given a potentially higher operating frequency, how much 
speedup can we expect?

freqTB � freq0
freq0

e�ciency freq

Fractional increase in frequency

Efficiency of frequency scaling
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Notably, Q10’s modeled speedup of 15.1% is remarkably 
close to our predicted speedup of 13.5%.
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TPCx-BB (BigBench) is the only benchmark to faithfully 
capture the realism and diversity of industry workloads.

Thread-level parallelism is not so abundant in big data 
workloads as common wisdom would have us believe.

Current hardware and software cooperatively undermine 
Turbo Boost’s ability to accelerate execution.

We propose core packing to aid Turbo Boost and predict 
4-20% speedup.



Amdahl’s Law is Alive and Well 
In Big Data Analytics
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Questions

http://www.tpc.org/tpcx-bb/default.asp


