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Abstract— We develop AirLearning, a tool suite for end-
to-end closed-loop UAV analysis, equipped with a customized
yet randomized environment generator in order to expose
the UAV with a diverse set of challenges. We take Deep Q
networks (DQN) as an example deep reinforcement learning
algorithm and use curriculum learning to train a point to
point obstacle avoidance policy. While we determine the best
policy based on the success rate, we evaluate it under strict
resource constraints on an embedded platform such as Ras-
Pi 3. Using hardware in the loop methodology, we quantify
the policy’s performance with quality of flight metrics such
as energy consumed, endurance and the average length of
the trajectory. We find that the trajectories produced on the
embedded platform are very different from those predicted
on the desktop, resulting in up to 26.43% longer trajectories.
Quality of flight metrics with hardware in the loop characterizes
those differences in simulation, thereby exposing how the choice
of onboard compute contributes to shortening or widening of
‘Sim2Real’ gap.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have shown great
promises in various robotics applications such as search
and rescue [1], package delivery [2], [3], construction in-
spection [4], and others. Among these UAVs, rotor based
platforms have been exceedingly deployed due to their
robust mechanical design and favorable flight characteristics
such as vertical take-off/landing and the high degree of
agility/maneuverability [5].

To fully explore and exploit such UAVs there is a need
to increase their level of autonomy, speed, and agility. In
the context of autonomous navigation, end-to-end learning
that includes deep reinforcement learning (DRL) is show-
ing promising results in sensory-motor control in cars [6],
indoor robots [7], as well as UAVs [8], [9]. Deep RL’s
ability to adapt and learn with minimum apriori knowledge
makes them attractive for use as a controller in complex
systems [10]. At the heart of these algorithms is a policy that
is approximated by a neural network. Simply put, a policy
takes sensor data (RGB/IMU) as input and predicts control
actions as an output.

Despite the promises offered by reinforcement learning,
there are several challenges in adopting reinforcement learn-
ing for UAV control. The challenge is that deep reinforce-
ment learning algorithms are hungry for data. Collecting
large amounts of data on real UAVs has logistical issues. For
instance, most of the commercial and off the shelf (COTS)
UAVs can only operate for less than 30 mins and collecting
hundreds of millions of images takes about 1850 fights.1
Also for effective learning, there is a need to include negative
scenarios such as collisions which significantly increases the

1Assuming flight time between recharge is 30 mins, and camera through-
put is 30fps.

cost of collecting real data from UAVs [9]. In such scenarios,
simulation provides a scalable and cost-effective approach
for generating data for reinforcement learning.

The second challenge stems from the limited onboard
energy, compute capability and power budget. Since UAVs
are mobile machines, they need to be able to accomplish
their tasks with the limited amount of energy on board.
This problem exacerbates as the size decreases, reducing the
total energy onboard while the same level of intelligence is
required. For example, a nano-UAV such as a CrazyFlie [11]
must have the same autonomous navigation capabilities
comparing to its mini counterpart, e.g. DJI-Mavic Pro [12]
while its onboard energy is 1

15 th. Hence onboard compute is
a scarce resource and, reinforcement learning policies need
to be carefully co-designed with underlying hardware so that
it meets the real-time requirements under fixed power budget

The third challenge is the metrics that are used for the
evaluation of deep reinforcement learning algorithms in
context of UAVs. Since reinforcement learning policies are
computationally intensive, evaluation metrics of the DRL al-
gorithms need to be expanded beyond the traditional metrics
used in OpenAI gym and arcade games. For instance, since
energy is severely constrained, in real time, a policy can only
be evaluated as long as there is enough battery. Hence the
DRL algorithm designed for UAVs needs to include metrics
such as energy and flight time to denote the quality of flight.

To address these challenges, we develop the AirLearning
suite, which consists of a configurable environment generator
with a wide range of knobs in order to enable various
difficulty levels. These knobs tune the number of static and
dynamic obstacles, their speed (if relevant), their texture and
color, and etc. For quantifying the real-time performance
of different reinforcement learning policies on resource-
constrained compute platforms, we use the hardware-in-the-
loop methodology where a policy is evaluated on embedded
compute platforms that might potentially be the onboard
compute of the UAVs. The tool suite also has metrics such
as energy consumed, the average length of the trajectory and
endurance so that different reinforcement learning policies
can be evaluated on these metrics that quantify the quality
of flight. The primary contributions of the AirLearning
benchmarking suite are as follows:

• To assist in the dataset generation and generalization of
learning algorithms for navigation tasks in Aerial robots,
we develop a configurable environment generator with
parameters to vary the number of static obstacles, arena
size, type of objects in the environment, textures of
the objects, the color of objects, number of dynamic
obstacles and their velocity.

• Using closed loop Hardware-in-the-Loop methodology,
we characterize the performance of policies on real em-
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Fig. 1: Air Learning infrastructure and benchmarking suite for end-to-end learning in aerial autonomous machines.

bedded devices that are resource and power constrained.
• We provide quality of flight metrics such as energy

consumed, endurance and average length of trajectory
in the evaluation of learning algorithms specifically
designed for aerial robots.

Using our tool, we show that the extent of ‘Sim2Real’ gap
is not just limited to the fidelity of simulation environments
but also extends to the choice of onboard compute platform
for UAVs. For instance, the best performing algorithm and
its policy are often evaluated on high-end desktops, but
when ported to onboard compute platform the real-time
performance of the policy are different, thus widening the
‘Sim2Real’ gap [13], [14]. Hence, having an end-to-end
closed-loop analysis tool suite such as AirLearning, we can
develop policies, characterize the real-time performance of
said policies, identify critical bottlenecks, possibly co-design
algorithms and hardware to bridge the ‘Sim2Real’ gap.

II. AIR LEARNING

AirLearning consist of four keys components: the envi-
ronment generator, algorithm exploration, closed loop real
time hardware in the loop setup, and quality of flight metrics
that is cognizant of the resource constraints of the UAV. By
using all these components in unison, AirLearning allows to
carefully fine tune algorithms for the underlying hardware.
Figure 1 illustrates the AirLearing infrastructure.
A. Environment Generator

Environment generator is creates high fidelity photo-
realistic environments for the UAV’s to fly in. It is built on
top of UE4 and uses AirSim UE4 [15] plugin for the UAV
model and flight physics.

The Environment generator uses a game configuration file
to generate the required configuration tailored for the task.
Here a task corresponds to navigating from one point to
another while avoiding obstacles. Game configuration file is
the interface between Unreal and the reinforcement learning
algorithms. The runtime program writes a set of parameters
into the game configuration file that the Unreal engine
parses before starting the game. The Arena size, number
of static/dynamic obstacles and their velocity (if relevant),
minimum distance between obstacles, obstacle types, colors,
texture and the destination of the UAV are some of the
parameters that are configurable.

B. Algorithm exploration and Policy Exploration
We seed the AirLearning algorithm suite with Deep

Q Network (DQN) [16], a commonly used reinforcement
learning algorithm. DQN falls into the discrete action algo-
rithms where the control commands are high-level commands
(‘move forward,’ ‘move left’ e.t.c.,). For DQN Agent, we
use the keras-RL framework. To make it more amenable to
develop other reinforcement learning algorithms, we improve
upon the work of AirGym [17] which provides the capability
of interfacing with OpenAI gym. We extend the original
implementation of AirGym by providing an array of new
capabilities such as support for curriculum learning, training
multi-modal policies with inputs such as depth/RGB/IMU
measurements. These extrasensory data are exposed as part
of the environment in OpenAI gym and used for developing
a new class of RL algorithms and its associated policies.
C. Hardware Exploration

Once the Algorithm and policy are finalized, AirLearning
allows for characterizing the performance of the different
type of hardware platforms. Often aerial roboticists port the
algorithm on real UAVs to validate the functionality of the
algorithm. These UAVs might be a custom built[18] or off the
shelf UAVs [19], [20]. Using our framework, we can explore
the performance of different on-board off-the-shelf compute
platforms or even examine the possibilities of designing
custom processors (hardware accelerators).

To seed the framework, we use Ras Pi 3 as hardware plat-
forms to evaluate the DQN algorithms. We use an established
hardware-in-the-loop (HIL) methodology [21] to characterize
the performance of various algorithms and policies. Our
HIL methodology enables accurate performance and energy
benchmarking of the computation kernels.
D. Quality of Flight Metrics

Algorithms and policies need to be evaluated on the
metrics that describe the quality of flight such as mission
time, distance flown, etc. We consider the following metrics:

Success rate (Sr): The percentage of the times the UAV
reaches the goal state without collisions or running out of
battery. Ideally, we expect this number to be close to 100%
as it reflects the algorithms’ navigation efficiency.

Time to Completion (Tc): The total time UAV spends
finishing a mission within the simulated world.



Energy (E) consumed: Total energy spent while carrying
the mission. Limited battery on-board constrains the mission
time. Hence monitoring energy is of utmost importance and
can be a measure of policy’s efficiency.

Distance Traveled (Dt): Total distance flown while car-
rying out the mission. This metric is the average length of
the trajectory. This metric can be used to measure the path
planning intelligence of a particular policy.

III. EVALUATION METHODOLOGY

This section discusses our training/testing methodology
and DQN results. DQN policy generates high-level discrete
actions (e.g., move forward) and these are mapped to low-
level controls by the flight controller.

Environments: For the autonomous navigation task, we
create an environment with varying levels of static obstacles.
The environment size is 50 m x 50 m. The number of
obstacles varies from 5 to 10, and it is changed every
4 episodes. The obstacles, start, and goal positions are placed
in random locations in every episode to ensure that the policy
does not overfit to the environment.

Training Methodology: We train the DQN agent on the
environment described above. To speed up the learning,
we employ the curriculum learning [22] approach where
the goal position is progressively moved farther away from
the starting point of the agent. To implement this, we
divide the entire arena into multiple zones namely Zone 1,
Zone 2 and Zone 3 as shown in Figure 2. Here Zone 1
corresponds to the region that is within 16 m from the UAV
starting position and Zone 2 and Zone 3 are within 32 m
and what is this number respectively. Initially, the position
of goal for the UAV is chosen randomly such that the goal
position lies within zone 1. Once the UAV agent achieves
50 % success over a rolling window of past 1000 episodes,
the position of the goal expands to zone 2 and so forth.
To make sure that the agent does not forget learning in
the previous zone, the goal position in the next zone is
inclusive of previous zones. We train the agent to progress
until zone 3 and upon achieving 50 % success rate in that
zone we terminate the training. We checkpoint the policy at
every zone so it can be evaluated on how well it has learned
to navigate across all three environments. To compare the
effectiveness of curriculum learning, we also train using non-
curriculum learning where we train for 250,000 steps in the
entire arena, the same number of steps where the curriculum
learning reached zone 3.

Testing: For testing of curriculum learning policies, we
evaluate the checkpoints saved at each zone. For testing
the non-curriculum learning counterpart, we evaluate the
checkpoints saved at fixed intervals of 50,000 steps. To
ensure the policy does not overfit to the environment, we
evaluate the policy on the unknown zone (zone 3) which
was not used during training. We also randomly change the
position of the goal and obstacles.

IV. ALGORITHM EVALUATION

In this section, we compare the results of curriculum
learning approach with the non-curriculum learning approach
on the environment described in Section III. The primary
metric is the success rate. The policy is evaluated on 100 tra-
jectories.

Figure 3a and Figure 3c show success rate of policy trained
using curriculum learning and non-curriculum learning re-
spectively. Here chkpt1, chkpt2, chkpt3 corresponds
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O
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Fig. 2: Top view of the Arena. An Arena is divided into logical
partition called Zones. The UAV is first trained into Zone0 and the
goals are assigned within this region. The zone gets incremented
when the UAV agent has met 50% success in the previous zone.

to the checkpoints of policy saved in Zone1. Zone2 and
Zone3 respectively. The confusion matrix represents the
success rate of a particular checkpoint in each zone. Here
Zone3 represents a region where the agent was not trained
before. In Figure 3b and Figure 3d shows the number of
steps it took for the agent to transition from one zone
to the other for curriculum learning and non-curriculum
learning respectively. Recall that in curriculum learning the
criteria for transitioning from one zone to another is to finish
the goal 50% of the time over a rolling window of 1000
episodes. For non-curriculum learning, the interval is fixed
since we checkpoint at a fixed interval of 50,000 steps. In
this evaluation, we use the policy checkpointed at 150,000
steps, 200,000 steps and, 250,000 steps respectively. For
curriculum learning, we see that the transition from Zone0
to Zone1 happens at 140,000 steps and from Zone2 to
Zone3 happens at 200,000 steps. Contrasting the success
rate of curriculum learning and non-curriculum learning,
we find that across different checkpoints and zones, policy
trained using curriculum learning generally performs better
than non-curriculum learning with a fewer number of steps.
Also chkpt3 policy of curriculum learning is the best policy
compared to other policies trained using both approaches.

In summary, we use the curriculum learning technique to
determine the best performing policy. We use this policy to
evaluate the policy performance on a resource constrained
Ras-pi 3 platform (Section V).

V. SYSTEM EVALUATION

This section evaluates the best policy obtained in the
Section IV, on real embedded platforms such as Ras Pi 3 [23]
using the hardware-in-the-loop (HIL) methodology. In HIL
methodology, the state information is fed from the simulator
running on a high end desktop and policy is evaluated on
the Ras Pi 3. The actions determined by the policy on Ras
Pi 3 are relayed back to the simulator.

The quality of flight metrics in system evaluation is time
to completion (Tc), distance traveled (Dt) and energy left at
the end of the mission (E). Using HIL evaluation and QOF
metrics we show two things. First, the choice of onboard
compute affects the quality of flight metrics. Second, the
evaluation on a high-end machine does not accurately reflect
the real-time performance on the onboard compute available
on UAVs, thus contributing to a new type of ‘Sim2Real’ gap.

Table I shows the comparison of performance of the
policy a high end desktop and Ras pi 3 averaged over 100
trajectories on Zone 3, the region not used during the
training. For the policy with 4.4 Million parameters, the
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Fig. 3: Comparison of Curriculum learning and non-curriculum
learning. Figure 3a shows the confusion matrix of success rate for
curriculum learning. Figure 3b, shows the zone transition interval
for curriculum learning. Figure 3c, shows the success rate for non-
curriculum learning and Figure 3d shows the zone transition interval
for non-curriculum learning.

Metric Intel core i7 Ras Pi 3 Performance Gap (%)
Inference latency (ms) 3.00 68.00 2166.66
Success rate (%) 30.00 25.00 5.00
QOF metrics
Flight time (s) 64.43 88.86 37.90
Distance Flown (m) 34.92 44.16 26.43
Energy (kJ) 42356.72 54557.36 28.77

TABLE I: Inference time, success rate, and quality of flight metrics
comparison between Intel core i7 desktop and Ras-Pi 3 in Zone3
level. The policy under evaluation is the best policy obtained from
Algorithmic evaluation.

inference time on Ras-Pi 3 is 68ms, while on the desktop,
equipped with GTX 1080 Ti GPU and Intel core I7 CPU, is
3ms, more than 20 times faster. The policy running on the
desktop is 5% more successful. While, some degradation in
performance is expected, the magnitude of the degradation is
an order of magnitude more severe for the other QoF metrics.

The trajectories on the embedded platform are longer,
slower, and less energy efficient. The flight time needed to
reach the goal on the high-end desktop on an average is
64.4 s whereas on Ras-pi 3 is 88.86 s, yielding a performance
gap of around 38%. The Distance flown for the same policy
on the high-end desktop has a trajectory is 34.9 m, whereas
on Ras-pi 3 is 44.16 m thereby contributing to a difference
of 26.43%. Lastly, the high-end desktop consumes on an
average of 42 kJ of energy, while Ras-pi 3 platform consumes
on an average of 54 kJ, 28.7% more energy.

To understand how the same policy performs differently
in Ras-Pi 3 and desktop, we fix the position of the end
goal and obstacles and evaluate 100 trajectories with the
same configuration. The trajectory shown in Figure 4a is
representative of the trajectories between the start and end
goal. We can observe that the two trajectories are very
different. The desktop trajectory orients towards the goal
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Fig. 4: Trajectory comparison between Ras-Pi 3 and Intel Core i7.

and the proceeds directly. The trajectory taken by Ras-Pi 3
starts towards the goal, but then makes a zig-zag pattern
resulting in the longer trajectory. The is likely a result of
obstacle-avoidance based on more stale sensory information,
due to the longer inference time. Also, we notice the distance
between each step is smaller, suggesting the agent is yawing
more (stuck in the same position). Figure 4b shows that on
the average the number of steps taken to reach the goal
is higher in Ras-Pi 3 compared to desktop, suggesting that
trajectories are slower compared to desktop.

In summary, we find that the choice of on-board compute
along with algorithm affects the resulting UAV behavior
and shape of the trajectory profoundly, and that the quality
of flight metrics captures those differences better than the
success rate. Evaluations done purely on high-end desktop
might show lower energy consumed per mission but when
ported to real robots, might actually consume more energy
due to sub-par onboard compute. Using HIL methodology
allows us to identify these differences in behavior and
performance bottlenecks arising due to the on-board compute
without having to port it real robots. Hence having HIL
methodology helps bridging the ‘Sim2Real’ gap arising due
to the limitation of the onboard compute.

VI. CONCLUSION

We develop AirLearning, which enables end-to-end anal-
ysis of reinforcement learning algorithms, and use it to
compare the performance of curriculum learning based DQN
vs. non-curriculum learning based DQN on a configurable
environment with varying static obstacles. We show that
the curriculum learning based DQN has better success rate
compared to non-curriculum learning based DQN with the
same number of experience (steps). We then use the best
policy trained using curriculum learning and expose different
UAV behaviour quantify the performance of the policy using
hardware-in-the-loop on a resource-constrained Ras-Pi 3.
Ras-pi 3 platform acts as a proxy for onboard compute on
real UAVs. We evaluate the performance of the best policy
using quality of flight metrics such as flight time, energy
consumed and total distance traveled. We show that there is
a non-trivial behavior change, and up to 38% difference in
the performance of policy evaluated in high-end desktop and
resource-constrained Ras-Pi 3 signifying that the choice of
onboard compute is also a contributing factor for bridging
the ‘Sim2Real’ gap.
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