The Case for Node Multi-Versioning in Cognitive Cloud Services:
Achieving Responsiveness and Accuracy at Datacenter Scale

Matthew Halpern', Todd Mummert?, Miroslav Novak?, Evelyn Duesterwald?, and Vijay Janapa Reddi!

IThe University of Texas at Austin, Austin, TX
2IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract

Cognitive cloud services seek to provide end-users with
functionalities that have historically required human intellect
to complete. End-users expect these services to be both re-
sponsive and accurate, which pose conflicting requirements for
service providers. Today’s cloud services deployment schemes
follow a “one size fits all” scale-out strategy, where multiple
instantiations of the same version of the service are used to
scale-out and handle all end-users. Meanwhile, many cogni-
tive services are of a statistical nature where deeper explo-
ration yields more accurate results but also requires more
processing time. Finding a single service configuration setting
that satisfies the latency and accuracy requirements for the
largest number of expected end-user requests can be a chal-
lenging task. As a result, cognitive cloud service providers
are conservatively configured to maximize the number of end-
user requests for which a satisfactory latency-accuracy trade-
off can be achieved. Using a production-grade Automatic
Speech Recognition cloud service as a representative example
to study, we demonstrate the inefficiencies of this single version
approach and propose a new service node multi-versioning
deployment scheme for cognitive services instead. We present
an oracle-based limit study where we show that service node
multi-versioning can provide a 2.5X reduction in execution
time together with a 24% improvement in accuracy over a
traditional single version deployment scheme. We also discuss
several design considerations to address when implementing
service node multi-versioning.

1. Introduction

Lying at the intersection of machine learning, artificial in-
telligence, big data, and cloud computing, Cognitive Cloud
Services can compute “human kinds of problems” on behalf of
their end-users. Cognitive cloud services represent an emerg-
ing computing paradigm, known as Cognitive Computing,
that aims to identify tasks that have historically required hu-
man intellect to complete and make them solvable through
computation [1]. These tasks, which include natural language
understanding, question answering, and image recognition, are
applied in a variety of domains from healthcare diagnostics to
intelligent personal assistants to business strategy consultation.
Cognitive cloud services are manifestations of these cognitive
capabilities service offerings in the cloud.

When cognitive capabilities are offered as cloud services,
end-users build cognitive solutions on top of the cloud ser-
vice’s API. Performance expectations for cognitive services

are twofold: to be both fast and accurate. Slow cloud services
cannot provide adequate building blocks for cognitive solu-
tions. In the example of Web search, Google observed that
users perform fewer searches when their results are delayed
by even a fraction of a second [2]. At the same time, cognitive
cloud services must provide their end-users high-quality re-
sults. Execution speed is not enough as these services retrieve
their results from probabilistic models and end-users flock
to services that provide the highest quality results. Google
became the dominant search engine in use today because of
its emphasis on providing its users high-quality search results.

This paper quantifies how the latency-accuracy characteris-
tics inherent to machine learning algorithms directly conflict
with modern cloud service architectures. Many of the machine
learning algorithms that underlie these services can be con-
figured for different latency-accuracy trade-offs. When these
algorithms are tuned to run for longer periods of time, they are
more likely to produce more accurate results. Nevertheless,
cloud services are usually deployed under a “one size fits all”
service node deployment model. To scale out to a large num-
ber of users, a single version of the service, with it specific
latency-accuracy characteristics, is instantiated across a mul-
titude of server nodes. However, it is questionable whether
handling all requests in a similar fashion with a single configu-
ration version is in the best interest of the user (and the service
provider). Requests for large user bases can be diverse, and
machine learning techniques are not capable of being equally
accurate for every possible data input they receive.

We characterize and optimize a production-grade Automatic
Speech Recognition (ASR) service as a representative cogni-
tive cloud service. ASR, the conversion of speech to text, has
become an increasingly popular human-computer interfacing
mechanism. For example, ASR is commonly used by intelli-
gent personal assistants and question answering services.

Our ASR engine relies on an approximate, heuristic-driven
search of a previously trained machine learning model to com-
pute its results. Performing an exhaustive search across its
entire data model is prohibitively expensive, so instead the
search is performed iteratively and localized to a subset of the
model based on heuristic policies invoked at each iteration.
The statistical and probabilistic techniques used in our ASR
engine are commonly used in many other cognitive computing
engines, such as natural language understanding and image
classification. Therefore, the insights from our ASR service
also apply more broadly to other cognitive domains.

Our results suggest that cognitive cloud services are not

Acoustic Model | Beam Search

Generation

Feature
Extraction

Utterance

— Accepted Hypothesis
_FN\ —— Rejected Hypotheses

Frame

catch

N e
O ot
"% %e)

data cache hit

data
"

O o=

cash ¥
>

B8
107"
- N

o

?’,“,, N

o o w

ED?L@?T . .@

Network

“data cache hit”

)
Language o NSy a
ORCES

cache)

it
@O

O a

Fig. 1: Our ASR processing pipeline. The utterance (i.e. segment of human speech) is broken up into frames. Features (i.e.
signal metrics) are extracted from each frame to be used to in a graph-based probabilistic model of the spoken language. An
approximate, heuristic-driven search is performed on this model to quickly hypothesize what words have been spoken.

amenable to the conventional “one size fits all” cloud ser-
vice node deployment approach. Digging deeper into the
individual latency-accuracy characteristics of 35,000 different
service requests for our ASR service, we find that 21% of
them are sensitive to the ASR’s dynamic search configura-
tion. These sensitive requests exhibit dramatic latency and
accuracy characteristics: the configuration either results in
excessive processing time or does not provide suitable levels
of accuracy. The most responsive search configuration has
1.9X more error than the most accurate configuration while the
most accurate configuration takes five times longer to process
requests. Additionally, no one configuration provides the most
accurate results for all user requests because of idiosyncracies
associated with the nature of the search’s heuristic policies.
To mitigate the contention between latency and accuracy,
we propose service node multi-versioning. Service node multi-
versioning simultaneously deploys a variety of service versions
each configured for different latency-accuracy trade-offs. In
the presence of an oracle request routing scheme, service
node multi-versioning can provide both a 2.5X latency and
25% error reduction over the most accurate single service
version. Service node multi-versioning introduces new service
architecture design considerations, which we discuss.

2. Automatic Speech Recognition (ASR)

This section presents the automatic speech recognition
(ASR) engine we study throughout the remainder of the paper.
ASR is the process of converting human speech into readable
text in real-time. As with most cognitive computing workloads,
our ASR engine employs sophisticated probabilistic models
and computationally intensive machine learning algorithms.

Our ASR engine architecture is shown in Fig. 1. In its
simplest form, ASR is graph-based search problem. Given
an utterance (i.e. human speech sample), the ASR engine
tries to correctly recognize the sequence of spoken words in a
probabilistic graph-based representation of human speech (i.e.
hidden markov model). This graph, which incorporates word
pronunciation and semantic models (i.e. acoustic and language
models, respectively), is iteratively searched by breaking down
the utterance into a sequence of frames. However, searching
the entire graph is prohibitively expensive, so an approximate
heuristic search (i.e. beam search) is used instead. We now
explain the relevant components in more detail:

Feature Extraction An utterance passed as an input into
the ASR service is processed as a sequence of regularly seg-
mented intervals of speech, known as frames. Typically,
frames are intentionally sized to about 100ms to correspond
to individual phonemes, the distinct units of sounds a speaker
can make within a language. A set of observables, or a feature
vector based on acoustic properties {0} = {F|,F»,...,Fy}, is
calculated for each frame. Using the observables, instead of
the audio’s raw digital signal, allows the frame to be repre-
sented in a compact and robust manner within the probabilistic
models used throughout the remainder of the ASR engine.

Acoustic Model The acoustic model provides the probabil-
ity that a particular frame corresponds to a specific phoneme.
Given the frame’s set of observables {0}, the acoustic model
provides the probabilities that each phoneme could have pro-
duced that particular set of observables, P({O}|Phoneme).
This also includes determining whether a phoneme is present
in the frame because an utterance may include moments of
silence as the speaker can pause between words. Furthermore,
each phoneme is pronounced slightly differently due to coar-
ticulation caused by surrounding phonemes (acoustic context),
which the model must also take into account. This produces
several thousands of different cases that require a deep neural
network (DNN), trained on hours of transcribed audio, to af-
fordably track. A deep neural network (DNN) generates the
acoustic model for a particular utterance based on viewing the
set of observables for all of the frames that form the utterance.

Language Model The language model provides the proba-
bilities of occurrence for the words of a given language. Most
language models are based on the n-gram model. The n-gram
model provides the probability that a given word occurs after
a specific sequence of n — 1 words. Therefore, the language
model captures the context in which a particular word is used.
The language model is constructed a priori by looking at a
large corpus of speech transcripts, books, and other texts.

Hidden Markov Model = The hidden markov model
(HMM) combines the acoustic and language models together
to form a graph-based representation of human speech. A
HMM is a graph-based representation of a random process
that cannot be viewed directly, but only through observables.
In the case of ASR, we want to know what words (i.e. se-
quences of sub-phonemic units) were spoken in the utterance,
but we only have access to observations (i.e. extracted features)

from the utterance’s audio signal that corresponds to the words
spoken. Therefore, the HMM is a network where two nodes
corresponding to two sub-phonemic units are connected by a
directed edge if one can follow the other with some probability,
which is the edge’s weight. A path in the HMM corresponds
to a sequence of spoken words whose joint probability can be
calculated by traversing edge weights.

Beam Search An exhaustive search of the entire HMM
network is prohibitively expensive, both regarding computa-
tional complexity and memory requirements, to fully perform.
Instead, a beam search only searches a subset of the HMM
network, essentially acting as a restricted breadth-first search.
This breadth-first expansion is responsible for generating mul-
tiple hypotheses to explore. Ultimately, the search will select
a final result from these candidate hypotheses. However, the
hypotheses change throughout the search. Within any given
search iteration, only a subset of the possible hypotheses will
be explored. The beam search employs various heuristics to
prune the size of HMM network that gets searched.

The beam search heuristics, which dictate the size of the
HMM network subset searched, directly impact the ASR ser-
vice’s latency and accuracy. The search’s accuracy is directly
proportional to how much of the HMM network is searched
whereas the search time is inversely proportional to it. Only
searching a subset of the HMM network means that the search
results are no longer admissible. This is because the search ap-
proximates its exhaustive counterpart because the entire HMM
network has not been searched. In other words, the search
produces a locally optimal result based on the HMM network
subset searched. While a larger search space makes it more
likely the globally optimal result will be found, it comes at the
expense of increased search time because there are more pos-
sible paths to explore. Therefore, there is a latency-accuracy
trade-off amongst beam search’s heuristic configurations.

3. The Latency-Accuracy Trade-off

In this section, we examine whether the typical “one size
fits all” cloud service node deployment model can adequately
address the inherent latency-accuracy trade-off of our ASR
engine, and of cognitive cloud services more generally.

The latency-accuracy trade-off in our ASR service is most
evident in the heuristic-driven beam search. Depending on the
values of the search heuristics, different subsets of the ASR
engine’s HMM network will be searched. The accuracy and
latency are respectively directly and inversely proportional to
the size of HMM network subset searched because a larger
search space is more likely to identify the correct result, but
at the expense of a longer search time. We have observed
that in a production setting configuration, the beam search can
consume over 50% of the end-to-end client response time. As
we will demonstrate, these heuristic configurations exhibit a
significant latency-accuracy trade-off space in and of itself.

Our characterization focuses on how the beam search heuris-
tics affect the latency and accuracy of the ASR transcription.

Surprisingly, we find that a larger search size does not neces-
sarily improve the ASR accuracy in many cases; it can even
degrade the result quality. Our analysis demonstrates the lim-
itations of the “one size fits all” service version deployment
model. Over 79% of the utterances achieve the same accu-
racy regardless of what heuristic search configuration is used.
The remaining utterances also do not benefit from a single
deployment version. Assuming we chose the configuration
that incurs minimal average latency across these remaining
utterances, we would obtain a 1.9X increase in error over the
configuration that achieves the highest average accuracy. How-
ever, the most accurate configuration does so at the expense of
a 5X longer average processing time.

3.1. Optimization Metrics

The requirements of a successful cognitive cloud service
are twofold: to provide the most accurate results as quickly as
possible. In the context of our ASR service, this means that we
are aiming for a minimal word-error rate (maximal accuracy)
while minimizing the real-time factor (minimal latency). For
this study, we will focus on evaluating the latency-accuracy
trade-off for varying configurations of the ASR beam search
heuristics. Analysis of other error and latency sources are
beyond the scope of this paper.

Word Error Rate (WER) The word error rate (WER) is
a measure of how accurately the utterance was transcribed into
text. A WER of zero indicates a perfect transcription. Since
the ASR service relies on probabilistic models and heuristic
calculations to produce a result, the goal is to provide the low-
est WER possible even when a perfect result is not possible.

For a given utterance, u, WER(u) is determined by a word-
by-word comparison between what the ASR service hypothe-
sizes (i.e., Hyp(u)) and its reference transcript (i.e., Re f (u)).
Therefore, the WER is the ratio of the number word errors to
the number of words in the utterance’s reference transcript:

| WordErrors(Hyp(u),Ref(u)) |
WER() = [Ref(u) |

Word errors can be classified as either insertions (i.e., adding
a missing word), deletions (i.e. removing an extraneous word),
and substitutions (i.e. replacing an incorrect), For example, if
the utterance “the data caches” gets identified as “data cash is”,
there are three word errors: one deletion (remove “the”), one
substitution (replace “cash” with “caches”), and one insertion
(add “is”). Therefore, the WER 1is one because there are three
word errors and three words in the reference transcript. Note
that the WER can exceed one when either unnecessary words
are added or important words are omitted in the hypothesis.

Real-time Factor (RTF) The real-time factor (RTF) mea-
sures ASR processing time. ASR engines aim to be real-time,
providing the transcription as the speaker utters words. There-
fore, the real-time factor for an utterance u is the ratio of the
time to process the utterance to the time it takes to play back

the utterance as audio:

_ ProcessingTime(u)
" AudioPlaybackTime(u)

RTF (u)

Intuitively, the real-time condition is met when RTF is ex-
actly one. However, it is desirable to reduce the RTF to a value
below one to minimize resource utilization.

Sources of Error: Model vs. Search Amongst the many
sources of error in our ASR engine, our analysis strictly fo-
cuses on the error produced by the beam search under the
different heuristic configurations we explore.

There are two main sources of error in our ASR engine:
the model error and the beam search error. Model error
is the result of how the HMM network is constructed, and
more specifically, of how its underlying acoustic and language
models have been trained. Each model has been trained on
thousands of hours of audio; the amount of error from training
varies across utterances, but it will remain the same across
the different beam search heuristic configuration experiments.
Therefore, the model error will be constant across experiments.

Identifying the exact division of model and search error
is a non-trivial task, so we approximate them instead. The
insight behind our approximation is twofold. First, the model
error will be constant across different search configurations
because the underlying probabilities within the HMM network
do not change; only what parts of it are. Second, given a
comprehensive set of search heuristic configurations, it is
likely that the minimum search error in the set is very close to
(or even identical with) the minimum search error overall.

Therefore, we approximate the model error for an individual
utterance u using the minimum WER we observe across the
set of the heuristic configurations C:

ModelError(u) ~ mi(r:l WER(u)
ce

This allows us to isolate the impact a given beam search
configuration ¢ has on transcribing an utterance u as:

WER,(u) —ModelError(u)
SearchError.(u) ~ CModelError(u)

SearchError. provides a suitable metric to compare the
effects of different heuristic search configurations. Given an
utterance u, SearchError.(u) isolates the extent to which the
ASR accuracy is degraded relative to the best accuracy (i.e.,
minimal WER) among all the configurations we study.

3.2. Search Error Characterization

We find that the great majority of utterances do not incur
any search error regardless of heuristic configurations used.
However, the utterances that do incur search error are very
sensitive to the heuristic configurations used. This is notable
because if the search error did not vary amongst the different
heuristic configurations, the tuning problem would be trivial:

100
95
90
85
80

75 IIIIII
0.04 0.1 1 10 59

Search Error

Percentage of Utterances

Fig. 2: Distribution of search error ranges. Only 20% of the
utterences exhibit search error, but are very sensitive to the
beam search heuristic configurations used.

simply the most responsive configuration should be used. Our
analysis spans over 35,000 utterances from the VoxForge open-
source speech transcript repository [3].

We study these utterances across ten diverse heuristic com-
binations. These ten heuristic configurations were chosen
based on a best-fit latency-accuracy curve produced through
an exhaustive heuristic value sweep (i.e., grid search) of six
heuristics. These heuristics are the cross product of two orthog-
onal considerations: (1) hypothesis pruning policies (i.e., beam
and max) and (2) the scope they applied (i.e., local, global,
and network). The beam pruning policy only allows the top N
most probably hypotheses to be searched and the max policy
restricts the maximum size of a hypothesis search. Because
multiple hypotheses are being explored at once, these policies
are applied at different scopes spanning a single hypothesis
(i.e., local), a branch of hypothesis (i.e., global), and the entire
subset of the HMM current being searched (i.e. network).

Fig. 2 shows the distribution of worst-case search error
observed across the utterances. The resulting curve is a long-
tailed distribution where the outstanding majority (i.e., 79%)
of the utterances have a worse-case search error of zero. The
WER of these utterances does not change regardless which of
the different beam search configurations are used. However,
the remaining 21% can incur significant search error depend-
ing on the configuration used. Over 6% of the utterances can
experience dramatic increases in WER. Depending on the con-
figuration the WER can increase by over 100%. In the worst
cases, WER increases by 5900%.

3.3. Latency-Accuracy Trade-off Analysis

We take a closer look at the 21% of the utterances that incur
search error depending on the search heuristics (configuration)
used. Throughout the remainder of this section, we refer to
these utterances as the search-sensitive utterances.

We systematically classify search-sensitive utterances into
three categories based on their latency-accuracy behavior. We
use these categories to motivate our multi-versioning deploy-
ment approach as we will show that each category calls for
a different ASR engine configuration. Representative utter-
ance latency-accuracy curves from each category are shown
in Fig. 3. We now discuss each category and its implications:

0.2 1.0
§ §O.8
I @ 0.6
501 S 0.4
B B
N »n 0.2

0.0 0.0

0 1 2 3 4 01 2 3 45

Real-Time-Factor Real-Time-Factor

(a) Monotonic improvement example. (b) Montonic degradation example.

(c) Non-montonic behavior example.

0.4

o Non-monotonic Degrades
0y
90.3 - (25.4%) (19.6%)
i
- -
c0.2
_
3
0.1
0.0 4 ! | Improves

(55%)

0 1 2 3
Real-Time-Factor

(d) Categorical breakdown.

Fig. 3: Latency-accuracy behaviors of the ASR engine across different dynamic search configurations. These behaviors fall into three distinct
categories depending on how their accuracy varies with increased search time. While the majority of the utterances do not change depending
on the configuration, a significant portion of utterances are sensitive to processing time — often conflicting with one another.

Accuracy Improves Fig. 3a shows that some utterances ben-
efit from increasing the HMM search space (i.e, increased
latency). This follows the intuition that a more rigorous search
can yield more accurate results. The search error plot in Fig. 3a
reaches its minimum WER at the ninth configuration, which
reduces search error by 36%. However, reducing the search
error is not free because it increases latency four-fold.

Accuracy Degrades Surprisingly, Fig. 3b shows that for
some utterances a larger search space can actually increase
the search error. This may occur when the search produces
a locally, rather than globally, optimal result. In contrast to
the previous category, where the search space was constrained,
this category shows that the wrong hypotheses can also be
selected when the search is too liberally configured.

Accuracy Non-monotonic Sometimes utterances do not ex-
hibit clear latency-accuracy characteristics, as shown in Fig. 3c.
The HMM subset searched for these utterances is sensitive to
the search heuristics used. The search error fluctuates across
configurations without a clear trend. In cases, where the WER
reaches 0, the heuristics happened to constrain the search space
in such as way that the globally optimal value could be found.

Fig. 3d shows a breakdown of the search-sensitive utter-
ances into the three latency-accuracy behavior classifications
previously introduced. A more comprehensive search im-
proves the accuracy for more than half of the search-sensitive
utterances. Although fewer in number, there is a sizable por-
tion of search-sensitive utterances, whose accuracy degrades
with execution time. While not shown, the utterances with
non-monotonic behavior typically achieve lower search error
with larger, as opposed to smaller, searches, further endorsing
increased service processing time.

3.4. “One Size Fits All” Analysis

Our “one size fits all” analysis, shown in Fig. 4, demon-
strates the limitations of deploying a single configuration to
handle all utterances. For each of the ten configurations, we
show the search error and RTF averaged across the search-
sensitive utterances. There is an inverse relationship between
search error and RTF. Left-to-right in Fig. 4 the average search
error is reduced from 70% in configuration one to 24.7% in

configuration ten. However, the accuracy improves at the
expense of a fivefold increase in the average RTF.

Fig. 4 shows that achieving a low search error for all ut-
terances requires a configuration with a relatively high RTF.
However, based on our earlier classification, there exists a sub-
class of the utterances, whose search error will not improve
with larger RTF. In fact, we established that there exist a sub-
class of utterances for which the accuracy even degrades with
larger RTF. As a result, choosing a single configuration to pro-
cess all utterances, will not only incur unnecessary latencies
in some cases, it may even sacrifice accuracy.

4. Service Node Multi-Versioning

In this section, we introduce the concept of service node
multi-versioning and demonstrate how it overcomes the limi-
tations of the “one size fits all” deployment scheme. The idea
is simple: deploy a set of versions each configured differently,
tailored to specific characteristics of utterances. Our analysis
shows that very few versions are needed to provide substantial
accuracy and processing efficiency improvements. However, a
multi-versioned cloud introduces new complexities, including
version selection and resource allocation.

Evaluation Fig. 5 demonstrates the potential of service
node multi-versioning to simultaneously improve the respon-
siveness and accuracy of the ASR service over deploying a
single version. In practice, cognitive service providers typi-

0.8 2.5
| @ |—®@— Word Error Rate 20 B
= —@— Real-time Factor| >3
60.6 - -
= 1.5 =
w r 3
S0.4F 1.0 :
(5]
3 L 0.5 %
0.2 =

0.0
123 45 6 7 8 910
Configuration

Fig. 4: WER and RTF trends across different ASR engine dy-
namic search configurations. Overall, increasing the beam
search time results in lower search error. The fastest config-
uration significantly outperforms the most accurate one and
vice-versa in the case of accuracy.

cally prioritize minimizing the search error before minimizing
the RTF. We assess the potential of multi-versioning using
an oracle routing scheme that assigns each utterance to the
most optimal service node version. Under this oracle routing
scheme, multi-versioning yields a significant reduction in the
average search error while continuing to improve the RTF
as more versions are simultaneously used. Adding just one
additional version in deployment (for a total of two versions)
reduces the search error from 24% to 3.4% while improving
the average RTF by over 40%. Considering four versions re-
duces the WER to less than a percent and the RTF to below

1. By this point, the benefits of multi-versioning have been

achieved as both the search error and RTF have saturated.

Design Considerations To realize the demonstrated bene-
fits of a multi-versioned ASR service several design consider-
ations have to be addressed. Based on our encouraging results
so far, we plan to explore some of the following design aspects
in our future work, which we now describe:

1. Version Selection The benefits of service node multi-
versioning are predicated on determining an effective set
of distinct versions that are to be deployed together. As
we have shown, it is important to thoroughly explore the
search’s latency-accuracy space and match it to the charac-
teristics and requirements of the service’s user base.

2. Request Routing How to establish the routing logic to de-
termine the best version to handle a given utterance is not
immediately evident. Attributes of the utterances have to be
extracted and incorporated efficiently into a routing mecha-
nism that can identify the best configuration to process the
utterance based on the specified optimization criteria.

3. Resource Allocation A specialized routing mechanism
that routes utterances to version solely based on utterance
attributes may result in load imbalance. As we saw ear-
lier, there is a non-uniform distribution of which version
was appropriate for the utterances. The cluster manager
needs to be able to keep an adequate number of nodes for
each service version available, and elastically adapt this
number to dynamic loads. Additionally, in the presence
of heterogeneous hardware (i.e. asymmetric CPUs, GPUs,
FPGAs), the scheduler may assign the different versions to
the different hardware components.

5. Prior Work

Our work builds upon computer systems research at the
intersection of machine learning and datacenter optimization,
while also bearing similarities to approximate computing:

Approximate Computing While our work leverage the
latency-accuracy trade-off of our ASR engine, it bears sev-
eral differences from approximate computing. Approximate
computing seeks to sacrifice result quality to improve system
efficiency. Instead, we take a two-level optimization approach
where we first identify the configurations that minimize ac-
curacy and then choose the most responsive configuration
because we want the ASR transcription to be as correct as

Jojoed swi-jeay

12 3 456 7 8 910
Number of Configurations

Fig. 5: WER and RTF trends as multiple ASR versions are used
simultaneously (under oracle routing). Increasing the number
of unique ASR versions reduces both the WER and RTF. Even
considering just a few configurations provides a substantial
improvement over what a single version can do.

possible. Green is the most similar to our work. It uses multi-
version functions associated with computations that provide
diminishing returns on accuracy for computation time [4].
However, we do not modify the program’s source code and
increase our optimization scope to be datacenter scale.

Datacenter and Machine-learning Optimizations A
large body of work focuses on optimizing warehouse-scale
computers [5], many of which focus on optimizing machine-
learning based applications [7]. These techniques specifically
focus on performance and energy efficiency optimizations
based on program execution characteristics, rather than ex-
ploiting the latency-accuracy trade-off as we do. Other works
look at resource allocation and cluster management [6], but
not from an accuracy perspective as we require. All of these
techniques are orthogonal to, and could be enhanced by, the
techniques and insights we convey.

6. Conclusion

As Cognitive Computing continues to pervade daily life, it
is important to rethink how we design the computer systems
they employ. Optimizing accuracy without compromising
responsiveness, and vice-versa, is essential to the success
of this emerging computating paradigm. By understanding
the latency-accuracy characteristics of our ASR engine, we
demonstrate promising results for how breaking conventional
cloud service deployment strategies can meet this end.

References

[1] Cognitive Computing.

[2] The Google Gospel of Speed.

[3] VoxForge.

[4] Woongki Baek and Trishul M Chilimbi. Green: a framework for sup-
porting energy-conscious programming using controlled approximation.
In ACM Sigplan Notices, 2010.

[5] Luiz André Barroso, Jimmy Clidaras, and Urs Holzle. The datacenter as
a computer: An introduction to the design of warehouse-scale machines.
Synthesis lectures on computer architecture, 2013.

[6] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ASPLOS, 2014.

[7] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, et al. Sirius: An open end-to-end voice
and vision personal assistant and its implications for future warehouse
scale computers. In ASPLOS, 2015.

	Introduction
	Automatic Speech Recognition (ASR)
	The Latency-Accuracy Trade-off
	Optimization Metrics
	Search Error Characterization
	Latency-Accuracy Trade-off Analysis
	``One Size Fits All'' Analysis

	Service Node Multi-Versioning
	Prior Work
	Conclusion

