
AI Tax in Mobile SoCs: End-to-end Performance
Analysis of Machine Learning in Smartphones

Michael Buch1, Zahra Azad2, Ajay Joshi2, and Vijay Janapa Reddi1

1Harvard University
2Boston University

{mbuch, vjreddi}@g.harvard.edu, {zazad, joshi}@bu.edu

Abstract—Mobile software is becoming increasingly feature
rich, commonly being accessorized with the powerful decision
making capabilities of machine learning (ML). To keep up
with the consequently higher power and performance demands,
system and hardware architects add specialized hardware units
onto their system-on-chips (SoCs) coupled with frameworks to
delegate compute optimally. While these SoC innovations are
rapidly improving ML model performance and power efficiency,
auxiliary data processing and supporting infrastructure to enable
ML model execution can substantially alter the performance
profile of a system. This work posits the existence of an AI tax,
the time spent on non-model execution tasks. We characterize the
execution pipeline of open source ML benchmarks and Android
applications in terms of AI tax and discuss where performance
bottlenecks may unexpectedly arise.

Index Terms—mobile systems, Android, system-on-chip, hard-
ware acceleration, machine learning, workload characterization.

I. INTRODUCTION

With the advances in the compute and storage capacity of
systems, there has been a surge of artificial intelligence (AI)
in mobile applications. Many of today’s mobile applications
use AI-driven components like super resolution [1], face
recognition [2], image segmentation [3], virtual assistants [4],
speech transcription [5], sentiment analysis [6], gesture recog-
nition [7], etc. To make an application accessible to the
broader audience, AI needs to be routinely deployed on mobile
systems, which presents the following three key challenges:

First, AI processing on general-purpose mobile processors
is inefficient in terms of energy and power, and so we need
to use custom hardware accelerators. Commonly used AI
hardware accelerators include traditional GPUs and DSPs
as well as custom AI processing engines such as Google’s
Coral [8], MediaTek’s Dimensity [9], Samsung’s Neural Pro-
cessing Unit [10], and Qualcomm’s AIP [11]. While these
AI engines offer hardware acceleration, depending on how
they are integrated into the wider system, they can potentially
introduce offloading overheads that are often not accounted
for or studied in AI system performance analyses.

Second, to manage the underlying AI hardware, SoC ven-
dors rely on AI software frameworks. Examples include
Google’s Android Neural Network API (NNAPI) [12], Qual-
comm’s Snapdragon Neural Processing Engine (SNPE) [13],
and MediaTek’s NeuroPilot [14]. These frameworks manage

AI Tax

HardwareFrameworksAlgorithms

Pre-processing

End to End (E2E)
Performance

AI Model

Post-processing

Data Capture Drivers Offload

Scheduling Multitenancy

Run-to-run
Variability

Fig. 1: Taxonomy of overheads for AI processing, which in
this paper we expand upon to highlight common pitfalls when
assessing AI performance on mobile chipsets.

ML model execution on heterogeneous hardware and decide
on the application run-time scheduling plan. While this reduces
development effort, abstracting model preparation and offload
can make performance predictability difficult to reason about
as the framework’s run-time behavior varies depending on
system configuration, hardware support, model details, and the
end-to-end application pipeline.

Third, to enable the execution of a machine learning (ML)
model, an application typically requires a host of additional
algorithmic processing. Examples of such algorithmic process-
ing include retrieval of data from sensors, pre-processing of the
inputs, initialization of ML frameworks, and post-processing
of results. While every ML application and its model(s) must
go through these necessary processing stages, such overheads
are often discounted from performance analysis.

In this paper, we explain the individual stages of execution
of open-source ML benchmarks and Android applications
on state-of-the-art mobile SoC chipsets [15]–[18] to quantify
the performance penalties paid in each stage. We call the
combined end-to-end latency of the ML execution pipeline
the “AI tax”. Figure 1 shows the high-level breakdown



of an application’s end-to-end performance and how end-
to-end performance can be broken down into AI tax and
AI model execution time. The AI tax component has three
categories that introduce overheads, which include algorithms,
frameworks and hardware. Each of these categories has its
own sources of overhead. For instance, algorithmic processing
involves the runtime overhead associated with capturing the
data, pre-processing it for the neural network, and running
post-processing code that often generates the end result.
Frameworks have driver code that coordinates scheduling and
optimizations. Finally, the CPU, GPU or accelerator itself can
suffer from offloading costs, run-to-run variability and lag due
to multi-tenancy (or running concurrent models together).

We use AI tax to point out the potential algorithmic
bottlenecks and pitfalls of delegation frameworks that typi-
cal inference-only workload analysis on hardware would not
convey. For example, a crucial shortcoming of several exist-
ing works, including industry-standard benchmarks such as
MLPerf [19] and AI Benchmark [20], is that they overempha-
size ML inference performance (i.e., AI Model in Figure 1).
In doing so, they ignore the rest of the processing pipeline
overheads (i.e., AI tax portion in Figure 1) — thereby “missing
the forest for the trees”. ML inference-only workload perfor-
mance analysis commonly does not capture the non-model
execution overheads because they are either interested in pure
inference performance or the ad-hoc nature of these overheads
makes it unclear how to model them in a standardized fashion.
However, since the high-level application execution pipeline
varies marginally between ML models and frameworks, many
ML mobile applications follow a similar structure, and so
patterns of where bottlenecks form could thus be captured
systematically and that could help us mitigate inefficiencies.

To that end, we characterize the importance of end-to-
end analysis of the execution pipeline of real ML workloads
to find the contribution of AI tax in the machine learning
application time. We examine this from the perspective of
algorithmic processing, framework inefficiencies and over-
heads, and hardware capabilities. Given that data capture and
processing times can be a significant portion of end-to-end
AI application performance, these overheads are essential to
quantify when assessing mobile AI performance. Moreover, it
is necessary to consider jointly accelerating these seemingly
mundane yet important data processing tasks along with ML
execution. We also present an in-depth study of ML offload
frameworks and demonstrate how they can be effectively
coupled with a measure of AI tax to aid with efficient hardware
delegation decisions. Finally, application performance can vary
substantially based on the underlying hardware support, but
this is not always transparent to the end user. Hence, this is
yet another reason that end-to-end AI application performance
(i.e., including the software framework) is crucial instead of
just measuring hardware performance in isolation.

In summary, our contributions are as follows:
1) It is important to consider end-to-end performance

analysis when quantifying AI performance in mobile
chipsets. Specifically, the current state-of-the-art bench-

marks overly focus on model execution and miss the
system-level implications crucial for AI usability.

2) The data capture and the AI pre- and post-processing
stages are just as crucial for AI performance as the core
ML computational kernels because they can consume as
much as 50% of the actual execution time.

3) When conducting AI performance analysis, it is essential
to consider how well the ML software framework is
optimized for the underlying chipset. Not all frameworks
support all chipsets and models well.

4) AI hardware performance is susceptible to cold start
penalties, run-to-run variation, and multi-tenancy over-
heads, much of which are all overlooked today.

We believe that this breakdown of end-to-end AI perfor-
mance is of both interest and significance for users across
the stack. End-users (i.e., application developers) care because
they may want to invest in additional complexity to lower
pre-processing overheads (instead of focusing on inference).
Framework authors may wish to report more details about pre-
and post-processing or data collection to its users. Framework
writers may also want to think about scheduling pre- and post-
processing operations on hardware. AI accelerator designers
may want to consider dropping an expensive tensor accelerator
in favor of a cheaper DSP that can also do pre-processing.

The remainder of the paper is organized as follows. Section
II describes the steps involved in using an ML model from
within a mobile application, from data acquisition to interpre-
tation of the results. In Section III, we detail our experimental
setup, including the frameworks, models, applications, and
hardware that we tested. We define AI tax and quantify it
in Section IV. We discuss prior art in Section V and conclude
the paper in Section VI.

II. THE MACHINE LEARNING PIPELINE

This section presents the typical flow of events when
invoking an ML model on an SoC, which we refer to as the
ML pipeline. This sets the stage for how we conduct our end-
to-end AI performance analysis. Figure 2 shows each of the
stages, and the section elaborates on their individual functions.

A. Data Capture

Acquiring data from sensors can seem trivial on the surface,
but can easily complicate an application’s architecture and
influence system design decisions. For example, capturing raw
images faster than what the application can handle can put
strains on system memory and I/O or an incorrect choice of
image resolution can cause non-linear performance drops if
image processing algorithms in later parts of the ML pipeline
do not scale with image size. Some systems collect data
from more than a single sensor, in which case additional
data processing (such as fusing multiple sources of data into
a single metric) or sanitization may be required. This extra
processing often runs concurrently with the rest of the appli-
cation across the same set of cores adding synchronization
overheads and interference into the picture. Alternatively it
may also be offloaded to co-processors, such as the DSP

2



Data Capture Frameworks

NNAPI

Vendor

...

Pre-processing

Crop
Scale

...

Execution

... ...

Op

Op
Op

Op

Op
Op

Op

Op

Op

DSPCPU

GPU
NPU

Post-processing

{ people, forest, person,
lamps,... }

topK

Fig. 2: Example of the steps taken in a typical end-to-end flow for an image classification machine learning task. A pre-
processing step transforms data captured by the camera into the shape that the model in question expects. The ML framework
loads the model and plans any subsequent stages; the choice of framework can be platform agnostic (e.g., NNAPI) or provided
by a chipset vendor (e.g., Qualcomm’s SNPE) and its initialization is typically performed once. Then the framework schedules
model execution on hardware at “operation” granularity. Finally, a post-processing step makes sense of the model output, e.g.,
by selecting the likeliest classes to which the image belongs (i.e., topK).

through frameworks such as Qualcomm’s FastCV [21], which
bring additional performance considerations of their own. In
the applications we studied, the supporting code around data
capture contributed to a large share of overall application
latency.

B. Pre-processing

The first step in using sensor data is to shape it into a
format that the model in question expects. Although ML
frameworks expose some standard pre-processing algorithms,
the input requirements of a model depend on the task, dataset,
network architecture, and application details, such as how data
is acquired and stored. Hence, a system’s architecture can
affect the choice of pre-processing algorithms and the time
spent in that stage. In this paper, we deal with models that
operate on image data, and so we direct our attention in the
remainder of this section to the common algorithms used for
image pre-processing in the applications we benchmarked:

Bitmap formatting: When dealing with image data that we
obtain from a camera module, an application needs to convert
the raw frames into some standard image representation. A
common pattern in Tensorflow-based Android applications is
to retrieve a camera frame in the YUV NV21 format using
the Android Camera API [22] and convert it to ARGB8888
format.

Scale/Crop: A model is trained on images of fixed di-
mensions, and the input dimensions determine a network’s
architecture (i.e., the sizes of individual layers). Hence, some-
where in the pre-processing stage, the image data needs to
get resized to the size the first layer of the network can
handle. A widespread technique for scaling images (e.g., used
as Tensorflow’s default resizing algorithm) is Bilinear Interpo-
lation. Although this algorithm’s run-time scales quadratically
with the output image size, vectorized implementations can
significantly improve its performance. Some models such as
Inception-v3 (center-)crop an image prior to scaling it [23].
This step removes some number of pixels along each dimen-
sion of an image. This operation’s cost is thus the cost of
computing the bounding box around the cropped region and

reshaping a tensor. In the majority of models we measured,
cropping and scaling was a significant contributor to overall
execution time.

Normalize: Almost all networks require normalized inputs,
i.e., with zero mean and unit variance. A typical implementa-
tion will thus iterate over each pixel, subtract the image mean
from it and scale it by the standard deviation. The run-time of
a normalization operation thus scales linearly with the number
of pixels in the input image.

Rotate: Depending on the orientation of the image provided
by the sensors, an application might have to perform an
additional rotation operation on the input. If a network was
trained on augmented data or if the sensor orientation is
consistent with the image orientation expected by the model,
this step might not be necessary. However, models such as
PoseNet [24], which we evaluate in this paper, make extensive
use of this operation, and it may be essential to keep in mind
that image rotation scales quadratically with the image size.

Type conversion. Quantized and reduced precision models
(such as 16-bit floating-point) are increasingly popular, es-
pecially in mobile systems because less memory is required
to store weights and activations while accuracy remains in
acceptable bounds. However, the datatype and bit-width of a
model also affects the pre-processing stage because frames
from sensors are captured as raw bytes and thus need to be
converted to the appropriate types and possibly be quantized.

C. Frameworks

Most of the ML pipeline is determined by the framework(s).
Pre- and post-processing algorithms are often provided as
library calls, such as TensorFlow operations in TFLite. Input
data formats, model execution, and computation offload is all
managed transparently (and often configurable manually) by
a run-time, e.g., Android’s NNAPI. Device dependent frame-
works are offered by most SoC vendors, e.g., Qualcomm’s
SNPE or MediaTek’s ANN, but there is ongoing effort to
provide interoperability between them and NNAPI. They can
expand the list of accelerators on which we can schedule
computation and a model’s supported operations. Given that

3



Task Model Resolution Pre-processing Task Post-processing Task NNAPI-fp32 NNAPI-int8 CPU-fp32 CPU-int8

Classification MobileNet 1.0 v1 224x224 scale, crop, normalize topK, dequantization* Y Y Y Y

Classification NasNet Mobile 331x331 scale, crop, normalize topK, dequantization* Y N Y N

Classification SqueezeNet 227x227 scale, crop, normalize topK, dequantization* Y N Y N

Classification EfficientNet-Lite0 224x224 scale, crop, normalize topK, dequantization* Y Y Y Y

Classification AlexNet 256×256 scale, crop, normalize topK, dequantization* N N Y Y

Face Recognition Inception v4 299 x 299 scale, crop, normalize topK, dequantization* Y Y Y Y

Face Recognition Inception v3 299x299 scale, crop, normalize topK, dequantization* Y Y Y Y

Segmentation Deeplab-v3 Mobilenet-v2 513x513 scale, normalize mask flattening Y N Y N

Object Detection SSD MobileNet v2 300x300 scale, crop, normalize topK, dequantization* Y Y Y Y

Pose Estimation PoseNet 224x224 scale, crop, normalize, rotate calculate keypoints Y N Y N

Language Processing Mobile BERT - tokenization topK, compute logits Y N Y N

TABLE I: Comprehensive list of benchmarks. Each entry shows all possible pre- and post-processing tasks that we observed
across our experiments. Tasks marked with an “*” are only performed with quantized models.

with cross-platform frameworks such as NNAPI, each vendor
is responsible for implementing the corresponding drivers, an
application’s performance profile can vary significantly across
devices.

D. Model Execution

This stage encompasses the invocation of a model and
retrieval of the results back to the calling application. In
frameworks such as TFLite, these steps are handled by a
combination of calls to OS APIs such as Android’s NNAPI and
device specific driver implementations. These drivers can be
open-source, such as the TFLite Hexagon Delegate, or bundled
into vendor-specific SDKs, such as Samsung’s Edge delegate.

In NNAPI, the model execution details are determined
during a step called model compilation, which usually needs
to be performed only once when loading a new model into an
application. Based on the application’s execution preference
(low-power consumption, maximum throughput, fast execu-
tion, etc.), the framework will determine (and remember for
successive executions) on which processors and co-processors
to run a model. Given the abundance of accelerators on modern
SoCs, NNAPI tries to distribute a model’s execution across
several devices. A step referred to as model partitioning.

Offloading is the process of performing a task (ideally more
efficiently) on an attached accelerator instead of the CPU.
There are two common models for integrating an accelerator
into an SoC. In the tightly coupled model, an accelerator is
integrated with the CPU core and its cache hierarchy. In the
loosely coupled model, the accelerator is a separate hardware
block with its own memory subsystem and communicates with
the CPU over memory-mapped I/O [25]. The accelerators in
the mobile devices that we consider (namely the Snapdragon
SD6xx chipsets) are loosely coupled to the CPU. Thus any
communication with the DSP requires a round-trip through
the kernel device driver interface.

E. Post-processing

Post-processing refers to the remaining computations on the
model’s outputs before presenting them to the user. As with
pre-processing algorithms, the details are task-dependent. For
image classification tasks that we considered, all that is left

to do on the output tensor is pick the most fitting predictions
(referred to as topK). The outputs of a model are sorted by the
likelihood of labels, and so choosing topK elements is simply
an array slice operation. Other tasks like pose estimation or
image segmentation require more intensive data processing on
the model output. E.g., an application using PoseNet must map
the detected key points to the image.

III. EXPERIMENTAL SETUP

In this section, we summarize our experiments’ infrastruc-
ture, configuration, and measurement setup and provide the
necessary details to reproduce our results.

A. Machine Learning Models

We measure individual stages of the ML pipeline across a
representative set of tasks, input data sizes, and models. Table
I summarizes the models we used during our experiments.
All models are hosted by TFLite [26]. Implementations for
the pre- and post-processing tasks are TensorFlow Lite An-
droid libraries. They are well optimized for production use
cases [27].

We picked a set of commonly used models on mobile
systems that cover a range of input image resolutions (224x224
to 513x513) and perform pre-/post-processing tasks of varying
complexity. We also picked models that are designed for
mobile devices (e.g., MobileNet) and more general-purpose
models (e.g., Inception). We experiment on two widespread
numerical formats for mobile ML: (1) 8-bit quantized integers
(INT8) (2) 32-bit floating-point (FP32). Performance and
accuracy are often tightly correlated. For our work, accuracy
does not matter because we do not compare FP32 against
INT8 models. Any comparisons we make are between the
same model and bit-width. Hence, we do not discuss model
accuracy in the paper.

B. Software Frameworks

We use the open-source TFLite command-line benchmark
utility (and it’s Android wrapper) to measure inference pre-
processing, post-processing, and inference latency. The former
two required additions of timing code around the correspond-
ing parts of the source. By default, the utility generates random

4



System SoC Accelerators

Open-Q 835 µSOM Snapdragon 835 Adreno 540 GPU, Hexagon 682 DSP

Google Pixel 3 Snapdragon 845 Adreno 630 GPU, Hexagon 685 DSP

Snapdragon 855 HDK Snapdragon 855 Adreno 640 GPU, Hexagon 690 DSP

Snapdragon 865 HDK Snapdragon 865 Adreno 650 GPU, Hexagon 698 DSP

TABLE II: Platforms we used to conduct our study. We
use a userdebug build of AOSP in order to get the right
instrumentation hooks for our purposes while mimicking the
final product build as closely as possible.

tensors as input data. Each model invocation is performed 500
times. Depending on the exact experiment, we schedule the
model on the open-source GPU Delegate or Hexagon Delegate,
via automatic device assignment by NNAPI, the CPU (across
four threads) or a combination of all the above. By default, the
benchmarks use NNAPI’s default execution preference setting
FAST_SINGLE_ANSWER.

To evaluate the effect of embedding ML models into mobile
applications, we profile a set of open-source applications. For
image classification, segmentation, and pose estimation tasks,
we utilize TFLite’s open-source example Android applica-
tions [28]. We have seen similar implementations of the data
capture, pre-processing, post-processing, and inference stages
across other Android apps.

C. Hardware Platforms

Table II describes the hardware platforms we study in our
characterization evaluation. We focus on the Qualcomm Snap-
dragon series ranging from SD835 to SD865 as these chipsets
are widely deployed in the ecosystem. We only present results
on the Google Pixel 3 (SD845), although our experimental
results indicate that the trends are representative across the
other, older and newer, chipsets. The other chipsets have the
same set of hardware accelerators. The chipsets contain a
CPU, GPU, and DSP for AI processing tasks. Moreover, these
chipsets were used by Qualcomm to generate the MLPerf
Inference [19], [29] and recent MLPerf Mobile results [30].

We ran a similar set of experiments through a non-NNAPI
framework called Qualcomm’s SNPE using open-source ap-
plications found on Qualcomm’s Developer Network [31] and
using the SNPE benchmark tool [32] instead of TFLite’s. We
came to similar conclusions about end-to-end latency trends,
but due to a lack of model variety and available Android apps
targeting these systems, we decided to focus our discussion
solely on NNAPI. We expect to see similar results across non-
Qualcomm SoCs because many of the performance trends we
discuss are consequences of how frameworks and applications
use hardware instead of the underlying SoC hardware itself.

D. Probe Effect

In our measurements we keep the performance degradation
due to our instrumentation infrastructure to a minimum. To
decrease variance in our results, we report the arithmetic mean
of 500 runs. Since mobile SoCs are particularly susceptible to

Fig. 3: Comparison of inference latency between the TFLite
command-line benchmark utility, TFLite Android benchmark
app and example Android applications.

thermal throttling, we make sure to run benchmarks once the
CPU is cooled to its idle temperature of around 33 °C.

When enabling our driver instrumentation, we observe a
4-7% increase in inference time with hardware acceleration
enabled (via SNPE or NNAPI) and has no effect on pre-
processing or inference performed on the CPU. These in-
creased numbers are not the ones we use in our evaluation
since the instrumentation only serves to reveal code paths
and measure time spent in drivers. The only results we show
that had instrumentation enabled that influenced latency on
milliseconds’ order is in the offload section (See Section IV-C).

IV. AI TAX FOR MOBILE

AI tax is the time a system spends on tasks that enable the
execution of a machine learning model; this is the combined
latency of all non-inference ML pipeline stages (defined in
section II). We claim that viewing benchmark results and
model performance in the context of AI tax can steer the
mobile systems community towards fruitful research areas
and narrow in on the parts of a system that are sources of
performance bottlenecks and need optimization.

To understand and quantify the real-world effects of the
end-to-end AI processing, we first compare the performance
of ML models when they are run as (1) pure benchmarks
from the command line; (2) packaged into benchmark apps
with a user interface (TFLite Android benchmark utility [33]);
and (3) executed as part of a real application. An example of
how benchmarks or proxy applications can deviate from real-
world application performance is shown in Figure 3 where
we measured end-to-end latency of various models running
on the CPU. Since TFLite’s benchmark utility focuses on
testing inference performance, we observe that negligible
pre-processing is required to run a model. Both benchmark
utilities (including the one that aims to be more representative
of Android applications) masks the end-to-end performance
penalties that arise from data capture and pre-processing. For

5



(a) (b)

Fig. 4: Comparison of the time spent on pre-processing and data capture compared to inference in the TFLite benchmark utility
as opposed to Android applications. In (a) we report absolute numbers for all three components, while in (b) we report the data
capture and pre-procesing latency relative to the inference latency. Compared to benchmarks, the same model encapsulated
inside a real application spends a significant amount of time waiting for data capture and pre-processing before it is invoked
for inference.

example, in Inception V3-fp32, the app latency is nearly
350 ms while the benchmark latency is 100 ms less at 250 ms.
The trend holds true across all the machine learning models.

Consequently, this section aims to convey the importance
and demonstrate the identification of AI tax in mobile appli-
cations. AI tax manifests itself through three broad categories:

1) Algorithms: how an application pre-/post-processes data
and the complexity and input shape of a model.

2) Frameworks: the choice of a machine learning inference
runtime to drive the execution of a model.

3) Hardware: availability of hardware accelerators and the
mechanisms by which the CPU offloads compute (includ-
ing any OS-level abstractions).

The following sections present our findings across the
categories. We find that the time spent in OS and vendor
drivers quickly amortize across hardware delegation frame-
works. Together with post-processing, they constitute only a
small fraction of the overall execution time. However, the
time spent on capturing and then pre-processing data for
ML models’ consumption can combine to a majority of the
execution time.

A. AI Tax: Algorithms

This section presents our pre-/post-processing and inference
latency measurements and shows how the performance pat-
terns differ between benchmarks and Android applications.
We measure the time spent on acquiring and pre-processing
input data to highlight the differing performance profiles
between benchmarks and applications. Although most of our
results suggest that post-processing latency is negligible (sub-
millisecond per inference), more complex tasks such as image
segmentation and object detection show that applications re-

quire significant additional work on the model output (e.g.,
mask flattening and bounding box tracking, respectively).

Data Capture & Pre-Processing. Figure 4 contrasts the
data capture and pre-processing latency between those mea-
sured in inference benchmarks versus Android applications
using the same models via NNAPI as the underlying software
framework. Figure 4a shows the data capture, pre-processing,
and inference latencies, while Figure 4b shows the processing
overheads relative to the inference latency to narrow in on
details. These show that a significant portion of a model’s time
is spent on data capture and pre-processing instead of actual
inference. That said, the amount of time depends on both the
model in question and whether we consider benchmarks or
applications.

Models such as quantized MobileNet v1 and SSD Mo-
bileNet v1 spent up to two times as much time acquiring and
processing data than performing inference in both benchmarks
and applications. When embedding floating-point models such
as PoseNet, EfficientNet, and DeepLab v3 into applications,
we similarly see the majority of time spent outside of infer-
ence. On the other hand, in benchmarks, inference latency
dominates. Generally, for floating-point data, the “data cap-
ture” (which in the case of the inference benchmarks is random
data generation) is negligible. In quantized models, it seems
to approximate real applications to some extent. However, this
is one of the fallacies of this approach to data acquisition.
The standard C++ library that this benchmark happened to
be compiled against (libc++) generates real numbers signifi-
cantly faster than integers. Using a different standard library
(libstdc++), we observed the exact opposite behavior. The only
model where inference latency dominates is for quantized and
floating-point Inception-v3. Not only do the Inception models

6



have significantly more number of parameters and operations
than other more mobile-friendly models we test, they are only
partially able to be offloaded by NNAPI and runs around
half of its inference on the CPU. For image classification and
object detection, pre-processing and data acquisition contribute
approximately equal amounts to overall run-time, while for
PoseNet and Deeplab-v3 pre-processing contributes to about
10% and 1%, respectively.

Post-Processing. Many machine learning tasks, particularly
image classification, require relatively little post-processing.
However, applications in domains such as object detection
commonly employ CPU-intensive output transformations after
every inference to make the output data user-friendly. For
example, a typical application using PoseNet maps the de-
tected key points to the image. Also, Dashcams, for instance,
compute and visualize bounding boxes from a model’s output.
Similar to pre-processing overheads, a system designer should
keep in mind that post-processing can quickly become an
application’s main bottleneck depending on the task; these
patterns again will likely be absent from a benchmark report.

Takeaway from AI Tax: Algorithms

When assessing or benchmarking ML system perfor-
mance, it is crucial to quantify the end-to-end ML
system performance that includes the overheads from
capturing data along with pre- and post-processing
as these can be as much as 50% of the total ex-
ecution time. Therefore, obsessing about ML-only
performance can lead us to miss the forest for the trees.

B. AI Tax: Software Frameworks

The next set of contributors to ML application overhead are
specific to the choice of ML framework. Prominent examples
include open-source projects such as TFLite or vendor-specific
development kits such as Qualcomm’s SNPE or MediaTek’s
NeuroPilot [14]. These frameworks abstract away most of
the execution pipeline of Figure 2, including management of
model lifetime, communication with accelerators, and pre- and
post-processing primitives’ implementation. In this section,
we use NNAPI to illustrate the pitfalls in evaluating AI
performance if we do not benchmark end-to-end performance.

Drivers & Scheduling. Since NNAPI is in large part an
interface that relies on mobile vendors to implement, perfor-
mance bottlenecks can commonly arise due to inefficiencies
in the driver implementations, e.g., how models are executed
or how specific NNAPI operations are implemented. Figure 5
shows a situation in which this effect is pronounced. We ran
the quantized EfficientNet-Lite0 model on four different device
targets through TFLite: (1) the open-source Hexagon backend,
(2) 4 CPU threads, (3) a single CPU thread, and (4) NNAPI.

Relying on NNAPI’s automatic device assignment degrades
performance by 7× compared to scheduling the model on
a single-threaded CPU. Interestingly this does not occur in
the floating-point model, pointing to several subtle traps. This

Fig. 5: Performance degradation of TFLite’s quantized
EfficientNet-Lite0 when using NNAPI (with CPU fallback).

is because of NNAPI driver support, which is lagging for
the INT8 operators the model implementation used. Future
iterations may likely fix this performance “bug.” However, the
takeaway is that not all frameworks are created and treated
equal.

To root-cause the reason for the overhead, we analyze the
execution profile of executing EfficientNet-Lite0 through an
image processing app on our Pixel 3. The measured profile is
shown in Figure 6. Execution on four CPU threads behaves as
expected; cores 4-7 are at 100% utilization for the benchmark
(see annotation 1 ). Similarly, execution through Hexagon
shows 100% utilization of the cDSP and increased AXI traffic
2 . However, NNAPI’s automatic device selection does not

decide on efficient execution. Initially, we see an attempt to
communicate via the DSP through a spike in the Compute
DSP (CDSP) utilization at the start of the benchmark (5th
row from the bottom). Then, the rest of the execution uses a
single thread (indicated by the sporadic CPU 100% utilization
across cores 4-7 3 ). Moreover, we witness frequent CPU
migrations (characterized by more frequent context switches
and the core utilization pattern 4 ). This failure of offloading
to a co-processor and reliance on the OS CPU scheduler ruins
inference latency.

While Figure 6 shows a specific case study of a single neural
network, similar behavior is observed on other networks.
Though the DSP as an accelerator is always supposed to run
fast, there is no guarantee that the model will always run faster.

We extended our analysis (not shown) to include the per-
formance of various models running on the CPU (using the
native TFLite delegate) versus the DSP (using the NNAPI
driver backend). In all cases except for Inception V4, we had
observed that the NNAPI-DSP code path is slower. When
introspecting the execution using the execution profile, we
see similar behavior as in Figure 6—falling back on the CPU
results in poor end-to-end system performance.

When we switch the framework to the vendor-optimized
Qualcomm SNPE, the DSP’s performance is significantly

7



Fig. 6: Output from the Snapdragon Profiler, which shows measurements while running the EfficientNet-Lite0 model on the
CPU, TFLite Hexagon delegate, and NNAPI. The benchmark was run using TFLite’s command-line benchmark utility.

better. The models’ performance on the DSP outperforms the
CPU (as one would expect). This tells us that being aware
of the software framework’s choice can greatly impact the
performance of the chipset. The SoC vendor-specific software
is highly tuned for the SoC and provides optimized support
for the neural network operators.

The unfortunate side-effect of vendor-optimized software
backends is that it creates silos that can make it difficult for
application developers to know which is the right framework
for wide-scale deployment. Ahead of time, it is unclear which
framework(s) provides the best (and the most flexible) support
until the developers (1) download the framework, (2) select a
set of ML models to run, and (3) profile those models on the
chosen frameworks for their target SoCs.

Takeaway from AI Tax: Software Frameworks

Not all frameworks are created equal. Frameworks that
poorly support models (at least partially) fallback on
the CPU, resulting in worse performance than using
the CPU from the start instead of attempting to lever-
age the promised hardware accelerator performance.
Hence, there is a need for greater transparency in
frameworks being used during performance analysis.

C. AI Tax: Hardware Performance

Modern mobile SoCs can include several accelerators for
different problem domains, e.g., audio, sensing, image process-

ing, and broadband [34]. The behavior of these accelerators
is strongly tied to how the software counterparts invoke them.
We assess how invocation frequency affects AI performance.

Cold start. We use the Qualcomm Snapdragon 8xx chipsets
that include a Hexagon DSP that has been optimized for
machine learning applications over the years and is commonly
referred to as one of Qualcomm’s Neural Processing Units
(NPU). It is reminiscent of a VLIW vector processing engine.

Qualcomm developed the Fast Remote Procedure Call
(FastRPC) framework to enable fast communication between
CPU and DSP. We measure the FastRPC calls themselves,
i.e., the overhead of offloading machine learning inference
to a DSP. The framework requires two trips through the OS
kernel with the FastRPC drivers signaling the other side upon
receipt/transmission, as shown in Figure 7. We were interested
in how much this contributes to the hardware AI tax. The
figure shows the various system-level call boundaries that have
to be crossed when offloading to a DSP. Note the cache flush
that has to occur to maintain coherency.

Figure 8 shows the measured inference and offloading time
for MobileNet v1 when using NNAPI Hexagon delegate for
executing the inference task. As we can see, for a small
number of inferences, the offloading cost is dominant in
the inference latency. However, by increasing the inference
operations, the proportion of offloading time to inference time
(pre inference) decreases. The DSP initial setup (mapping the
DSP to the application process) is done once, and we can
perform multiple inferences using the same setup.

Based on the results, the reason for concern is that current

8



Fig. 7: FastRPC call flow for the Qualcomm DSP.

benchmarks and performance analysis often allow for warm-
up time that is not necessarily representative of a real-world
application. End-user experience, especially in smartphone
deployments, involves a cold start penalty that should also
be measured in ML benchmarks and workload performance
analysis. The TFlite benchmark tool breaks down model
initialization time, which is good to measure if an application
switches between models or frequently reloads them.

Multi-tenancy. An emerging use-case in real-world appli-
cations is the growing need to support multiple models running
concurrently. Example application use-cases are hand-tracking,
depth-tracking, gesture recognition, etc., in AR/VR. Yet, most
hardware today supports the execution of one model at a time.
To this end, we study AI hardware performance as more tasks
are scheduled to the CPU and AI processors.

Figure 9 shows the latency breakdown of our image pro-
cessing Android application when we schedule increasingly
many inferences through the NNAPI Hexagon Delegate in the
background (using the TFlite benchmark utility). We observe
a linear increase in the latency per inference because the
inference is stalled on resource availability. The main inference
is running on the DSP but there is only one DSP available for
ML model acceleration on this particular SoC. Meanwhile,
pre-processing and data capture is approximately constant
regardless because activity on the CPU is not affected by the
concurrent inferences.

In contrast, Figure 10 breaks down the application latency
with the background inferences all on the CPU (while the
image processing app still offloads to the DSP). As expected,
the time spent on pre-processing and data-capture increases
because more tasks are running on the CPU concurrently.
Inference latency is now constant because multiple processes
are not contending for the DSP.

This simple experiment demonstrates a potential pitfall.
Suppose we as system designers or application writers were
to focus only on one part of the execution pipeline (e.g.,
pre-processing in Figure 9 or inference latency in Figure 10)
in isolation. In that case, we could wrongly conclude from
the results that the device selection and schedule are optimal.
However, this need not be the case since we may have other

Fig. 8: Overhead amortization over consecutive inferences.

similar applications running concurrently that contend for the
same hardware resources and may need to rethink resource
allocation, perhaps running one model on the CPU while
another uses the DSP or offloading other execution stages in
certain circumstances.

While NN accelerators can speed up execution, benchmarks
that solely focus on inference latency could mislead SoC
designers to reserve silicon area for hardware that speeds up
a specific model while eliminating potentially useful other
components. For example, DSPs are frequently used for every-
day image processing tasks (mainly through computer vision
frameworks such as FastCV), while a specially tailored NPU
typically cannot support such activities. In such cases, it is
potentially more feasible to trade-off a more powerful NPU for
a smaller one paired with a DSP for pre-processing, freeing
up the CPU to work on other parts of the application.

Run-to-run Variability. Performance variability is a major
concern for mobile developers because it affects end-user
experience. But it is often not accounted for when assessing
device performance. This is specifically an area that is over-
looked by today’s mobile AI benchmarks. Performance on a
real device while running applications varies from run to run
due to background interference, affecting user experience.

Figure 11 shows performance variation to quantify the gap
between benchmarks and mobile AI performance when the
same AI models are packaged into a real application form
factor. The results show that repeated benchmark executions
have a very tight distribution in performance. The deviation
from the mean latency is minimal. However, for the models
running inside an app, we see a very pronounced distribution
in mean latency. The latency can vary by as much as 30%
from the median for the benchmarks.

Such large performance variability stems from the non-ML
portion of the application code. Data capture, pre-processing,
and post-processing all involve multiple hardware units and
processing subsystems. To this end, the Android operating
system’s scheduling decisions, delays in the interrupt handling
from sensor input streams, etc., lead to such fluctuations.

Due to such pronounced variability, workload performance
analysis needs to report statistical distributions in performance.
Instead, today’s standard practice is to report a single ML

9



Fig. 9: Latency breakdown of image classification app when
scheduling an increasing number of inference benchmarks
through NNAPI in the background (using the same model).

Fig. 10: Same experimental setup as in figure 9 except back-
ground inferences are scheduled on the CPU.

performance number, even in well-established standard bench-
marks like MLPerf [29], [35], [36]. In prior work, Facebook
reported a similar observation in their analysis of mobile
inference systems in the wild [37]. There is a greater need
for us to model performance variability in workload analysis,
which was also recommended in the aforementioned prior art.

Takeaway from AI Tax: Hardware Performance

Cold start penalty is common in mobile devices and
needs to be considered, yet it is often ignored in
ML benchmarks. Moreover, today’s benchmarks focus
almost exclusively on a single benchmark running in
pristine conditions that are not representative of the
end-user’s operating conditions, which can lead to mis-
guided conclusions about overall system optimization.
Finally, run-to-run variability is important to faithfully
assess mobile AI performance.

V. RELATED WORK

AI/ML Mobile Benchmarks. There have been many efforts
in recent years to benchmark mobile AI performance. These
include Xiaomi’s Mobile AI Benchmark [38], AI Bench-
mark [39], AI Mark [40], AITUTU [41], Procyon AI Inference
Benchmark [42] and Neural Scope [43]. Nearly all of these
benchmarks provide a configurable means to select the soft-
ware backend, allowing users to use multiple ML hardware
delegation frameworks. Many of these benchmarks run a set
of pre-selected models of various bit widths (INT8, FP16,
or FP32) on the CPU and open-source or vendor-proprietary
TFLite delegates. Some of them even enable heterogeneous
IP support. Regardless of all these functionalities, they miss
the crucial issue of measuring end-to-end performance, which
is the ultimate focus of our work. Our objective is to raise
awareness of AI tax so that future benchmarks can be extended
to be more representative of real-world AI use cases.

End-to-end AI Performance Analysis. Kang et al. [44]
have investigated the end-to-end performance pipeline of

DNNs in server-scale systems and come to a similar conclu-
sion: pre-processing being the main bottleneck in hardware-
accelerated models. The authors propose optimizations to
common pre-processing steps, including re-ordering, fusion,
and datatype changes within the network compilation graph.
It features an in-depth analysis of ResNet and proposes a
model that is aware of pre-processing overheads to reduce
end-to-end latency. We study a more comprehensive range of
models and applications on mobile devices. Also, we analyze
the results from a systems perspective and provide analyses of
ML algorithms, frameworks and hardware.

Similarly, Richins et al. [45] do a study that is specific
to datacenter workloads and architectures. It identifies net-
work and storage as the major bottlenecks in the end-to-end
datacenter AI-based applications, which commonly include
multiple inference stages (e.g., video analytics applications).
The authors show that even though their application under
consideration is built around state-of-the-art AI and ML al-
gorithms, it relies heavily on pre- and post-processing code,
which consumes as much as 40% of the total time of a
general-purpose CPU. Our work focuses on mobile SoCs and
identifies the non-AI sources of overhead typical for handheld
AI devices in the consumer market, which differs from PC
and datacenter hardware in the type and number of available
accelerators on a given SoC and as of now targets a very
different software infrastructure.

VI. CONCLUSION

There is a need for end-to-end performance analysis of
AI systems. On mobile systems, due to the heterogeneous
hardware and software ecosystem, it is essential to have
more transparency into the actual end-to-end execution. The
AI tax overheads we explicate across algorithms, software
frameworks, and hardware highlight new opportunities for
existing ML performance assessment efforts to improve their
measurement methodologies. Our work motivates character-
ization studies across more ML frameworks and SoCs with
a balanced focus on the entire system and the end-to-end
pipeline instead of focusing on ML application kernels only

10



Fig. 11: Latency distribution for image classification us-
ingMobileNet v1 on the CPU. We contrast the distribution
inapplications to the TFLite benchmark utility.

in isolation. Such studies will help us develop a more com-
prehensive performance model that can aid programmers and
SoC architects in optimizing bottlenecks in ML applications
accelerate the different stages of the ML pipeline.

ACKNOWLEDGEMENTS

Supported by the Semiconductor Research Corporation.

REFERENCES

[1] W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue, and Q. Liao, “Deep
learning for single image super-resolution: A brief review,” IEEE Trans-
actions on Multimedia, vol. 21, no. 12, pp. 3106–3121, 2019.

[2] G. Guo, S. Z. Li, and K. Chan, “Face recognition by support vector ma-
chines,” in Proceedings 4th IEEE international conference on automatic
face and gesture recognition (cat. no. PR00580). IEEE, 2000.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481–2495, 2017.

[4] G. Campagna, R. Ramesh, S. Xu, M. Fischer, and M. S. Lam,
“Almond: The architecture of an open, crowdsourced, privacy-
preserving, programmable virtual assistant,” in Proceedings of the
26th International Conference on World Wide Web, ser. WWW ’17.
Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2017, p. 341–350. [Online].
Available: https://doi.org/10.1145/3038912.3052562

[5] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using
context-dependent deep neural networks,” in Twelfth annual conference
of the international speech communication association, 2011.

[6] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A
survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 4, p. e1253, 2018.

[7] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, “Hand gesture recogni-
tion with 3d convolutional neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2015.

[8] Google coral. [Online]. Available: https://coral.ai/
[9] Mediatek dimensity. [Online]. Available:

https://i.mediatek.com/mediatek-5g
[10] Samsung neural processing unit. [Online]. Avail-

able: https://news.samsung.com/global/samsung-electronics-introduces-
a-high-speed-low-power-npu-solution-for-ai-deep-learning

[11] Qualcomm neural processing engine. [Online]. Available:
https://developer.qualcomm.com/docs/snpe/overview.html

[12] Nnapi. [Online]. Available:
https://developer.android.com/ndk/guides/neuralnetworks

[13] Snapdragon neural processing engine sdk. [Online]. Available:
https://developer.qualcomm.com/docs/snpe/overview.html

[14] Mediatek neuropilot. [Online]. Available:
https://www.mediatek.com/innovations/artificial-intelligence

[15] Snapdragon 835 mobile platform. [Online]. Available:
https://www.qualcomm.com/products/snapdragon-835-mobile-platform

[16] Snapdragon 845 mobile platform. [Online]. Available:
https://www.qualcomm.com/products/snapdragon-845-mobile-platform

[17] Snapdragon 855 mobile platform. [Online]. Available:
https://www.qualcomm.com/products/snapdragon-855-mobile-platform

[18] Snapdragon 865+ 5g mobile platform. [Online]. Avail-
able: https://www.qualcomm.com/products/snapdragon-865-plus-5g-
mobile-platform

[19] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf training
benchmark,” Proceedings of Machine Learning and Systems, vol. 2, pp.
336–349, 2020.

[20] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, “Ai benchmark: Running deep neural networks on android
smartphones,” in Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, September 2018.

[21] Qualcomm fastcv. [Online]. Available:
https://developer.qualcomm.com/software/fastcv-sdk

[22] [Online]. Available: https://developer.android.com/guide/topics/media/camera
[23] [Online]. Available: https://cloud.google.com/tpu/docs/inception-v3-

advanced
[24] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional

network for real-time 6-dof camera relocalization,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2015.

[25] Y. S. Shao and D. Brooks, “Research infrastructures for hardware
accelerators,” Synthesis Lectures on Computer Architecture, vol. 10,
no. 4, pp. 1–99, 2015.

[26] [Online]. Available: https://www.tensorflow.org/lite/guide/hosted-models
[27] [Online]. Available: https://github.com/tensorflow/tflite-support/
[28] [Online]. Available: https://github.com/tensorflow/examples/
[29] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-

J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al.,
“Mlperf inference benchmark,” in ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020.

[30] Mlperf mobile. [Online]. Available:
https://github.com/mlperf/mobile app

[31] [Online]. Available: https://developer.qualcomm.com/
[32] [Online]. Available: https://developer.qualcomm.com/docs/snpe/benchmarking.html
[33] Tensorflow lite benchmark tool. [Online]. Available:

https://www.tensorflow.org/lite
[34] Qualcomm Technologies, Inc., Qualcomm© HexagonTM DSPUser

Guide, Qualcomm Technologies, Inc.
[35] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.

Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf
inference benchmark,” arXiv preprint arXiv:1911.02549, 2019.

[36] V. J. Reddi, D. Kanter, P. Mattson, J. Duke, T. Nguyen, R. Chukka,
K. Shiring, K.-S. Tan, M. Charlebois, W. Chou et al., “Mlperf mobile
inference benchmark: Why mobile ai benchmarking is hard and what to
do about it,” arXiv preprint arXiv:2012.02328, 2020.

[37] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 331–344.

[38] Xiaomi. Mobile ai bench. https://github.com/XiaoMi/mobile-ai-bench.
[39] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu,

L. Xu, and L. V. Gool. (2019) Ai benchmark: All about deep learning
on smartphones in 2019.

[40] AIMark. [Online]. Available:
https://play.google.com/store/apps/details?id=com.ludashi.aibenchhl=en US

[41] ANTUTU AI Benchamrk. https://www.antutu.com/en/index.htm.
[42] UL Procyon AI Inference Benchmark.

https://benchmarks.ul.com/procyon/ai-inference-benchmark.
[43] NeuralScope Mobile AI Benchmark Suite.

https://play.google.com/store/apps/details?id=org.aibench.neuralscope.
[44] D. Kang, A. Mathur, T. Veeramacheneni, P. Bailis, and M. Zaharia,

“Jointly optimizing preprocessing and inference for dnn-based visual
analytics,” arXiv preprint arXiv:2007.13005, 2020.

[45] D. Richins, D. Doshi, M. Blackmore, A. T. Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, K. Long et al., “Missing the
forest for the trees: End-to-end ai application performance in edge data
centers,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 515–528.

11


