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Abstract—We present PrecisionBatching, a quantized inference
algorithm for speeding up neural network inference on tradi-
tional hardware platforms at low bitwidths. PrecisionBatching is
based on the following insights: 1) neural network inference with
low batch sizes on traditional hardware architectures (e.g: GPUs)
is memory bound, 2) activation precision is critical to improving
quantized model quality and 3) matrix-vector multiplication
can be decomposed into binary matrix-matrix multiplications,
enabling quantized inference with higher precision activations
at the cost of more arithmetic operations. Combining these
three insights, PrecisionBatching enables inference at extreme
quantization levels (< 8 bits) by shifting a memory bound prob-
lem to a compute bound problem and achieves higher compute
efficiency and runtime speedup at fixed accuracy thresholds
against standard quantized inference methods. Across a variety of
applications (MNIST, language modeling, natural language infer-
ence, reinforcement learning) and neural network architectures
(fully connected, RNN, LSTM), PrecisionBatching yields end-to-
end speedups of over 8x on a GPU within a < 1 — 5% error
margin of the full precision baseline, outperforming traditional
8-bit quantized inference by over 1.5 x —2x at the same error
tolerance.

I. INTRODUCTION

Recent advances in deep learning have demonstrated the
wide range of the applications of neural networks [!]-[&],
however, neural network execution remains computationally
expensive. In the context of inference, where a trained neural
network is executed to make predictions, these computational
costs are even more significant as the quality of user fac-
ing products is often highly sensitive to the application’s
responsiveness. In these use cases, slow inference times not
only degrade the usability of these applications (e.g: a robot
arm must quickly be able to identify and manipulate an
object; a text recognition system must react fast enough to
ensure quality user experience; a voice recognition system
must recognize speech quickly enough to enable real time
interaction), but in some extreme cases may even restrict
deployment (e.g: a drone must execute a neural network policy
quickly to adapt to a changing environment, or risk crashing).
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Research in quantization aims to reduce the computational
costs of neural network inference by reducing the precision
of neural network weights and activations [9]-[11], [11]—
[14], however, this technique incurs an increasingly larger
accuracy penalty when quantizing to lower bitwidths due to
quantization error [10], [15]. Traditionally, without retraining,
neural networks suffer significant accuracy degradation beyond
8 bit quantization [16], [17], limiting speedups to "4x the
speed of the original network. With retraining, research has
shown that networks may be quantized beyond 8 bits [9], [10],
[18], however, retraining for quantization is computationally
expensive, requires architectural changes to the network and
converges slower [9]. Thus, in the context of quantization
without retraining, it remains challenging to enable < 8 bit
quantization without significantly degrading model quality,
and, in the context of quantization with retraining, convergence
time continues to be a major issue.

In this paper, we develop PrecisionBatching, a quantized
inference algorithm for traditional hardware platforms to speed
up low batch neural network inference. PrecisionBatching
decomposes network weights and activations into 1 bit tensors,
batches the 1 bit activations together, and performs quantized
inference with low precision weights and high precision acti-
vations (see Figure 1). This attains speedups by reducing the
precision of weight layers, maintains accuracy by keeping acti-
vations at higher precision, and utilizes the compute platform’s
higher arithmetic intensity to absorb the extra computation.
Besides speedup, PrecisionBatching enables finer granularity
control over the weight and activation precision of quantized
inference, which may yield further speedups at a given ac-
curacy. PrecisionBatching is a quantized inference method, a
kernel, which specifies how a traditional compute platform
(like a GPU) may efficiently perform quantized inference. This
is unlike quantization algorithms such as [15], [17], [19] which
specify how to quantize the network, but not how to execute
over the lower precision values; thus PrecisionBatching may
be used in conjunction with these quantization techniques.

We developed PrecisionBatching on three key observations:
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o Insight 1: Small Batch Neural Network Inference is
Memory Bound

User facing products perform network inference with a
small batch size to reduce response time / latency (it
is not uncommon to see a batch size of 1) [20]-[22].
However, on traditional hardware platforms like GPUs,
memory transfer speeds are much slower than arithmetic
compute capabilities (FLOPs), so performing neural net-
work inference with low batch size is memory bound,
meaning most of the time executing the network is spent
on fetching data, rather than on arithmetic computations
[20], [23]. Specifically, in a regime with batch size 1, the
data bottleneck is transferring the weight layers of the
neural network, which incurs communication cost on the
order of O(mn) where m and n are sizes of the network’s
hidden layers; conversely, the memory cost of transferring
activations is significantly less at O(m + n). Observing
that small batch neural network inference is memory
bound is significant for two reasons: 1) it indicates that
during neural network inference, the compute cores of
the hardware platform are idle, suggesting that one may
attain free compute cycles during this duration and 2)
significant speedups may be attained by reducing the time
spent on transferring weights.

Insight 2: More Bits for Activation Precision Improves
Model Quality

Quantization literature has shown that using more preci-
sion for activations improves model quality [15], [17].
Intuitively this makes sense, for example, between a
network with 4 bit weights and 4 bit activations and
a network with 4 bit weights and 8 bit activations one
would expect the one with higher precision activations
to attain higher accuracy. Additionally, from insight 1,
a single bit of precision for weights does not hold the
same value as a single bit of precision for activations.
Specifically, as inference is weight memory bound, re-
ducing the precision of weights by a single bit is much
more valuable than reducing the precision of activations
by a single bit. Unfortunately, on traditional hardware
platforms like GPUs, kernels fail to capitalize on this
insight by requiring both operands of a computation
(weights+activations) be the same precision.

Insight 3: Matrix Multiplication may be Decomposed
Bitserially

Full precision matrix vector multiplication may be de-
composed into a sum of 1 bit matrix-matrix multiplica-
tions; this logical decomposition is known as bitserial
computation in the hardware architecture space [24],
[25]. In the context of traditional hardware platforms like
GPUs, implementing such a routine incurs significantly
more arithmetic as the terms of the sum are separated out,
which may be a reason why, to the best of our knowledge,
such a kernel is not used widely. However, leveraging
insights 1 (inference is memory bound) and 2 (activations
improve model quality) we can see that such a bitserial
kernel may yield significant gains: the extra arithmetic
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incurred by the routine is absorbed for free by the idle
compute units and now one may perform inference with
higher activation precision and lower weight precision,
reducing the weight memory-boundedness of network
inference and achieving a speedup.

To demonstrate the value of PrecisionBatching, we develop
optimized computational kernels to perform our algorithm on
the GPU and evaluate our method against standard quantized
inference implementations (NVIDIA’s Cutlass linear algebra
library [26]) on various applications including fully con-
nected networks for MNIST and reinforcement learning, and
LSTMs/RNNs for language modeling and natural language
inference. Across this range of applications and models we
demonstrate significant end-to-end speedups over using stan-
dard quantized inference methods. We also extensively devel-
oped a CPU implementation, however we found that the lack
of vectorized 1-bit operations (specifically, popcount), limited
the memory boundedness of the operation, and yielded little
speedup. We believe that future CPU hardware capabilities
(and especially hardware accelerators) would enable these
gains on the CPU, which we leave for future research.

In summary, our contributions are as follows:

o We develop PrecisionBatching an algorithm for quantized
neural network inference targeted to traditional hardware
platforms. PrecisionBatching enables quantized inference
at lower bitwidths and achieves better speedup per accu-
racy over standard quantized inference without retraining.
We evaluate PrecisionBatching over a variety of appli-
cations (MNIST, language modeling, natural language
inference, reinforcement learning) and neural network
architectures (fully connected, LSTM, RNN) and show
net speedups of > 10x over the full precision baseline
(> 1.5x-2x over standard 8-bit quantized inference)
within the same error tolerance. Furthermore, we leverage
the finer granularity of precisions supported by Precision-
Batching to boost speed vs model quality.

We show how using higher precision activations for
quantized models as enabled by PrecisionBatching allows
faster retraining times and achieves higher quality.

We release optimized GPU kernels for our algorithm (and
corresponding baselines) in the form of PyTorch modules.

II. PRECISION BATCHING

We describe the mechanics behind PrecisionBatching in-
cluding how to decompose matrix-multiplies of various
weight/activation bitwidths to be amenable for computation on
traditional hardware platforms. Additionally, we describe how
to efficiently implement our algorithm on standard hardware
platforms and furthermore describe how we implemented our
baseline standard quantized inference kernels.

A. Precision Batching Quantized Inference

PrecisionBatching decomposes weights and activations into
1-bit tensors and replaces the main matrix-vector multiplica-
tion operation with a sum of 1-bit matrix-matrix operations.
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Fig. 1. PrecisionBatching quantized inference decomposes weights and

activations into 1-bit tensors and re-frames full precision matrix-vector multi-
plication as a sum of binary matrix-matrix opeartions, increasing the arithmetic
intensity of the operation, improving computational efficiency.

Figure 1 presents a diagram showing the core mechanism be-
hind PrecisionBatching. The core operation of neural network
inference with a batch size of 1 is matrix-vector multiplication.

L; represents the function that transforms activation input x at
the specific layer of the neural network and W is the trained
weights of the neural network at layer ¢. Assuming that W > 0
and z > 0, we can decompose W and x into a sum of bitlayers
(binary tensors) as in fixed point format

W

1 n— b b b
W= 5 @ WP 4 L+ 22w ) where W € [0, 1]
e 216(2]C L 4+ 2% (b>) where z\”) € [0, 1]

In the decomposition above, n and k represent the precision at
which weights and activations are quantized to, respectively.
Making n and k larger provides more accurate approximations
of W and x. n describes the precision at which W is estimated
and represents the number of bitlayers to accumulate. The
fraction 2%5 represents the location of the fixed point and
enables representation of values 16 binary digits < 1. The
fixed point may be changed depending on the scale of values
of the weights and activations. Substituting back into the first
equation and rearranging we get

Li(z) =

gn=— lw(b)+ +20w(b)1)(2k (b)_|_ _|_20 (b))

W
= o

I ,
= 5 22O 4 2%

=0
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One key observation is that the terms of the sum above can
be rewritten as a single matrix multiplication. The idea is to
batch together the bitlayer decomposition of z into a single
matrix and to frame the equation as a sum of matrix-matrix
products.

1 =i b)r (b b _
2@22 L [z P72kt 20
i=0

The main workload W(b>[ §b> .m,gb)] exclusively consists of
terms that are binary and facilitates efficient computation using
1-bit operations on CPU and GPU. Memory is reduced by a
factor of approx1mately , given that the matrix W' dominates
the majority of memory accesses. Note that the number of
arithmetic ops is increased by a factor of k as separating out
the sum induces more work. However, as the reformulation
leverages batching, the cost of the extra compute is negated
by the higher computational efficiency of the matrix-matrix
multiplication, and the reduction in memory accesses yields a
net speedup.

As indicated, by choosing n and k, any precision of weights
and activations can be attained. In this paper %k (activation
precision) is set to either 8, 16 or 32. Note that higher
activation precision does not linearly impact performance
due to the increase in computational efficiency. However, for
CPUs that are less efficient (more compute bound), setting &
to be lower may significantly improve overall speed versus
accuracy; hence k and n are parameters that determine the
precision and speedup for quantized execution and may be
tuned to the platform and requirement at hand. We analyze
the impact of varying n and k on both speed and accuracy in
the results.

Note that both the inputs and outputs of the Precision-
Batching algorithm (as well as intermediate values such as
partial sum accumulators) are full precision. The overhead of
maintaining inputs and outputs as full precision is minimal as
much of the computational and memory costs are attributed to
large matrix multiply routines which are quantized (much of
the memory costs are from loading the weights, rather than
loading activations/inputs). Thus, keeping the intermediate
inputs/activations in full precision is still aligned with the high
level goal of speeding up inference.

B. Extending to Negative Values

We extend the formulation to any real valued W and z
matrix (allowing negative values). Allowing any real valued in-
put and matrix is important as it enables PrecisionBatching
to handle weights with negative values and cases where the
input is not passed through a positive activation function (e.g:
the first layer of the neural network whose inputs are real
and may potentially contain negative values). The simple but
effective idea is to leverage two’s complement by adding an

extra bitlayer with a negative scale to handle negative values.
1

W = ﬁ

1

216

(2 W o 20w ), W e [0, 1]

o= = (=261 ® 2%, 2 e o, 1]
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Here, the first bitlayer for both x and W are negated, allowing
for a complete representation of values between [—2", 2" —1].
This formulation is logically equivalent to two’s complement
format. Note that this technique incurs an extra bitlayer of
computational overhead (for weights) and thus increases the
computational and memory costs; we found in practice that
the extra bitlayer of computational overhead for activations is
minimal.

C. Weight/Activation Quantization

In the PrecisionBatching formulation, W and z are con-
verted into fixed point format and quantized to reduce com-
putation and memory accesses. However, any standard post
training quantization technique (e.g: KL divergence, MSE, etc)
can be applied to W and x to improve accuracy, as long as
the resulting set of quantization values are linearly spaced.

For applications, we use standard post training quantization
before quantized execution.

max(W) — min(W)
271

QW) =d x round (%) ,d=

This rounds W to the corresponding closest nm-bit repre-
sentable fixed point values. We found that in practice, rounding
produces significantly better results than truncation at very
lower bitwidths (< 4 bits). Additionally, for quantizing to 1
bit, we found it extremely beneficial to exclude representing 0
and instead opt to represent a positive and negative value. After
the n-bit rounding, Q(W) is applied in the PrecisionBatching
algorithm where the corresponding bitlayers and scales are de-
duced. Additionally, we also optimize over a clipping threshold
to find a quantized matrix with the smallest mean error versus
the full precision weight matrix. Note that quantizing W is
a preprocessing step that is done offline and hence does not
affect inference performance measurements.

The full PrecisionBatching algorithm is broken into two
stages: a preprocessing step which converts full precision
weights to bitlayers, listed in algorithm 1, and the inference
stage which makes predictions given a full precision input,
listed in algorithm 2.

D. Efficient Implementation

As indicated above, the core computation is an accumulation
of products of binary tensors.

b b b
WO RO o)

As all values are O or 1, memory is reduced by packing the Os
and Is into the bits of an integer array, yielding 32X reduction
in memory for each product of bitlayers. Operating over these
packed formats is inspired by standard binary quantized neural
networks which uses logical operations and popcounts for
implementing multiply accumulate. An important difference is
that typical binary quantized neural network weights contain
values that are -1 or 1 rather than O or 1. Hence, instead of
the xnor operation we use the and operation to simulate 1-bit
multiplication. This is an important distinction for current and
future hardware accelerators; current hardware accelerators
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(e.g: T4 binary MMA) perform the xnor operation rather
than the and/or operation. Hence, in this work we are only
capable of leveraging basic GPU ands/popcounts rather than
the accelerator, though using an accelerator would yield much
better performance improvements due to heightened compute
speed vs memory speeds.

To leverage binary operations to compute over full precision
values, the floating point input vector must be converted to
fixed point and then packed in such a way to layout the bits
to be conducive to the and/popcount instruction. Conversion
to fixed point is a simple multiply and cast. Rearranging the
bits is done with a bitwise matrix transpose, for which there
are efficient implementations on both CPUs and GPUs that
leverage parallelism / SIMD. In practice, we found the bitwise
matrix transpose to have negligible overhead. We furthermore
note that multiple bitlayers may be stacked together so that
the entire product across bitlayers can be performed with a
single operation. However, in practice we found that there
is negligible performance difference in accumulating multiple
bitlayers separately, though a more optimized implementation
may be the subject of analysis for future work.

E. Integer Quantized Inference

Standard quantized inference methods quantize both weight
and activation to the same precision before execution (so
that both operands are the same datatype); for example, 8-
bit quantized execution quantizes both weights and activations
to 8-bit ints before operation. Weights and activations are
scaled down before quantization (so that the maximum value
is representable in the quantized range), then dequantized after
the operation. Like in PrecisionBatching we apply the same
quantization preprocessing techniques (rounding, optimizing a
clipping threshold) to weights before evaluation. In our exper-
iments, we leverage NVIDIA’s T4 tensorcore capability (via
NVIDIA’s Cutlass linear algebra library) in the implementation
of the standard quantized inference baselines (1, 4, 8, 16, 32-
bit inference methods).

III. EXPERIMENTAL SETUP

This section describes the hardware we use to demonstrate
PrecisionBatching in practice. We also describe the different
neural network benchmark applications we use for evaluation.

A. Hardware Testbed

We perform all performance benchmarks and tests on
NVIDIA’s Tesla T4 GPU (as no previous GPU version sup-
ports 1/4/8 bit inference). For benchmarking kernels, we mea-
sure the wall-clock time of performing at least 1000 iterations
of the target algorithm.

Note that the choice of using GPUs for PrecisionBatching is
key: GPUs exhibit much higher compute vs memory capabil-
ities than CPUs, which allows us to fully leverage Precision-
Batching’s higher operational intensity. Current CPUs exhibit
a much lower compute vs memory ratio without vectorized
popcount instructions and so on current generations of CPUs
PrecisionBatching attains lower speedups, though with more
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Algorithm 1 PrecisionBatching Preprocessing

Algorithm 2 PrecisionBatching Inference

Input
w Full precision weight matrix
n Number of bits to quantize
Output
W®  Bitlayers corresponding to quantized W
S Scales corresponding to quantized bitlayers

1: Wy «— Int(QuantizeRound(W,n) x 216)

mazx_bit «— maz(log2(|W,|))

3 WO «— (W, A (1 < i) for i in maz_bit —n ..
max_bit + 1]

4: S <« [1 < i for i in max_bit —n ..

5: S[0] «+— S[0] x —1

6: return W©® &

max_bit + 1]

advanced CPU architectures supporting vectorized popcounts
we expect to see the same improvements.

B. Software Implementation

Baseline 4, 8 and 16 bit standard quantized inference utilizes
the NVIDIA Cutlass library which performs low-precision
matrix multiply using WMMA (warp matrix multiply accu-
mulate) hardware operations that leverage Tensorcores for
compute. We implemented PrecisionBatching using standard
CUDA (no tensorcore acceleration). In all experiments the
batch dimension is one, as we are targetting application
scenarios for inference, where examples are processed one at
a time where latency is important (rather than throughput).

C. Neural Network Benchmarks

We evaluate our method on the following applications:
MNIST, language modeling, natural language inference and
reinforcement learning.

o MNIST we train a 3-layer fully connected neural network

with a hidden size of 4096 for 20 epochs, reaching
a baseline accuracy of 98%. We uniformly quantize
the weights and activations of each layer to the target
precisions.

« Language Modeling We train a model with a 1-layer
2048 unit LSTM [2] as the encoder, and a 1-layer 2048
unit fully connected as the decoder (a common architec-
ture used in language modeling [27]). We apply dropout
with a factor of .5 to the inputs of the encoder LSTM’s
recurrence, and to the encoder LSTM’s output. We train
the model on the Wikitext-2 dataset [28] for 40 epochs,
reaching a baseline perplexity of 93. During evaluation of
quantization on model accuracy, we quantize the LSTM’s
input and hidden layers to the same weight and activation
levels; however, we keep the final fully connected decoder
in full precision (as it is not the main runtime bottleneck).

o Natural Language Inference We train a model with a
1-layer 3072 unit LSTM encoder and a 3-layer 3072 unit
fully connected decoder (a larger version of that seen in
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Input

W®  Weight bitlayers

S Weight bitlayer scales

x Full precision input
Output

z Full precision prediction
I: z<—0
2 x4 +— Int(x x 21°)
3. for W, scale in W® S do
42— 2+ e x (Whyag)[—231 230 . 20]
5: end for
6: return z

[29]). We train on the SNLI dataset [29] for 10 epochs
and reach a baseline accuracy of 78%. During evaluation
of quantization on model accuracy, we uniformly quantize
both the weights and activations of the LSTM encoder
and the fully connected decoder to the target precisions.

« Reinforcement Learning We train models on reacher
hard (easy), cheetah run (medium) and humanoid stand
(hard) [30] using D4PG [31] with a 3-layer 4096 unit
neural network (same, but larger, architecture in [30])
until convergence (task difficulties from [31]). We train on
features rather than pixels. During evaluation we quantize
all layers of the policy. An episode is 1000 steps, (so
maximum evaluation score is 1000, but this is not always
attainable).

IV. RESULTS

Our results section is organized as follows. Firstly, we
evaluate the performance of the PrecisionBatching kernel in
isolation to verify that our quantized inference method attains
similar or better speedup than standard quantized inference
even with higher activation precision. Secondly, we verify
(across various tasks) that higher activation precision yields
better model quality than when activation precision is the same
as weight precision (the case when using standard quantized
inference). Then, we evaluate the end-to-end speedup vs ac-
curacy benefits of PrecisionBatching over standard quantized
inference. Finally, we evaluate the benefits of higher precision
activations motivating PrecisionBatching for quantization with
retraining.

A. Precision Batching Kernel Performance

We implement optimized GPU kernels for the Precision-
Batching algorithm and measure the speedup of the kernel over
the full precision (32-bit) operation (provided by NVIDIA’s
Cutlass linear algebra library) across multiple precisions and
matrix sizes. Inference times include all activation processing
steps necessary for the algorithm, for example, transposing the
activation bitmatrix before 1-bit execution.
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TABLE 1
QUANTIZED INFERENCE SPEEDUPS OVER 32-BIT INFERENCE ACROSS
DIFFERENT METHODS, MATRIX SIZES AND ACTIVATION QUANTIZATION
LEVELS ON THE NVIDIA T4 GPU. PBATCH-N (A=K) MEANS N+1
BITLAYERS ARE ACCUMULATED WITH K-BIT ACTIVATIONS. (N-BIT
WEIGHTS, K-BIT ACTIVATIONS). WE SEE THAT USING MORE ACTIVATIONS
YIELDS ONLY MINOR SLOWDOWNS AND DEMONSTRATES THE
MEMORY-BOUNDEDNESS OF LOW BATCHED INFERENCE.

Method 512x512 | 1024x1024 | 2048x2048 | 4096x4096
PBatch-1 (a=8) 10.8 13.8 12.0 13.6
PBatch-1 (a=16) 9.5 12.1 10.3 13.2
PBatch-1 (a=32) 8.0 10.7 8.0 10.7
PBatch-2 (a=8) 6.6 9.9 8.3 11.8
PBatch-2 (a=16) 6.8 8.8 7.1 10.9
PBatch-2 (a=32) 5.7 7.5 5.4 8.3
PBatch-4 (a=8) 4.9 6.5 5.1 7.3
PBatch-4 (a=16) 4.2 55 4.3 6.8
PBatch-4 (a=32) 3.6 4.8 34 53
PBatch-8 (a=8) 2.9 3.6 32 4.7
PBatch-8 (a=16) 2.5 32 2.5 4.0
PBatch-8 (a=32) 2.0 2.7 2.1 3.1
Intl 3.6 5.0 8.5 343
Int4 3.6 4.7 5.8 11.0
Int8 33 4.0 4.2 8.0
Float16 2.3 1.8 2.0 2.8
Float32 1 1 1 1

Table I shows the performance of the PrecisionBatching
kernel with weight bits € (1,2,4,8) and activation bits €
(8,16, 32), along with baseline quantizated inference kernels
(Intl, Int4, Int8, Floatl6, Float32). We see that at fewer bits,
the PrecisionBatching kernel achieves significant speedups
over full precision inference: 10-14x speedup for 1-bit, 5-7x
for 4-bit (note that the optimal speedup for PBatch-n is n“—fl
with the sign layer taken into account). Using fewer activation
bits increases performance only slightly as compute is not the
main bottleneck in these operations.

Generally, higher performance is seen at larger matrix sizes
as the effect of the reduction in memory on performance is
more pronounced. Baseline kernels (Intl, Int4, Int8 especially)
perform much better at larger matrix sizes; we believe this is
the case as their kernels are more optimized than ours and
leverage Tensorcore capability for more efficient compute.
This table is useful for roughly estimating the amount of
speedup that may be attained on various applications. For
example, if we believe for our application that inference
with 4-bit weights, 16/32 bit activations would achieve the
same accuracy as 8-bit weights and activations, then using
PrecisionBatching on various matrix dimensions would yield
a 1.5 x —2x speedup.

We additionally plot the operational intensity of Precision-
Batching versus standard inference in Figure 2. For each
method, we compute its operational intensity: the number of
operations that the method performs, divided by the number
of bytes of memory required for the method. Note that for
standard inference, an operation is dependent on its bitwidth,
for example, for 32-bit inference, a single operation is a 32-bit
multiply or add, while for 8-bit inference, a single operation
is an 8-bit multiply or add.

For PrecisionBatching, each 1-bit operation counts towards
the computational ops. As shown in Figure 2, PrecisionBatch-

134

=@= Pbatch
28 == 32-bit inference
=¥= 16-bit inference
0 26 8-bit inference
_8 mfe==_4-bit inference
>
4
o2
@
o
O 22
20

10 15 20 25
Pbatch Activation Bits

5 30

Fig. 2. Operational intensity of PrecisionBatching versus standard inference.
PrecisionBatching achieves higher operational intensity with more activation
bits, enabling it to operate more efficiently on GPUs. Standard inference is
primarily memory bound and achieves low operational intensity, resulting in
lower compute efficiency.

ing achieves much higher operational intensity as the number
of compute operations is increased by a factor of the specified
activation precision. Standard inference on the other hand
achieves low operational intensity. Thus, PrecisionBatching
achieves much greater efficiency than standard inference,
and combined with the better model accuracy obtained by
operating over higher activations, achieves better performance
per accuracy threshold.

B. Accuracy Benefits of Higher Precision Activations

Next we show that using higher precision for activations
leads to significantly better model accuracy at low bitwidths.
We benchmark model accuracy across: MNIST, language mod-
eling, natural language inference and reinforcement learning.
For each we train one baseline full precision model and
evaluate the effects of various levels of weight and activa-
tion quantization on the model’s end performance. For each
model/application we quantize weights and activations to 1,
4, 8, 16 and 32 bits. Note the Quctiv. = Queight column
uses standard quantized inference while the other columns use
PrecisionBatching.

Table II shows model performance (accuracy for MNIST
and natural language inference, perplexity for language mod-
eling, reward for reinforcement learning) for different weight
and activation precisions. For weight bitlevels < 8, keeping
activations at higher precision (8, 16 or 32 bit) greatly in-
creases model accuracy; generally, keeping activations at a
higher precision allows quantizing twice as many bits, from
8-bits to 4-bits, without significant loss in model accuracy.

For MNIST, with 1-bit weights, using higher precision ac-
tivations is the difference between 85% accuracy and random
guessing ( 10% accuracy); with 4-bit weights, higher precision
activations maintains within < 1% of the full precision
model’s performance. Similarly, for language modeling, with
1-bit weights, higher precision activations reduces perplexity
from 800 to 180; for 4-bit weights, higher precision activa-
tions reduce perplexity from 180 to within a few points of
the full precision performance. For natural language inference,
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TABLE II
BENEFITS OF USING MORE PRECISION FOR ACTIVATIONS ON MODEL QUALITY, EVALUATED ON MNIST, LANGUAGE MODELING (WIKITEXT-2),
NATURAL LANGUAGE INFERENCE (SNLI) AND REINFORCEMENT LEARNING (REACHER:HARD, CHEETAH:RUN, HUMANOID:STAND). GENERALLY, USING
HIGHER PRECISION ACTIVATIONS ALLOWS QUANTIZING TWICE AS MANY BITS WITH LITTLE DEGRADATION OF MODEL ACCURACY. BEST SCORES PER
WEIGHT PRECISION IS BOLDED.

Task Qactiv. = 32 Qactiv. = 16 Qactiv. =8 Qactiv. = Qweight
Queight = 1 85.8 86.7 87
weight = 4 97.1 97.3 97.3 94.3
MNIST (acc.) Quweight = 8 98.0 97.8 97.8 98.0
Quweight = 16 98.0 97.9 97.9 98.0
Qweight =32 - - - 98.0
Queight = 1 188.0 188.0 188.0 828.1
Queight =4 94.3 94.3 94.3 148.9
Language Modeling (ppl.) weight = 8 94.0 94.0 94.0 94.0
Queight = 16 91.7 91.7 91.7 92.8
weight = 32 - - - 92.8
Queight = 1 76.1 76.1 74.0 32.8
Queight = 4 78.7 78.7 76.8 77.4
Natural Language Inference (acc.) weight = 8 78.9 78.9 76.9 79.1
Quweight = 16 78.9 78.9 76.9 78.8
Qweight =32 - - - 78.8
Queight =1 9.8 6.6 9.5 249
Queight = 4 676.4 765.1 960.1 826.2
Reacher Hard (rew.) weight = 8 969.1 973.8 962.5 976.4
Queight = 16 960.0 974.6 966.5 957.3
Qweight =32 - - - 968.0
Qweight =1 8 0.9 0.8 0.0
weight = 4 616.3 685.6 651.6 480.3
Cheetah Run (rew.) Queight = 8 700.3 701.0 681.6 700.7
weight = 16 706.1 707.9 682.4 705.4
Qweight =32 - - - 702.9
Queight = 1 5.0 4.9 74 4.7
weight = 4 443.0 410.6 466.9 25.7
Humanoid Stand (rew.) Queight =8 753.3 692.7 816.0 789.4
weight = 16 824.1 781.2 864.2 798.9
Qweight =32 - - - 808.1

using full precision activations allows us to quantize down to
1-bit with only a couple percentages of accuracy degredation
(78% to 76%), whereas quantizing activations to 1-bit degrades
to random guessing (33%). Interestingly, for language infer-
ence, the 8-bit quantized model outperformed the full precision
result, a known phenomenon seen in quantization literature
[11], [14]. For reinforcement learning, trends are generally
similar: better reward is attained with higher activation pre-
cision, though in some interesting cases (e.g: reacher hard),
lower activation precision performed better. Harder tasks (e.g:
humanoid stand) are generally more difficult to quantize and
higher activations typically yield more consistent reward gains
on such tasks. Additionally, on some tasks, the score achieved
by weights=activations is dissimilar to that reported in the
Qactiv. = Queight column; this is due to slight differences
in implementation between PrecisionBatching and standard
quantized inference (e.g: we dynamically scale activations in
standard quantized inference, whereas for PrecisionBatching
a static scale is used).

Additionally, Figure 3 shows the histogram of values of
both weights and activations on the MNIST task for each layer
of the network. As shown, across all layers of the network,
activation values have a much wider spread than the weights,
with the exception of the first layer, for which the activations
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are the mnist input features. This indicates that quantizing
activations would yield a significantly higher quantization
error than for weights, and motivates keeping activations in
higher precision.

C. End to End Performance Gains

We demonstrate the end to end speedups achieved by
PrecisionBatching. We combine the observations from our
previous results: we leverage the high runtime performance of
the PrecisionBatching kernel and the better model accuracy
of keeping activations in higher precision to attain significant
end-to-end speedups over the full precision model while main-
taining model quality. We use the same applications (MNIST,
language modeling (Wikitext-2), natural language inference
(SNLI), reinforcement learning) with the same model archi-
tectures and training parameters described previously.

We apply each target quantized inference algorithm as
follows. For the MNIST/reinforcement learning model, we
replace each linear layer with the corresponding quantized
inference algorithm; for the language modeling and natural
language inference Seq2Seq model, we replace each linear
layer of the encoder 1-layer LSTM with the target quantized
inference algorithm, however we keep the final fully connected
decoder in full precision as it is not the main runtime bottle-
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Fig. 3. Histogram of weights and activations of a 3 layer neural network on the MNIST task. Note that the plotted activations are the inputs to the corresponding
matrix multiply operation with the weights. Besides the first layer (image input = activations), activations have a significantly wider distribution of values
than weights, thus quantizing activations incurs more error and motivates using higher precision for activations.

neck. For reinforcement learning, we replace each layer of the
policy with the target quantized inference algorithm.

Additionally, for both baseline quantized inference and
PrecisionBatching, on MNIST, language modeling and nat-
ural language inference, we use variable-bit quantization on
different layers (e.g: 1-bit quantization on layer 1, 4-bit
quantization on layer 2, etc) to further boost performance
per accuracy. Accordingly, we perform an exhaustive grid
search over weight/activation precision assignments. On the
3-layer fully connected for MNIST, for baseline quantized
inference we assign each layer a precision € (1,4, 8,16, 32)
(note that for quantized inference activations are the same
precision as weights); for PrecisionBatching, we assign each
layer a precision € (1,2,3,4,8) and activations € (8,16, 32).
On the Seq2Seq LSTM for language modeling and natu-
ral language inference, for baseline quantized inference we
assign each layer a precision € (1,4,8,16); for Precision-
Batching, we assign each layer a precision € (1,2,4,8)
and activations € (8,16, 32). For the reinforcement learning
tasks, we opt instead to maintain each layer with the same
weights/activation precision; however, we leverage Precision-
Batching’s finer precision granularity in the evaluation (weight
precision € (1,2, 3,4,5,6,7,8)). In benchmarking the runtime
performance of each model/application, we measure the wall
clock time of inference with a batch size of 1 for 10 iterations
on a given input repeated over 10 runs and take the minimum.
We measure speedups by comparing the model with the target
quantized inference algorithm against the model with the
baseline quantized inference method.

Figure 4 and Figure 5 shows the Pareto curves of the end-
to-end speedups of PrecisionBatching over standard quantized
inference. On average, PrecisionBatching yields speedups of
8x - 10x over full precision inference, and 1.5x - 2x over
standard 8-bit quantized inference at the same error tolerance.
Additionally, the finer granularity of precision supported by
PrecisionBatching enables greater speedup per accuracy when
using variable quantization across layers. The same data is
reflected in Table III, which shows the corresponding best
achieved speedup for each method for different error margins.
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D. Retraining Benefits of Higher Activation Precision

We show that higher activation benefits the retraining pro-
cess, leading to better convergence and accuracy. Retraining
generally improves the quantized model’s quality at lower
bitwidths and works by training the model to account for
quantization error. As standard quantized inference methods
require weights and activations be the same precision, the
model must be retrained with same precision weights and
activations. However, this often makes retraining slow and
quality frequently falls short of the corresponding full preci-
sion baseline at low bitwidths. We show that higher activation
precision, as PrecisionBatching enables, facilitates retraining,
thus leading to better final quality and faster convergence.

We perform retraining from scratch and from pretrained
model on both MNIST and language modeling with quan-
tization aware training, the standard method to retraining
for a quantized model [32]. Note we do not perform any
modifications to training (e.g: architectural changes to the
network to assist better performance). We train MNIST for
100 epochs and the language model for 40 epochs using
the same hyperparameters as described in previous sections.
During retraining, quantization aware training is performed
immediately from the very beginning (no quantization delay).

Figure 6 shows the results of retraining on 1 bit and 4
bit precision weights for MNIST and language modeling.
Particularly for 1 bit weights, retraining with 32 bit (full
precision) activations enables faster and better convergence.
For MNIST, 1 bit weights and activations is stuck at 80%
accuracy whereas 1 bit weights, 32 bit activations achieves
near full precision performance. For language modeling, 1
bit weights and activations converges at a worse quality (300
ppl), while 1 bit weights and 32 bit activations achieves much
better quality (190 ppl). Table IV, compares scores achieved
with no retraining, retraining from scratch and retraining from
pretrained model (finetuning) and demonstrates that higher
precision activations consistently achieves better scores across
the tasks in all regimes.
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E. Larger Batch Sizes

PrecisionBatching favors low batch sizes (batch 1 is best,
a matrix-vector multiplication) to leverage the weight bound-
edness of the problem. With larger batch sizes the technique
sees significantly less gains, and may even incur a slowdown,
as larger batch sizes are more compute and activation bound.
The significance of this limitation means that Precision-
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Batching is primarily targeted for the linear components of
a network (that have low batch dimension), which limits
application of the algorithm primarily to fully connected
neural networks, RNNs and LSTMs particularly for inference
with low batch sizes where latency is important. For this
reason, convolutions, which may be framed as a matrix-matrix
multiply will see less speedup using PrecisionBatching.

However, despite these shortcomings, we argue that speed-
ing up low batched fully connected layers of a network is a
significant contribution as many real world applications deploy
such networks in practice. For example, OpenAl Five [33]
employs a 4096 layer LSTM and inference during game play
processes frame by frame; Google’s on-device keyword pre-
diction model [34] similarly employs an LSTM and inference
(not training) is performed sentence by sentence to minimize
latency; likewise, Waymo’s ChauffeurNet model [35] consists
of large LSTM and RNN components which perform inference
per environment step. We believe PrecisionBatching is a step
towards fully utilizing the parallel compute capabilities of
traditional hardware systems and will be useful in many high
performance machine learning use cases.
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TABLE III
BEST MODEL QUALITY, SPEEDUPS AND PRECISION ASSIGNMENTS PER ERROR MARGIN FOR PrecisionBatching AND BASELINES OVER A GRID SEARCH OF
PRECISIONS FOR WEIGHTS AND ACTIVATIONS. PrecisionBatching PRECISION ASSIGNMENTS FORMAT: (L; BITS, A; BITS); QUANTIZED INFERENCE
PRECISION ASSIGNMENTS FORMAT: (L;=A; BITS). STANDARD QUANTIZED INFERENCE IS LIMITED TO WEIGHTS=ACTIVATIONS € (1,4, 8,16, 32).
PrecisionBatching LEVERAGES EXECUTION WITH FINER GRANULARITY INFERENCE WITH WEIGHTS € (1,2, 4,8), ACTIVATIONS € (8,16, 32). FOR
REINFORCEMENT LEARNING, ALL LAYERS HAVE THE SAME PRECISION (THOUGH FOR PrecisionBatching ACTIVATION PRECISION IS NOT NECESSARILY
THE SAME AS WEIGHT PRECISION). PrecisionBatching YIELDS 1.5 X —2X SPEEDUP OVER STANDARD QUANTIZED INFERENCE.

Task Error Quality | Speedup vs FP32 | Speedup vs Int§ | Method | Precision Assign.
< 1% 97.3% 16.6 2.4 PBatch (4,8)(1,8)(1,3)
97.9% 8.0 1.2 Baseline (8,4,8)
< 5% 97.3% 16.6 2.4 PBatch (4,8)(1,8)(1,8)
MNIST 94.3% 9.1 1.3 Baseline 4,44
(acc.) < 15% 87.3% 21.0 3.1 PBatch (1,8)(1,8)(1,8)
94.3% 9.1 1.3 Baseline 4,44
<5 94.3 7.9 1.5 PBatch (4,3)(4,8)
93.7 5.4 1 Baseline (8,8)
Language Modeling <25 109.3 9.8 1.8 PBatch (1,8)(4,8)
(ppl.) 104.3 5.9 1.1 Baseline “)(®8)
<50 145.3 11.3 2.1 PBatch (1,8)(2,8)
148.9 6.0 1.2 Baseline 4.4)
<% | 779 10 2| Bueline | 48
. . . aseline ,
Namlrsflei‘;ncge“age sy | 70 363 3.0 PBatch 1818
(acc.) 77.4 12.9 1.5 Baseline 4.4
) < 15% 74.0 26.3 3.0 PBatch (1,8)(1,8)
77.4 12.9 1.5 Baseline 4.4)
Reacher Hard <50 975.0 7.7 1.69 PBatch (4,8)(4,8)(4,3)
(rew.) 976.4 4.5 1 Baseline (8,8,8)
Cheetah Run <50 651.6 7.6 1.53 PBatch (4,8)(4,8)(4,3)
(rew.) 700.7 5.0 1 Baseline (8,8,8)
Humanoid Stand <50 825.3 7.2 1.47 PBatch (6,8)(6,8)(6,8)
(rew.) 789.5 4.95 1 Baseline (8,8,8)
TABLE IV

FINAL SCORES ACHIEVED BY QUANTIZED MODELS WITH < 4 BIT WEIGHTS, WITH AND WITHOUT RETRAINING. USING HIGHER PRECISION
ACTIVATIONS, AS PrecisionBatching ENABLES, CONSISTENTLY ACHIEVE HIGHER QUALITY, EVEN WITH RETRAINING.

Task Full Precision | Weight Bits No Retrain Retrain Retrain
Score (scratch) (finetune)
W=A | W=32 | W=A | W=32 | W=A | W=32
l\gilf)T 98.5 Ww=1 10.1 85.8 81.7 97.9 80.0 98.2
W=4 943 | 971 | 986 | 98.6 |~ [T~ |
Language Modeling 90.1 W=1 828.1 188.0 | 396.0 190.7 316.5 142.4
(ppl) ' W=4 1489 | 943 | 940 | 932 [T~ [T~ |

V. RELATED WORK

A. Post Training Quantization

Post training quantization is the standard method for quan-
tizing neural networks without retraining and involves clipping
the values of a pre-trained model based on statistics [17].
Various methods for post training quantization have been
researched. Naively, post training quantization involves casting
weight and activation values to the nearest n-bit representation.
More sophisticated techniques involve clipping the weights
and activations so as to minimize some form of error between
the quantized and real values [16], [17]. Even more advanced
techniques change the underlying floating point format to
enhance speed/accuracy [36]-[38].
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Pre-existing research in post training quantization meth-
ods often omit details as to how the resulting quantized
weights/activations may be leveraged on existing CPU and
GPU platforms to speed up inference. More unusual bitwidths
(e.g: 2/3/4/5) lack a corresponding data type on traditional
hardware platforms and hence it is unclear how these levels
of quantization improve inference. The implied benefit of
post training quantization methods on these bitwidths is either
space/memory savings or deployment to specially developed
hardware accelerators for which fixed point operations for
various bitwidths may be developed. By framing n-bit fixed
point inference operations as a sum of binary operations,
PrecisionBatching is an effective solution to realize these
quantization gains on traditional hardware platforms. Hence,
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PrecisionBatching extends the memory-savings benefits of
various post training quantization methods to speed gains on
traditional hardware architectures.

B. PACT

The importance of activations in quantization quality has
been noted in research. Specifically, PACT (Parameterized
Clipping Activation for Quantized Neural Networks) [15]
demonstrated that neural network weights and activations may
be quantized to very low bitwidths (< 4) if an activation
scale is optimized during training. Although PACT requires
changes to the training process (and hence does not work out
of the box), their research demonstrates the importance and
difficulty of quantizing activations in maintaining quantization
quality. Motivated by their findings, PrecisionBatching opts to
keep activations in higher precision (8,16,32 bit) to maintain
accuracy at very low quantization level. This comes at minimal
cost during inference as compute is dominated by memory
access times. Thus, PrecisionBatching circumvents the need
to maintain a quantization scale at training time by giving
more bits of precision to activations at inference time.

C. Outlier Channel Splitting

Recently, research into quantization without retraining has
emerged as a topic of interest. One notable work is Outlier
Channel Splitting [17], which eliminates large magnitude
weights/activations (which increase quantization error) by
splitting them into separate channels, then applying standard
post training quantization on the splitted weights, improving
quantization performance. Outlier Channel Splitting demon-
strates better performance-per-bit by using their technique in
conjunction with standard post training quantization methods.
Importantly, the authors note that outlier channel splitting
may also be done to activations at runtime, though this is
computationally difficult as it requires repeatedly finding the
maximum of a matrix and adding rows to it. PrecisionBatching
eliminates this need by using more bits to represent activations,
improving accuracy. Like many standard post-training quan-
tization methods, Outlier Channel Splitting may be applied
along with PrecisionBatching to improve quantization quality
and to extend their memory-saving gains to speed gains on
traditional hardware platforms.

D. Bitserial Computation

Bitserial computation is a technique leveraged by Precision-
Batching for quantized inference and operates by decomposing
fixed point operations into bitwise operations [24], [25], [39].
Bitserial computation frames n-bit fixed point operations as a
sum of bitwise operations and accumulates the result layer by
layer. This formulation is most popular in the hardware archi-
tecture space to develop specialized accelerators for machine
learning and realizing the technique in this context requires
dedicated hardware constructs. Various hardware accelerators
that leverage the bitserial formulation to reduce energy costs
include [24], [25], [39]. The bitserial formulation is less used
in context of traditional hardware architectures (e.g: CPUs and
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GPUs) as it is less clear how the technique would perform
as it greatly increases the total amount of arithmetic per
operation, though early works such as [18], [40] explore CPU
implementations. The key insight behind PrecisionBatching
is that on traditional architectures, particularly the GPU, low
batched inference is heavily memory bound and by batching
the decomposed 1-bit vectors the extra overhead in compute
is negated by the reduction in memory accesses, effectively
turning a memory bound problem into a compute bound
problem, and yielding a net speedup.

E. Streamlined Deployment for Quantized Neural Networks

Another related work to PrecisionBatching is Streamlined
Deployment for Quantized Neural Networks [40], which lever-
ages a bitserial formulation to speed up deployment on the
CPU. Similar to PrecisionBatching, Streamlined Deployment
for Quantized Neural Networks frames quantized operations
in terms of 1-bit operations. However, the key difference is
that Streamlined Deployment separates the the bitlayers of the
activations into different product terms, rather than batching
them into one large matrix multiplication. As shown in their
paper, the impact is that both weights and activations must
be kept in very low precision (e.g: 2-bit activations) due to
the computational overhead of performing multiple matrix
products, which naturally leads to significant degredation in
accuracy. The key observation of PrecisionBatching is that
activation bitlayers may be batched together into one single
matrix and a single large matrix product may be performed
over this batch at high efficiency. This allows quantized infer-
ence with activations at or near full precision with minimal
computational overhead, enhancing quantization performance.

F. Automatic Generation of Quantized Machine Learning Ker-
nels

Automatic Generation of High-Performance Quantized Ma-
chine Learning Kernels [41] leverages a similar bitserial de-
composition of kernels as PrecisionBatching to automatically
generate quantized kernels for machine learning applications.
In their work, [41] build a compiler to generate quantized ker-
nels and demonstrate a speedup on CPU hardware platforms.
Our work on PrecisionBatching differentiates in several key
respects. Firstly, we show that our quantized inference kernel
can perform inference with higher precision activations and
attain significant speedup-vs-accuracy benefits; the work in
[41] do not explore the impacts of higher precision activation
on model accuracy. Secondly, our method utilizes the GPU,
while the work in [4]1] demonstrates their kernel on the
CPU, so we attain better speedups as the GPU is more
compute bound. Finally, our work leverages the observation
that inference is memory bound to develop a more effective
quantized inference kernel, while the work in [41] is primarily
focused on building a compiler for kernel generation.

VI. CONCLUSION

We present PrecisionBatching, a quantized inference algo-
rithm for speeding up neural network execution on traditional
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hardware platforms at low weight bitwidths. PrecisionBatch-
ing leverages the compute efficiency of traditional hardware
platforms (e.g: GPUs) to perform inference with higher ac-
tivation precisions, enabling execution with lower precision
weight layers, achieving a net speedup. Across various models
(fully connected, LSTMs, RNNs) and applications (MNIST,
language modeling, natural language inference, reinforcement
learning) we show that PrecisionBatching yields end-to-end
speedups of over 8x that of full precision inference (1.5x
— 2x that of standard 8-bit quantized inference) at the same
error tolerance.
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APPENDIX
A. Abstract

This is the artifact evaluation instructions for Precision-
Batching: Bitserial Decomposition for Efficient Neural Net-
work Inference on GPUs. Our artifact includes code to install
the PrecisionBatching and Cutlass kernels used in the paper,
as well as to reproduce the following core results of the paper:
PrecisionBatching vs standard quantized inference speedups,
end to end speedups for MNIST, language modeling, and
natural language inference.

B. Artifact check-list (meta-information)

o Algorithm: PrecisionBatching: Bitserial Decomposition for
Efficient Neural Network Inference on GPUs.

« Compilation: GCC, G++, NVIDIA compiler.

Model: Models are included in repository; no action needed

here.

Data set: Dataset download is coded in; no action needed here.

Run-time environment: Linux, CUDA 10.2.

Hardware: NVIDIA T4 GPU.

Run-time state: We provide install instructions using conda +

pip (requirement files in the repo).

Execution: Execution will approximately take at most 3 hours.

o Metrics: We measure evaluation time (e.g: speedup) and model
quality.

o Output: Output includes pdfs showing end to end speedups,
as well as raw txt files containing the speedup/accuracy values.
Expected results are included.

« Experiments: See README which should provide exact step
by step instructions for installation + running scripts.

« How much disk space required (approximately)?:
max.

o« How much time is needed to prepare workflow (approxi-
mately)?: 1.5 hour max.

« How much time is needed to complete experiments (approx-
imately)?: 5 hour max.

« Publicly available?:
https://github.com/precisionbatching/pbatch.

o Code licenses (if publicly available)?:
Attribution 4.0 International

« Data licenses (if publicly available)?:
Attribution 4.0 International

50 GB

Yes:

Creative Commons

Creative Commons

o Archived (provide DOI)?: 10.5281/zenodo.5130610
C. Description

1) How to access: Pull code from:
https://github.com/precisionbatching/pbatch. See README

for installation and run instructions.

2) Hardware dependencies: Linux OS with NVIDIA T4
GPU (cc7.5+). Cuda 10.2.

3) Software dependencies: Libraries are installed through
Conda.

4) Data sets: None required — the code will automatically
pull it.

5) Models: Included in the repo.

D. Installation

The README contains step by step instructions for instal-
lation.
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E. Experiment workflow

The README contains step by step instructions for running
the experiments.

E. Evaluation and expected results

See sample_script_out which shows the expected output.

G. Experiment customization

N/A.
H. Notes

Several things to note: we skip the reinforcement learning
evaluations, as running these tasks require a paid license
(Mujoco); furthermore, required models are included in the
repository but are not the exact same ones we used in
the paper, hence will not yield the exact same accuracies,
though the broad trends (acc/speedup/etc) are the same; to
reduce eval time, we do not evaluate different precisions per
layer (variable precision) and hence reproduce the “uniform
precision” results.

1. Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/
artifact-review-badging

o http://cTuning.org/ae/submission-20201122.html

e http://cTuning.org/ae/reviewing-20201122.html
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