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Abstract—Unmanned Aerial Vehicles (UAVs) are getting closer
to becoming ubiquitous in everyday life. Although the researchers
in the robotic domain have made rapid progress in recent years,
hardware and software architects in the computer architecture
community lack the comprehensive understanding of how perfor-
mance, power, and computational bottlenecks affect UAV applica-
tions. Such an understanding enables system architects to design
microchips tailored for aerial agents. This paper is an attempt
by computer architects to initiate the discussion between the
two academic domains by investigating the underlying compute
systems’ impact on aerial robotic applications. To do so, we
identify performance and energy constraints and examine the
impact of various compute knobs such as processor cores and
frequency on these constraints. Our experiment show that such
knobs allow for up to 5X speed up for a wide class of applications.

I. INTRODUCTION

Unmanned aerial vehicles are becoming an important part
of our technological society. With myriad use cases, such as
surveillance [1], search and rescue [2], [3], package deliv-
ery [4]–[6], and more, these unmanned aerial systems are on
the cusp of demonstrating their full potential. But despite their
myriad use cases, their limited on board energy pose them
with a real challenge manifested in their low endurance. For
example some off-the-shelf micro drones have endurance of
less than 20 minutes, and a flight range of about 15 miles [5].

To practically deploy drones, both their endurance and
range must be improved through not only the use of better
algorithms, but also with employment of more powerful on
board computers. In this paper we investigate the role of
computing given the challenges and demands. More specif-
ically, we demonstrate how a powerful compute subsystem
can mitigate the endurance problem by improving how fast
a drone can maneuver, fly, and efficiently finish its mission.
Without loss of generality we use quad rotor based micro aerial
vehicles (MAVs) for our studies due to their popularity.

We start by first establishing the theoretical relationship
between processing time and the MAV’s ability to fly fast
(Section II). Next, we show the measured power results for the
difference in power consumption between compute and total
system power, including rotors, etc. We intend to establish
the point that a naive interpretation of the results can lead
to wrong conclusions about the relationship between com-
pute and total system power consumption (Section III). After
that, we introduce our experimental simulation infrastructure
(Section IV), on top of which we have implemented several
different realistic and holistic end-to-end UAV applications.
Using the AirSim-based infrastructure, we demonstrate the 5X
impact that compute can have total flight time efficiency (Sec-
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Fig. 1: (a) Theoretical relationship between processing time and max-
imum velocity. (b) Relationship between SLAM throughput (FPS)
and maximum velocity and energy of UAVs.

tion V). Finally, we close the paper with potential for future
work toward developing energy-efficient UAVs (Section VII).

II. COMPUTE VS. FLIGHT-TIME

The subtle but critical observation we make is that compute
can play an important role in reducing the drone’s mission
time by increasing the mission’s average velocity. Concretely,
we identify that the reduction in hover time and the increase in
maximum allowed velocity are the two major ways with which
more compute can contribute to a higher average velocity.

Hover Time Reduction: Hover time and the average velocity
have an inverse relationship, namely, the more drone spends
time on hovering, the lower its average velocity. Similar to
an idling CPU, a hovering drone is unfavorable since it is not
working toward its mission, but yet wasting its limited energy.

Max Velocity Increase, Collision Avoidance Effect: The
maximum velocity of the drone is not only mechanically
bounded, but also compute bounded since a collision-free
flight is only possible if the drone can process its surrounding
fast enough to react to it. Equation 1 specifies the components
involved in setting this velocity where δt, d, amax and v
denote process time, required stopping distance, maximum
acceleration limit of the drone and maximum velocity [7].
Figure 1a sheds light on this relation.

vmax = amax(

√
δt2 + 2

d

amax
− δt) (1)

Max Velocity Increase, Localization Failure Effect: The
faster the speed of the drone, the higher the likelihood of its
localization failure because the environment changes rapidly
around a fast drone. To examine the relationship between
the compute, maximum velocity and localization failure, we
devised a micro-benchmark in which the drone was tasked to
follow a predetermined circular path of the radius 25 meters.
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Fig. 2: (a) Measured power of 3DR Solo. (b) Total power while the
drone is “Flying” at two different velocities. The power consumption
is severely dominated by the quad rotors by 20X.

For the localization kernel, we used ORB-SLAM2 and to
emulate different compute powers, we inserted a sleep in
the kernel. We swept different velocities and sleep times and
bounded the failure rate to 20 percent. As Figure 1b shows,
higher FPS values, i.e. more compute, allows for a higher
maximum velocity for a bounded failure rate.

III. COMPUTE VS. FLIGHT-TIME VS. ENERGY EFFICIENCY

The compute subsystem can also have a significant role
in reducing total MAV energy consumption. To understand
this, first we present the power distribution associated with
3DR Solo [8], a popular off-the-shelf MAV. To measure
power, we attach a wattmeter known as Eagle Tree Systems
eLogger V4 [9] to the 3DR Solo’s battery during flight. The
wattmeter allows us to collect data over time at 50 Hz while
the drone flies. We command the drone to fly for fifty seconds
and pull the data off of the wattmeter after the drone lands.

As Figure 2 shows, the majority of the power consumption
is dedicated to rotors (locomotion) and the compute only
occupies a small portion of the entire pie and its role seemingly
trivial. Although small in quantity, compute can have a grand
effect on the system’s power. This is because by reducing
the mission time (as explained in the previous section), more
compute power can, in fact, reduce the bigger portion of the
pie, namely rotors energy consumption (due to a shorter flight).

We profiled the mission time and the energy associated
with the aforementioned microbenchmark. As the bottom plot
in Figure 1b shows, higher compute capability results in
increased SLAM FPS and hence a reduction in mission time
by allowing for faster flights. The reduced mission results in
reduced total system energy, as the bottom plot in Figure 1b
shows. By increasing processing speed by 5X, we were able
to reduce the drone’s energy consumption by close to 4X.

IV. EXPERIMENTAL SETUP

To conduct detailed experiments, we developed an experi-
mental infrastructure based on existing off-the-shelf hardware
and software components. We show how our setup in Figure 3
maps to the components corresponding to a UAV’s operation.

Environments, Sensors and Actuators: Environments, sen-
sors and actuators are simulated with the help of a game
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Fig. 3: Overview of our simulation setup, which we use to evaluate
a set of simulated applications. These applications include scanning,
package delivery, mapping, search and rescue and aerial photography.

engine called Unreal [10]. With a physics engine at its heart, it
“provides the ability to perform accurate collision detection as
well as simulate physical interactions between objects within
the world” [11]. Unreal provides a rich set of environments
such as mountains, jungles, urban setups, etc. to simulate.

To capture a MAV’s dynamics and kinematics through its
actuators’ behavior and its sensory modules, we used AirSim,
an open-source Unreal based plug-in from Microsoft [12].
We limit our sensors and actuators to the ones realistically
deployable by MAVs, such as RGB-D cameras and IMUs.
Unreal and Airsim run on a powerful computer (host) capable
of physical simulation and rendering. Our setup uses an Intel
Core i7 CPU and a high-end NVIDIA GTX 1080 Ti GPU.

Flight Controller: AirSim supports various flight con-
trollers that can be either hardware-in-the-loop or completely
software-simulated. For our experiments, we chose the de-
fault software-simulated flight controller provided by Air-
Sim. However, AirSim also supports other FCs, such as the
Pixhawk [13], shown in black in Figure 3 which runs the
PX4 [14] software stack. AirSim supports any FC which can
communicate using MAVLINK, a widely used micro aerial
vehicle message marshaling library [15].

Companion Computer: We used an NVIDIA Jetson
TX2 [16], a high-end embedded platform from Nvidia with
256 Pacal CUDA cores GPU and a Quad ARM CPU; however,
the flexibility of our setup allows for swapping this embedded
board with others such as x86 based Intel Joule [17]. TX2
communicates with Airsim and also FC via Ethernet.

ROS-based Workloads: Our setup uses the popular Robot
Operating System (ROS) for various purposes such as such
as low-level device control and inter-process communica-
tion [18]. All of our workloads run on ROS on top of TX2.

Energy Simulation and Battery Model: In addition to the
functional and performance data, energy consumption can also
be logged using our setup. To monitor energy, we extended the
Airsim simulation environment with an energy and a battery
model. Our energy model is a function of the velocity and
acceleration of the MAV [19]. The higher the velocity or
acceleration, the higher the amount of energy consumption.
Velocity and acceleration values are sampled continuously,
their associated power calculated and integrated for capturing
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the total energy consumed by the agent.

V. MEASUREMENT AND EVALUATION

We have assembled 5 representative benchmarks, to exam-
ine the effect of compute on MAV systems. Average velocity,
mission, and energy values of various operating points are
profiled and presented as heat maps (Figure 4—Figure 8). The
operating points we consider are changing the number of cores
and each core’s speed, or clock frequency. This section details
the impact of altering the operating points for each application.

Key takeaway: In general, compute can improve mission
time and lower energy consumption by as much as 5X.

Scanning: In this simple though popular use case, a MAV
scans an area specified by its width and length in a lawn
mowing pattern while collecting sensory information about
conditions on the ground. We observe trivial differences for
velocity, endurance and energy across all three operating
points (Figure 4a, Figure 4b, and Figure 4c). This is despite
seeing a 3X boost in the motion planning kernel, i.e. lawn
mower planning, which is its bottleneck. The trivial effect of
compute on this application is because planning is done once
at the beginning of the mission and its overhead is amortized
over the mission time. E.g., the overhead of planning for a 5
minute flight is less than .001%.

Package Delivery: In this workload, a MAV navigates
through an obstacle-filled environment to reach some arbitrary
destination, deliver a package and come back to its origin. As
compute scales with the number of cores and/or frequency
values, we observe a reduction of up to 84% and 82% for
the mission time and energy consumption, respectively (Fig-
ure 5b, and Figure 5c). The sequential bottlenecks i.e. motion
planning and occupancy map generation kernel are sped up
by frequency scaling to enable the observed improvements.
There does not seem to be a clear trend with core scaling,
concretely between 3 and 4 cores. We conducted investigation
and determine that such anomalies are caused by the non-real-
time aspects of ROS, AirSim and the TCP/IP protocol used for
the communication between the companion computer and the
host. We achieve up to 2.9X improvement in occumpancy map
generation and that leads to maximum velocity improvement.
It is important to note that although we also gain up to
9.2X improvements for the motion planning kernel, the low
number of re-plannings and its short computation time relative
to the entire mission time render its impact trivial. Overall
the aforementioned improvements translate to up to 4.8X
improvement in the average velocity. Therefore, mission time
and the MAV’s total energy consumption are reduced.

Mapping: With use cases in mining, architecture, and other
industries, this workload instructs a MAV to build a 3D
map of an unknown polygonal environment specified by its
boundaries. We observe a reduction of up to 273% and 64%
for the mission time and energy consumption, respectively, as
compute scales with the number of cores and/or frequency
values (Figure 6a, Figure 6b, and Figure 6c). The amount of
concurrency present in this application justifies core scaling
performance boost. The sequential bottlenecks, i.e. motion
planning and occupancy map generation kernel explain the

frequency scaling improvements. We achieve up to 6.3X
improvement in motion planning and that leads to hover
time reduction. We achieve 6X improvement in occupancy
map generation and that leads to maximum velocity improve-
ment. Overall, such improvements translate to an overall 3.2X
improvement in average velocity. Therefore, mission time
is reduced and consequently so is the MAV’s total energy
consumption.
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Fig. 4: Scanning.
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Fig. 5: Package Delivery.
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Fig. 7: Search and Rescue.
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Fig. 8: Aerial Photography.

Search and Rescue: MAVs are promising vehicles for
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search-and-rescue scenarios where victims must be found in
the aftermath of a natural disaster. We see a reduction of
up to 60% and 50% for the mission time and the energy,
respectively, as compute scales (Figure 7a, Figure 7b, and
Figure 7c). Similar to mapping, more compute allows for the
reduction of hover time and an increase in maximum velocity
which contribute to the overall reduction in mission time and
energy. In addition, a faster object detection kernel prevents
the drone from missing sampled frames during any motion.
We achieve up to 1.8X, 6.8X, and 6.6X speedup for the object
detection, motion planning and occupancy map generation ker-
nels, respectively. In aggregate, these improvements translate
to 4.9X improvement in the MAV’s average velocity.

Aerial Photography: In this workload, we design the MAV
to follow a moving target with the help of computer vision
algorithms. We observe an improvement of up to 53% and
267% for error and mission time, respectively (Figure 8a,
Figure 8b, and Figure 8c). In aerial photography, as compared
to other applications, higher mission time is more desirable
than a lower mission time. This is because the drone only
flies while it can track the person, hence a longer mission
time means longer tracking time. In addition to maximizing
the mission time, error minimization is also desirable for this
application. We define error as the distance between the per-
son’s bounding box (provided by the detection kernel) center
to the image frame center. Clock and frequency improvements
translate to 2.49X and 10X speedup for the detection and
tracking kernels and that allows for longer tracking with a
lower error. No significant trend is observed in the energy
data because energy depends on both the mission time and
the velocity, and as opposed to the other applications, there
is no need for the drone to minimize its velocity. Instead, it
needs to successfully track the person.

VI. THE ROAD BEHIND AND THE ROAD AHEAD

Traditionally, the UAV community has almost always, if not
exclusively, focused on improving algorithmic efficiency for
the sole purpose of getting the task at hand to be computed cor-
rectly. However, as these systems become more integrated (i.e.,
everything moves onboard) and autonomous, there is a need
to pay attention to their overall efficiency; The definition of a
system here includes the algorithms, software, and underlying
digital (i.e. compute platform elements such as processors/co-
processors) and mechanical hardware. It is this total system’s
efficiency that ultimately matters for completing a mission.

We emphasize the need to take a holistic system’s driven
approach to UAVs since all UAVs operate on a tightly con-
strained power budget, which severely limits their mission
time. Even if UAV systems were to work in a collective as
a “swarm,” improving the efficiency of one UAV at a time
by optimizing its compute will result in an overall net effect
where the endurance of the swarm will extend.

So, we foresee a future where it will become necessary to
understand how we can optimize the algorithms while also
improving the total power consumption and energy efficiency
of a UAV from algorithms down to the hardware design.

VII. CONCLUSION

Despite their ample use cases and a rapid progress in the
robotic community, UAVs have seen a modest examinations
from the software and hardware architects. In this paper, we
examined importance of compute for such systems by show
casing two compute knobs. We uncover a hidden compute to
total system energy relationship where faster computers can
allow drones to finish missions quickly, and hence save energy.
This is because most of the drone’s energy is consumed by
the rotors, hence, faster compute can cut down on mission
time (by increasing the max velocity and reducing the hover
time) and energy accordingly. This insight is examined in 5
applications where we see up to 5X improved due to the
aforementioned compute knobs. Going forward, we humbly
call for the collaboration between the robotic and computer
architecture community to make autonomous drones a reality.
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