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Abstract

Hypercube structures are heavily used by parallel algorithms that require all-to-all
communication. When communicating over a heterogeneous and irregular network,
the performance obtained by the hypercube structure will depend on the matching of
the hypercube structure to the topology of the underlying network. In this paper, we
present strategies to build topology-based hypercubes structures. These strategies do
not assume any kind of topology. They take into account the communication cost
between pair of nodes to provide a performance-efficient hypercube structure. These
enhanced hypercube structures help improve the performance of parallel
applications that require all-to-all communication in heterogeneous networks by up
to ~30%.

1 Introduction
Hypercube structures allow a computation that requires all-to-all communication among P
tasks to be performed in logP steps. All-to-all communication is used by a variety of par-
allel algorithms, such as barrier synchronization, vector reduction, matrix multiplication,
and sorting, making the hypercube one of the most useful structures in parallel computa-
tion [7]. In fact, many popular parallel algorithms use a hypercube communication struc-
ture, as shown by Leighton [17]. Some examples are the fast Fourier transform [19, 25],
parallel prefix [24], and various computer vision [24] and linear algebra computations
[13]. In addition, the MPICH’s implementation [22] of the barrier synchronization opera-
tion is based on hypercubes.

To use a hypercube structure in an all-to-all operation, the processes are organized in
a hypercube, i.e., the processes are assigned to positions in the hypercube structure and
communicate with the nodes assigned to neighbor positions only. In homogeneous clus-
ters, this assignment is generally done according to their nodes’ identifiers, which are usu-
ally assigned blindly (independently of any performance measure) to the nodes [7, 11, 22].
For example, consider a cluster formed by 4 nodes located in the same LAN. These nodes
are assigned identifiers 0, 1, 2, and 3. According to these identifiers, a 2D hypercube can
be created, as shown in Figure 1, where node 0 communicates with nodes 1 and 2, but not
to node 3, which also communicates with nodes 1 and 2.
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Fig. 1. 2D hypercube formed according to the nodes’ identifiers.

When using a hypercube structure, communication takes place between nodes that are
connected in the hypercube. For this reason, the organization of the hypercube is a key
process in the all-to-all communication. In regular-topology platforms, organizing the
hypercube blindly may lead to good performance. However, in heterogeneous, irregular
networks, we need a more sophisticated strategy to build the hypercube. Intuitively, the
algorithm would execute more efficiently if we could form the hypercube by having com-
munication take place only between nodes that are separated by a low-communication
cost path, as shown in [6] for binomial trees.

This paper presents possible solutions to embed a given network topology into a
hypercube template to be used in all-to-all communication. We evaluate the efficiency of
the strategies proposed by comparing both the cost of the hypercubes generated and the
time to execute a barrier-synchronization operation using the different hypercubes. The
strategies discussed do not assume any kind of topology, i.e., the machines may be orga-
nized in any topology. It takes into account the communication cost between the nodes to
come up with a performance-efficient hypercube to be used by the barrier-synchronization
algorithm.

The strategies proposed are independent of the measure used as communication cost.
In our experiments, latency is used but, in fact, the measure to be used should reflect the
application characteristics. For example, for an application that sends a large number of
short messages, the communication cost should reflect the latency. For an application that
sends a small number of large messages, the communication should reflect the bandwidth.
For an application that sends a large number of large messages, the communication cost
should reflect both the latency and the bandwidth which, combined with the message size
used by the application, provide an accurate model for communication cost. Note that
these costs can be obtained with a performance prediction tool, such as the Network
Weather Service [27].

This paper is organized as follows. Section 2 discusses related work. Section 3 pre-
sents the hypercube-based all-to-all communication algorithm used in the paper. Section 4
presents algorithms for creating topology-based hypercubes to be used in all-to-all com-
munication operations. Section 5 shows experiments performed and results obtained. Sec-
tion 6 concludes.

2 Related Work
Hypercube structures play an important role in global communication operations, and
have been the subject of several research papers. Bertsekas et al have described optimal
communication algorithms for hypercubes [4]. In [3], the authors presents a study on algo-
rithms for collective operations for homogeneous parallel environments, and embeddings
of different structures into hypercubes have been the subject of [5, 12, 18, 26].

In [1], the authors deal with heterogeneity by forming broadcast trees according to the



capacity of each machine. In [2], the authors present a communication model of heteroge-
neous clusters for performance characterization of collective operations.

Several groups have been working on projects related to global communication in
hierarchical topologies. In [20], the authors present ECO, a packet containing efficient
collective operations for interconnected clusters. ECO groups hosts according to the net-
work topology, i.e., each group contains nodes that belong to the same (homogeneous)
cluster. Based on these groups, ECO implements the collective operation using a specific
algorithm for each LAN. In [16], the authors also present a solution for more efficient glo-
bal communication in hierarchical networks of workstations. They also group the hosts
according to the network topology, but they use a binomial tree for each LAN. In [15], the
authors describe MagPIe, a communication library that uses performance-efficient struc-
tures for global-communication operations in GRID environments. Global communication
in WAN environments, such as the GRID, have been the subject of many other papers [8,
14], which employ a hierarchical structure to reflect the hierarchy existent in these envi-
ronments.

PVM (Private Virtual Machine) [11] and MPICH [22], which is an implementation of
MPI (Message Passing Interface) [21], are libraries used in practice by scientific applica-
tions using heterogeneous networks. Both of them provide various collective communica-
tion operations, such as one-to-all and all-to-all. Originally, they did not take the network
topology into account. However, the Globus group have proposed the enhancement of
MPICH to accommodate for the hierarchical structure of GRID environments. They use a
hierarchical structure, as discussed in [9].

3 Hypercube-Based Communication Algorithm
In [7], Foster proposes a hypercube-based algorithm for all-to-all communication. It uses a
hypercube communication template. The algorithm is executed by each task in a hyper-
cube communication structure (obtained by the processes’ identifiers). This algorithm
allows an operation that requires all-to-all communication among P processes to be per-
formed in logP steps. The algorithm is presented below:

procedure hypercube (myid, input, logp, output)
begin

state = input
for i = 0 to logp - 1

dest = myid XOR 2i

send state to dest
receive message from dest
state = OP (state, message)

endfor
output = state

end

The value logp represents the size of the hypercube, and myid represents the node’s
identifier. XOR denotes an exclusive OR operation, and OP is the user-supplied operator,
used to combine local data with data arriving from the ith neighbor in the hypercube. In
each step of the algorithm, each process exchanges its local state (which embeds its local
input with the information received so far from its neighbors) with one of its neighbors in
the hypercube and, then, combines the message received from that neighbor with state to
generate a new state. Note that, at each step, each node communicates with the neighbor
indicated by dest = myid XOR 2i, which does not depend on the network topology.

As shown in [7], this algorithm can be used efficiently, in regular-topology platforms,
for vector reductions, matrix transpositions, merge sorts, and so on. However, as shown in



Section 5, in heterogeneous networks, the algorithm’s performance depends on the organi-
zation of the hypercube and, at each step, dest should be a node selected according to the
topology of the network.

4 Enhancing Hypercube Structures
Our strategies to reorganize the nodes to form a more performance-efficient hypercube are
based on the communication cost between the nodes. The hypercube-based algorithm
works synchronously and, at each step, each node communicates with a specific node in
the same subcube. In this case, placing nodes that are connected by a low-cost path in
communicating positions, so that communication in each step of the algorithm uses a low
communication-cost path, will decrease communication costs and lower the total cost of
the all-to-all operation.

The following subsections present our three algorithms developed to provide topol-
ogy-based hypercubes. The algorithms take the communication cost between pairs of
nodes into account to form a performance-efficient hypercube.

4.1. Dim2_Cube
This algorithm tries to optimize the first dimension of the hypercube to decrease the cost
in the first step of the all-to-all operation. The algorithm, which is shown below, is based
on the following procedure: For every even position i, assign the first unmarked node n
and select n’s closest unmarked node to be placed at i’s neighbor position in the first
dimension. 

Dim2_Cubes ( )
begin

unmark all nodes
for i = 0, 2, 4, ..., N-2

n = 0
while n is marked

n = n + 1
end while
assign node n to position i
mark node n
j = non-used closest node to n
make node j the first neighbor of node i
mark node j

end for
end

Fig. 2. Following the Dim2_Cube algorithm.

Figure 2 shows an example of a hypercube obtained with the algorithm above.
Figure 2 (left) shows a network in which every link has the same cost. Figure 2 (left) illus-
trates the first three steps of the algorithm: node 0 is placed in position 0 with node 6 as
first neighbor, node 1 is placed in position 2 with node 7 as first neighbor, and node 2 is



placed in position 4 with node 3 as first neighbor. Figure 2 (middle) shows the last step of
the algorithm, in which node 4 is placed in position 6 with node 5 (the last unmarked
node) as first neighbor. Figure 2 (right) shows the hypercube obtained. Note that three out
of the four edges in the first dimension of the hypercube shown in Figure 2 (middle) are
optimum. However, the last edge obtained compromises the efficiency of the hypercube.

This algorithm executes in time O(n2), where n is the number of nodes and, because it
focuses on the first dimension only, the gains obtained by the hypercubes generated are
limited (see Section 5).

4.2. TSTS_Cube
This algorithm uses a Traveling Salesman Tour with Shortcuts (TSTS), produced from a
Minimal Spanning Tree (MST), to generate a line of nodes, from which each node is
assigned to the corresponding position of the hypercube, according to the gray code [23].

The Minimal Spanning Tree (MST) is a tree that contains all the nodes in a network,
and it is formed in such a way that the cost from the root to each of the nodes is minimum.
The TSTS can be obtained from the MST by traversing it, visiting every node just once. A
detailed explanation of how to create a TSTS from an MST is found in [10], which proves
that the TSTS obtained has a length that is at most twice the length of the optimum tour.

The algorithm presented below traverses the hypercube positions using the gray code
[23] and assigns nodes to each position according to the TSTS, generated from the MST
corresponding to the network topology. The MST provides nodes that are close to each
other, using locality to benefit the hypercube.

TSTS_Cube ( )
begin

generate the MST and the TSTS
h = 0, is the first position in the hypercube
n = 0, is the first node in the TSTS
for i = 0 to N-1

assign node n to position h
h = next position in the hypercube
n = next node in the TSTS

end for
end

The figures below illustrate the TSTS_Cube algorithm. The algorithm generates the
MST from a given graph, as the one shown in Figure 3 (left). Starting with position 0, fol-
low the gray code indexes and the nodes in the TSTS, assigning each node to the corre-
sponding position. In Figure 3 (middle), the numbers on the edges indicate the sequence in
which the nodes are visited, according to the TSTS order. Each node visited is placed in
the next consecutive position, according to the gray code. Nodes are selected until the
hypercube is complete, as shown in Figure 3 (right).

Fig. 3. Following the TSTS_Cube algorithm.



This algorithm executes in time O(n2), where n is the number of nodes and, even
though the MST provides the algorithm with locality, this algorithm does not scale well.
The results show that the hypercubes generated achieves an average gain of about 10%
over the hypercubes generated blindly for up to 16 nodes, but the gain decreases as the
number of nodes increase (see Section 5). This happens because nodes that are part of a
branch of the MST (which means they are connected by a low communication-cost path),
will be spread in a line and the locality provided by the MST will be lost. Also the TSTS
does not reflect the MST perfectly because of the detours.

4.3. Eff_Cube
The previous algorithms are based on optimizing each neighbor only. However, due to the
strong coupling in hypercubes, this may not be the best approach, particularly for large
networks. For example, if a node C is a neighbor of both nodes A and B’s, it may be a
good neighbor for node A, but may not necessarily be a good neighbor for node B. This
strong coupling between neighboring nodes and their edges leads us to think in terms of
selecting neighbor nodes based on the overall efficiency of the selected node.

The Eff_Cube algorithm takes into account the local cost before assigning a node to a
position. Thus, for a given location, the node that generates the least local cost (sum of the
weights on the edge in each dimension) will be chosen for a given position.

The algorithm works as follows. Neighbors of position 0 are consecutively assigned
nodes 0, 1, ..., d, where d is the maximum dimension of the hypercube, since neighbors for
these positions have not been assigned yet. Then, starting with the next consecutive posi-
tion, the algorithm traverses all its dimensions in search of empty neighbors. Let Y be the
current position, and Y.n be its nth neighbor. The algorithm searches for a node X from the
list of unused nodes that gives the least local cost. If the cost of the edges between pairs of
nodes are (X ↔ Y.0) = C0, (X ↔ Y.1) = C1, (X ↔ Y.2) = C2, ..., and (X ↔ Y.n) = Cn,
then the local cost to be minimized is C0+C1+C2+...+Cn. The algorithm assigns neighbors
to the current node until all adjacent neighbors of the current index are filled with opti-
mum nodes.

Eff_Cube ( )
begin

for i = 0 to last position
for j = 0 to last dimension

neighbor position = position i’s jth neighbor
if neighbor position is empty

minimum weight = infinite
for k = 0 to last node

if node k has not been assigned yet
weight = 0
for d = 0 to last dimension

if a node was assigned the neighbor position’s dth dimension
child = node in the dth dimension of neighbor position
weight = weight + cost between node k and child

end if
end for
if weight < minimum weight

minimum weight = weight
temp neighbor node = k

end if
end if

end for
position i’s jth neighbor = temp neighbor node (assign temp neighbor node to neighbor position)

end if
end for

end for
end



The figures below show an example of the Eff_Cube algorithm executing on a 3D
hypercube. All neighbors of the starting position 0 are assigned nodes 0, 1 and 2.
(Figure 4, left). The algorithm proceeds to position 1. For dimension 0, the algorithm
starts traversing through the list of unused nodes to find the best suitable node. All nodes
besides 0, 1 and 2 are checked as they are unused. Selection of the node is shown in
Figure 4 (middle), Figure 4 (right), and Figure 5 (left), using as an example nodes 3, 5 and
7. For node 3 (Figure 4, middle), (3 ↔ 0) = 13, (3 ↔ 1) = 12, (3 ↔ 2) = 0, and the local
cost = 25. For node 5 (Figure 4, right), (5 ↔ 0) = 11, (5 ↔ 1) = 9, (5 ↔ 2) = 3, and the
local cost = 23. For node 7 (Figure 5, left), (7 ↔ 0) = 10, (7 ↔ 1) = 4, (7 ↔ 2) = 3, and
the local cost = 17. Of all these nodes, node 7 yields the lowest local cost. Therefore, node
7 is chosen to be placed in the current empty index. All adjacent neighbors (Figure 5,
right), dimension after dimension, are inserted in the same way, with the node that pro-
vides the least local cost.

Fig. 4. Following the Eff_Cube algorithm.

Fig. 5. Following the Eff_Cube algorithm.

This algorithm executes in time O(n2(logn)2), where n is the number of nodes, and the
gains obtained by the improved hypercubes is on average around 30% for large clusters
(with 1024 nodes). This algorithm scales well. In fact, the average gain starts at about 10%
for 8 nodes and increases consistently until 1024 nodes. Section 5 shows a representative
set of the experiments performed.

5 Results
To show the effectiveness of the algorithms proposed, we have executed two kinds of
experiments. First, we compare the cost of topology-based hypercubes with the cost of
hypercubes obtained blindly by the system. This comparison is made for a series of topol-
ogies generated randomly. Then, we compare the time to execute a barrier synchronization
operation using topology-based hypercubes with the time to execute the same operation



using blindly generated hypercubes. This comparison is also made for a series of topolo-
gies generated randomly.

5.1. Comparing Costs
The cost of a hypercube, which is the measure used in the comparison, is given by the cost
of the node with the maximum cost, where the cost of each node is calculated as the sum
of the weights between the node and each neighbor. Note that the cost for each node is cal-
culated dimension-by-dimension, and that delays in previous dimensions, in which neigh-
bors may have higher costs to their own neighbors, must be incorporated in the calculation
of the cost for each dimension. The algorithm is shown below:

calc_cost ( )
begin

for each node
cost of node = weight between the node and the neighbor in the 1st dimension

for i = 2nd to last dimension
for each node n

cost of n = max (cost of n, cost of n’s neighbor in the ith dimension)
for each node n

cost of n = cost of n + weight between n and its neighbor in the ith dimension
end for

end for
cost of hypercube = cost of the node with the maximum cost

end

Figure 6 shows a representative set of experiments, in which the average gain in cost
is obtained by each algorithm for a set of 1,000 random topologies for each number of
nodes. The gain represents how much lower (in %) the cost of a hypercube created by the
respective algorithm is in comparison with the cost of a hypercube created blindly for the
same topology. In Figure 6 (left), the nodes in each topology are apart by at most 5 Fast
Ethernet links, representing networks in which the nodes are close. In Figure 6 (right), the
nodes in each topology are apart by at most 20 Fast Ethernet links, representing networks
in which the nodes are not close together.

Fig. 6. Maximum cost between each pair of nodes is 5 links (left) and 20 links (right).

The graphs consistently show that the Dim2_Cube algorithm achieves an average of
about 10% independently of the number of nodes, while the TSTS_Cube achieves a gain
of about 10% for small networks, but does not scale well. The Eff_Cube algorithm
achieves the highest gains and scales well, achieving an average gain of around 30% for
1024 nodes. These experiments show that the Eff_Cube algorithm implements the most
promising approach, and that considering local costs leads to more efficient hypercubes.
These graphs also show that the algorithms’ behavior is independent of the maximum
communication cost between the nodes.
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5.2. Comparing Execution Times
Besides comparing costs of hypercubes, we have also executed experiments to compare
the time to execute a barrier synchronization operation with the different hypercubes. The
experiments were executed on the Blue Horizon IBM SP at the San Diego Supercomputer
Center. The IBM-SP is a LAN-based, regular-topology cluster, in which we have emulated
diverse heterogeneous networks by enforcing different latencies between the nodes. Our
emulator was implemented using MPI [21]. Given the number of nodes and a maximum
communication cost between any pair of nodes, the emulator generates random heteroge-
neous networks, which have various topologies. The emulator generates the topologies by
generating the communication cost between every pair of nodes. Communication cost are
in number of links. The latencies to be enforced are obtained by multiplying each random
cost and a base latency, which is equivalent to the latency between two workstations con-
nected by fast Ethernet (100Mbps), i.e., ~35ms. Each emulation executes 10,000 barrier
synchronization operations.

Each graph below shows, for each algorithm, the gain obtained when comparing the
improved hypercube with the one obtained blindly. For each algorithm, the topology used
was the one that provided the best result among the experiments presented in Subsection
5.1. The graphs show the cost and the emulation time gains. Note that they match, show-
ing that our cost calculation is accurate.

Fig. 7. 128 nodes (left) and 1024 nodes (right).

The Eff_Cube algorithm is the best option and achieves gains up to ~40% (Figure 7,
left and right), corroborating the results shown in Subsection 5.1. The Dim2_Cube algo-
rithm provides gains of up to ~20% (Figure 7, left and right). The TSTS_Cube algorithm
achieves a gain of up to ~15% for small networks (Figure 7, left), but it does not provide
any gain for large networks (Figure 7, right).

6 Conclusion
All-to-all communication is extensively used by parallel algorithms, and adapting these
algorithms to execute efficiently in heterogeneous networks is crucial to improve their
performance in this kind of environment.

In this paper, we have presented strategies to organize the nodes in a heterogeneous
network into a hypercube. The strategies are based on the communication cost between
the nodes in the network. The experiments performed have shown that the Eff_Cube algo-
rithm presented helps to lower communication costs and, consequently, to improve the
performance of algorithms based on all-to-all communication.
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