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From the Editor in Chief

Welcome to the November/December 
2017 special issue on ultra-low-power 
processors.

The Internet of Things (IoT) rev-
olution is happening at a rapid pace. 
Most projections forecast that the num-
ber of connected IoT devices will grow 
exponentially, easily reaching over 100 
billion within the next decade. This rev-
olution leads to a vigorous demand for 
ultra-low-power (ULP) edge computing 
devices and associated system-on-chip 
(SoC) architectures. This special issue 
includes six articles that highlight some 
of the state-of-the-art research and  
potentially viable solutions in ULP pro-
cessors. I suggest you read the guest edi-
tors’ column for more details about these 
articles. I want to wholeheartedly thank 
David Brooks and John Sartori for their 
excellent work as guest editors of this 
special issue. I hope you will enjoy read-
ing these articles as much as I did.

There is one article that I would 
like to highlight here. Mark Bohr and 
Ian Young talk about CMOS scaling 
trends and how Intel has been able to 
keep Moore’s law alive over the past 
decades. This required continuous 
innovation in materials and device 
structures to deliver the performance, 
power, and cost improvements as ex-
pected with each technology gener-
ation. The article also highlights new 

device options and technology direc-
tions to continue scaling in the near 
future. The excellent keynote Mark 
delivered at the ISCA 2017 conference 
instigated this article, and I’m grate-
ful to Mark and Ian for having taken 
the time to write up this excellent 
contribution.

This issue also includes two 
thought-provoking Expert Opinion 
articles about challenging topics in 
our field. In the first column, Bobbie 
Manne, Bryan Chin, and Steve Rein-
hardt posit that architects should pur-
sue architectural agility to lower the 
barriers to developing innovative and 
disruptive solutions in an unpredict-
able and rapidly evolving technology 
landscape as we face new technology 
limitations. They present several ideas 
for engineers to integrate agility into 
both processor and datacenter design.

Reetu Das describes two historical 
waves in processing in memory (PIM) 
to combat the memory wall, and then 
argues for moving computation closer 
to memory—thereby transforming 
memory into powerful accelerators—
which seems like an appealing and 
promising vision in an era increas-
ingly dominated by data-intensive 
workloads.

This issue also includes an award 
testimonial. David Brooks reports on  

the 2017 ISCA Influential Paper 
Award, which was given to “Drowsy 
Caches: Simple Techniques for Re-
ducing Leakage Power” by Krisztián 
Flautner, Nam Sung Kim, Steven M. 
Martin, David Blaauw, and Trevor 
N. Mudge. This award recognizes the 
paper published 15 years ago—in this 
case, 2002—at the ISCA conference 
that has had the most impact on the 
field (in terms of research, develop-
ment, products, or ideas) during the 
intervening years. The drowsy cache 
paper made a seminal contribution to 
power-efficient computing. The paper 
was written at a time when leakage 
current was becoming a major con-
cern, especially in large on-chip caches 
in high-end processors. The paper’s key 
idea was to put parts of the cache into 
a low-power “drowsy” mode to save  
energy while retaining the data. Con-
gratulations to the award winners on 
their groundbreaking research!

Finally, in this issue, Shane Green-
stein talks about the “hush-hush 
norm,” which I will let you discover 
for yourself in the Micro Economics 
column.

The IEEE Computer Society will 
be making some changes to how mag-
azine articles are edited. Unfortunately, 
this means that our current copy ed-
itor, Molly Gamborg, will no longer 

Moore’s Law and Ultra-Low-Power 
Processors

Lieven Eeckhout
Ghent University
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be working with IEEE Micro. Molly 
has been IEEE Micro’s copy editor 
for seven years. I have interacted with 
her for many years, first as an author 
and then as the editor in chief for the 
past three years. I’m sure that many 
of you have interacted with Molly as 
well over these many years, as an au-
thor or otherwise. Simply said, Molly 
did an outstanding job, both in terms 
of copy editing magazine articles and 
in terms of managing deadlines and 
schedules for the magazine. I’ve always 
been amazed by her performance and 
professionalism. She really made my 
job as the editor in chief easy and en-
joyable. I feel very fortunate to have 
worked with Molly. At the same time, 
I feel saddened that she will no lon-
ger be part of the team. Thanks a lot, 
Molly, for your great service—we will 
miss you!

W ith that, I’d like to conclude and 
wish you a happy reading. 

Lieven Eeckhout is a professor in the 
Department of Electronics and Infor-
mation Systems at Ghent University. 
Contact him at lieven.eeckhout@
ugent.be.
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Expert Opinion

All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products, 
or build riskier products that have the 
potential for greater reward but carry a 
higher probability of failure? The safe 
course, and one that many custom-
ers ask for, is the former. However, as 
Clayton Christensen points out in The 
Innovator’s Dilemma, “most companies 
with a practiced discipline of listening 
to their best customers and identify-
ing new products that promise greater 
profitability and growth are rarely able 
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies 
expend enormous resources to suc-
cessfully improve their products in an 
evolutionary fashion. Single-threaded 
processor performance has been improv-
ing at a rate of 15 to 20 percent per year 
by utilizing both process technology 
and architectural improvements.2 These 
improvements, however, are increasingly 
difficult to achieve. Using data from 
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per 
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs, 
has not significantly improved in the 
past decade. However, performance 
improvements are flattening out due to 

power restrictions and the breakdown 
of Dennard scaling. For instance, Intel 
is no longer relying on the tick-tock 
model, which it rode to market dom-
inance for the past decade, due to the 
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive 
Technology
Christensen describes the evolutionary 
process of improvements using the sus-
taining technology S-curve (see Figure 2). 
For every successful technology, the per-
formance metric is initially flat during 
development, rapidly improves for a 
period of time, and flattens out again 
when the product and/or technology 
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching 
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the 
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head 
to head with mainstream technolo-
gies, but they do have features that a 
few fringe markets value. Typically, 
disruptive technologies initially under-
perform, but then rapidly match and 
exceed the previous technology. Suc-
cessful companies not only ride their 
sustaining S-curves but generate new, 

disruptive curves to improve perfor-
mance as the current technology curve 
flattens out. Microprocessors were 
once a disruptive technology,1 and 
the computing landscape over the past  
few decades is littered with disruptive 
technologies, from minicomputers to 
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive 
technology yielded worse performance 
in the near-term when using the same 
cost function as mainstream technology. 
However, as Christensen maintains, dis-
ruptive technologies eventually redefine  
how performance is measured.

Recent examples of disruptive 
technologies in processor architecture 
include GPUs and Arm servers. GPUs 
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance 
computing (HPC) and more recently 
in machine learning. For applications 
that are similar to those found in 
SPECint, GPUs underperform gen-
eral-purpose processors. However, 
for targeted HPC applications and 
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded 
domains, but have more recently 
entered the server market with prod-
uct offerings from companies such as 

If You Build It, Will They Come?

Srilatha Manne
Cavium

Bryan Chin
University of California, San Diego

Steven K. Reinhardt
Microsoft
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Cavium and Qualcomm that address 
multicore throughput computing.5,6 
A new S-curve could develop for these 
specialized throughput-based server 
products—enabled by highly paralleliz-
able shared-memory applications—just 
as it did with HPC and machine learn-
ing in the GPU market.

It took the GPU market nearly 
two decades to make headway outside 
of graphics applications, and the Arm 
server market has resulted in several 
failures. Christensen notes that this 
commonplace in disruptive markets is 
where “[it] is simply impossible to pre-
dict with any useful degree of precision 
how disruptive products will be used 
or how large their markets will be.” 
So, how does one innovate in a rapidly 
changing technology landscape where 
the underlying cost function is in flux? 
How does a company keep up with the 
necessary and expensive evolutionary 
changes, yet also prepare for and justify 
expending valuable resources investi-
gating disruptive technologies that are 
inevitable?

The Case for Agility
Companies and their mainstream cus-
tomers alike are notoriously bad at pre-
dicting what disruptive products will 
take root in the marketplace. There are 
many instances of high-profile devel-
opments that flopped. For example, it 
is unlikely you are reading this article 
on your Apple Newton while listen-
ing to music on your Microsoft Zune. 
Conversely, some disruptive technol-
ogies have found success in surprising 
places such as GPUs. Innovation in a 
rapidly changing landscape is difficult 
and prone to failure. Therefore, we 
posit that architects, rather than trying 
to predict the future, should pursue 
agility in order to accelerate innova-
tion while minimizing costs. Hard-
ware companies, architects, and the 
underlying design methodologies and 
infrastructure must be nimble enough 
to deal with disruptive technologies 
that come from within and outside the 

current technology landscape. The rest 
of the article presents some ideas on 
how this may be accomplished.

Agile Architecture
In his book The Lean Startup: How 
Today’s Entrepreneurs Use Continuous 
Innovation to Create Radically Success-
ful Business,7 Eric Ries writes about 
software companies that use agile 
software development strategies. The 
premise is to deliver prototypes as 
quickly as possible, even if haphazardly 
put together, to get early customer 
feedback. The goal is to use customer 
feedback to drive product features and 
direction through a process of continu-
ous development. If you consider how 
frequently the apps on your phone are 
updated, or the look and feel of social 
networking sites evolve, you have seen 
agile software practices in action.

Facebook, for example, uses agile  
coding practices. As Kent Beck 
explains,8 one of the basic practices at 
Facebook is reversibility. If a decision is 
reversible, it does not require the rig-
orous testing that irreversible decisions 
require. Code is also released incremen-
tally to a small subset of users, which 
enables changes to be rolled back with 
minimal disruption if a problem is 
found.9 The challenge for the hard-
ware industry is how to adapt a similar  
agile methodology without incur-
ring large overheads. We address this 

challenge in both traditional processor 
hardware methodologies and innova-
tive methodologies utilized by large 
computing companies.

Processor Agility
Prior to the ASIC revolution of the 
past few decades, hardware prototypes 
were a common means of achieving 
the rapid development and early feed-
back cycle. Old technologies such as 
wire-wrap, breadboards, programma-
ble logic devices (PLDs), and low-cost 
printed circuit boards (PCBs) enabled 
hardware companies to quickly build 
and iterate on products. This meth-
odology is no longer feasible given the 
complexity and cost of processor devel-
opment both in terms of engineering 
time and fabrication costs.3
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Figure 1. Processor computation cost as a function of time. Cost is defined as a 
combination of fabrication, nonrecurring engineering (NRE), and packaging costs.3
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Expert Opinion

Automated design methodology and  
reuse. Companies today rely on 
improved design methodologies and 
reusability to reduce design time and 
cost. Design methodologies have made 
great strides in the past two decades, 
resulting in shorter design cycle times and 
an expanded product portfolio using the 
same fundamental components. Most 
processors, even those designed for high 
performance, are mostly or completely 
synthesized. The Arm roadmap has 
synthesized cores operating at 3 GHz, 
and AMD, Intel, and IBM extensively 
use automated tools throughout their 
design.10–12 In addition, companies uti-
lize a modular design methodology such 
that multiple products can be developed 
using the same basic components.

Both Intel and AMD use their 
respective base core designs and inno-
vative packaging technologies to build 
products ranging from low-power 
mobile parts to multicore server  
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have 
been able to create a family of devices 
with varying price/performance points 
from the same basic design by utilizing 
flexible chip layouts that let designers 
vary the number of computational 
units and/or the amount of on-die 
memory. Intel has taken this one  
step further by collaborating with 
Facebook to develop a specialized  
version of Broadwell (referred to as 
Broadwell-D) to meet the specific 
needs of Facebook.14

The technologies mentioned so far 
reduce design cycle time, but there is 
still significant overhead associated with 
bringing a chip to production. Post- 
silicon functional and performance 
debug is a formidable challenge for 
modern processors that may encompass 
multiple sockets, heterogeneous and/or 
multithreaded cores, many cores com-
bined with multiple levels of memory 
hierarchy, complex memory coherence 
and consistency protocols, and extensive 
power and performance management 
via on-chip controllers. In addition, 

modern processors may operate under 
complex software stacks containing one 
or more nested virtual environments. 
For these reasons, even with mostly 
synthesized methodologies and reuse 
of existing components, the transition 
from first silicon to full production part 
can take up to a year or more.15

Functional verification and bug  
mitigation. Post-production bugs are  
commonplace, and fixing bugs in 
shipped products often involves errata, 
metal and full-layer spins, and/or 
replacing existing silicon. Infamous 
examples of such bugs are the Pentium 
FDIV bug,16 the Haswell/Broadwell 
transactional memory bug,17 and the 
AMD TLB bug.18 These bugs cost the 
respective companies millions of dol-
lars in lost revenue, and in AMD’s case, 
contributed to its loss of momentum 
in the server market. All processors 
have a large list of errata. The table of 
known errata in Haswell, for instance, 
covers six pages.19

To meet market needs and address 
the complexity and cost of post-silicon  
debug, architects must focus on 
hardware and software solutions for 
exposing, analyzing, and mitigating 
functional and performance bugs. 
Processor vendors must provide tools 
that rapidly expose and identify bugs 
and have systems in place for mitigat-
ing these bugs without the need for 
extensive silicon changes. Efforts such 
as Arm’s hardware debug architecture 
attempt to standardize the infrastruc-
ture so that common tools can be 
made available to the Arm hardware 
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating 
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind, 
as does the PAL (Privileged Architecture 
Library) code feature of DEC’s Alpha 
processors. A similar technology that 
might help processor vendors mitigate 
bugs is virtual machine environments. 

Much software these days is compiled 
to an abstract machine. Two examples 
of such abstraction layers, one cur-
rent and one historical, are Oracle’s 
Java Virtual Machine (JVM)21 and 
IBM’s AS/400 Series.22 If an entire 
processor is designed to execute only 
a JVM, then the JVM itself provides 
the instruction set architecture (ISA) of 
the machine, and the underlying phys-
ical machine may have bugs or features 
that are invisible to the JVM. The JVM 
addresses ISA-related bugs. Similarly, 
more fully specified virtual machine 
environments, such as VMware’s 
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine, 
such as memory management and I/O. 
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations  
of hardware. By expecting and archi-
tecting for bug discovery, analysis, 
and mitigation, processor vendors can 
reduce the number of bugs that reach 
production silicon, and respond to 
issues in post-production parts quickly 
and effectively. This shortens the 
designer-customer feedback loop and 
leads to a faster development cycle and 
improved successor products.

Performance verification and  
optimization. Another critical facet 
of bringing a processor to production 
is performance tuning. Processors are 
designed with dozens of control bits 
(also referred to as chicken bits) to 
manage system performance. Some 
chicken bits are exposed to the user 
(for example, disabling prefetching or 
simultaneous multithreading mode, or 
restricting power management), and 
others are known only by the manufac-
turer. Regardless, how these bits are set 
and tuned can have a significant impact 
on performance. Unfortunately, there 
are hundreds of these interdependent 
knobs, and tuning them by hand is 
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23 
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that can dynamically adjust these bits 
according to application needs may be 
an innovative mechanism for achiev-
ing optimal performance. Best of all, 
these tuners can be deployed on-site, 
which means they do not gate product 
release to customers. Finally, the same 
techniques for fixing bugs via low-level 
software or implementing a virtual 
machine can also be used to adapt sil-
icon to new applications. Hardware 
designers can enable and deploy new 
instructions and features through 
the same mechanisms used to patch 
around bugs. New versions of a JVM 
implementation, for example, may 
exploit optimizations that are relevant 
to new application areas.

Computational Agility
So far, we have addressed agility at 
the processor level. However, with 
the advent of warehouse-scale systems 
driven by cloud computing, the pro-
cessor becomes one piece of a larger 
computational problem. New com-
panies entering the computing arena 
include numerous startups and large, 
established companies from outside 
the traditional chip design industry, 
such as Google, Microsoft, and Ama-
zon. Few if any of these companies 
are choosing to go head-to-head in 
the general-purpose processor market 
with traditional designs such as Intel 
and AMD. Rather, they are achieving 
agility via specialized devices targeting 
narrower but highly relevant domains.

The need for specialization. The end 
of Dennard scaling and the slowdown 
and imminent demise of Moore’s law 
drive the need for specialization, just 
as they demand agility in processor 
design. During the steep part of the 
S-curve for general-purpose processors, 
specialized architectures were quickly 
outpaced by these cheaper commodity 
devices. The slowing rate of improve-
ment in general-purpose designs both 
creates opportunity for specialized 
architectures and drives demand, as 

customers can no longer rely on the 
commodity market to satisfy their 
computing needs.

A prerequisite for specialization is 
identifying an application or applica-
tion domain narrow enough to benefit 
from specialization but large enough 
to justify a specialized device. Focusing 
on smaller and smaller domains (down 
to specific applications) increases the 
amount of potential performance 
uplift through specialization, while 
decreasing the potential market. To 
be successful, the total value cre-
ated through specialization (roughly 
speaking, the value per device times 
the number of devices) must exceed 
the cost of developing the specialized 
device. By developing agile methodol-
ogies that reduce engineering costs, we 
can enable specialization for smaller 
domains and allow specialized devices 
to emerge sooner in growing markets.

Figure 3 shows the specializa-
tion trend over time, starting with 
CPUs and ending with custom ASICs. 
Cryptocurrency mining followed this 
trend,24 and deep learning, one of the 
most prominent new markets attract-
ing specialized architectures, is follow-
ing suit. GPUs offer better performance 
than CPUs for certain tasks, such as 
training for AI, whereas state-of-the 

art field-programmable gate arrays 
(FPGAs) can outperform standard 
GPUs for certain computations such 
as low-precision arithmetic.25 Finally, 
custom ASIC accelerators provide the 
highest performance efficiency.

Multiple startups such as Graph-
core, Wave Computing, Nervana (now 
part of Intel), and Groq are developing 
or have developed customized deep 
learning accelerators that occupy the 
upper right corner of Figure 3. How-
ever, one of the earliest and most pub-
licized deep learning accelerators is not 
from a startup but from an established 
company without a history of chip 
design. The Google Tensor Processing 
Unit (TPU) was developed in a short 
15 months.26 To achieve a rapid pro-
duction cycle, Google used an older 
and more stable process technology 
(28 nm) and existing communication 
interfaces. The first-generation TPU 
was for internal use and had compu-
tational and memory bandwidth lim-
itations. However, the TPU is now on 
its second iteration, and it not only 
supports higher computational capa-
bility and memory bandwidth, but will 
reportedly be made accessible to third 
parties.27

Even in an agile environment, the 
delay from the initial ASIC concept 
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to fully deployed device is measured 
in years. Once deployed, ASICs must 
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate 
a function that, from the point of con-
ception, will still be valuable four to 
five years in the future. While some 
functions, such as compression and 
encryption algorithms, tend to be sta-
ble over these time frames, those in 
rapidly evolving fields such as deep 
learning may develop new and differ-
ent requirements in the interval from 
design start to deployment. Stable, 
high-volume accelerators can easily 
justify an ASIC’s higher nonrecurring 
engineering cost. Because an ASIC 
design needs larger markets and longer 
lifetimes, an ASIC accelerator typically 
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software 
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an 
unusual approach to specialization by 
focusing on FPGAs rather than ASICs 
for datacenter acceleration.28 For a 
given accelerator design, an FPGA 
implementation could be several times 
slower and less energy efficient than 
an ASIC implementation. However, 
by using hardware devices that can be 
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of 
computational efficiency. FPGA-based 
accelerators not only are tolerant to 
the changing requirements of a given 
application, but can be completely 
retargeted as new applications emerge 
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific 
situations, as the design itself can be 
incrementally modified after initial 
deployment to address new circum-
stances. In this fashion, the FPGA’s 
agility as a platform can be used to 
recover a portion of the efficiency that 
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap 
with ASICs by incorporating larger 
and more complex hard logic blocks 
on chip. Current FPGAs include  
multiply-accumulate units and even 
full microprocessor cores as hard logic. 
Researchers have also proposed devices 
that are mostly hard logic, but with 
configurable interconnect, referred to 
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between 
FPGAs and ASICs is further blurred 
by integrated multichip packages 
that incorporate both an FPGA and 
ASIC die.30 The ability for customers 
to specify which ASICs are included 
in the package provides yet another 
dimension of flexibility.

The computational marketplace. 
Amazon has also developed hardware 
for internal consumption from custom 
routers to chipsets used in its servers.31 
This enables Amazon to optimize the 
hardware for its specific needs with full 
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering 
platforms for custom programmable 
hardware as part of the AWS services 
plan.32 The goal is to encourage com-
panies to develop accelerators using 
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers 
on the AWS Marketplace. Amazon’s 
EC F1 instances with FPGAs offer two 
significant benefits for custom solution 
developers. First, Amazon provides the 
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost 
and convenience threshold for devel-
oping customized hardware. Second, 
Amazon provides a deployment model 
(via AWS) and a ready marketplace of 
potential customers for the final prod-
uct. No longer are hardware developers 
restricted to products with a large Tier 
One customer base. They can rapidly 
develop and deploy niche hardware and 
test its viability in the AWS computa-
tional marketplace with many small 

customers across the country and the 
world. The computational marketplace 
scenario comes closest to achieving the 
rapid deployment model highlighted 
in The Lean Startup.7 Finally, if any 
of these customized solutions become 
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by 
Khazraee,3 or integrated into a general- 
purpose processor architecture.

Standardized ecosystem. A successful 
computational marketplace requires 
standardized interfaces for interacting 
with accelerators. On the hardware 
side, current solutions from Amazon, 
Microsoft, Google, and others rely 
on PCIe for accelerator integration. 
PCIe has been the de facto standard 
for peripherals for many years, and a 
part of its success can be attributed to 
having an open standard. However, for 
processor designers wanting to create 
specialized accelerators, PCIe may not 
offer the tightly coupled memory sys-
tem integration desired or required by 
the application. Proprietary coherent 
processor interconnects such as Intel’s 
QPI and AMD’s Infinity Fabric offer 
the memory system integration that a 
specialized accelerator might require, 
while Nvidia’s NVLink is a proprietary 
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi 
.org), Gen-Z (www.genzconsortium 
.org), and CCIX (www.ccixconsortium 
.com) might also supplement PCIe as 
these standards evolve. What is clear, 
from the PCIe example, is that the new 
standard should be easily licensable 
and controlled by an open standards 
organization to enable a level playing 
field.

While we have thus far empha-
sized agility in hardware development 
and deployment, software agility is also 
a critical requirement. An environment 
in which hardware capabilities change 
and evolve rapidly is impossible to use 
unless low-level software can adapt 
equally rapidly, while providing stable 
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APIs to higher-level services so that 
the bulk of the code base can remain 
independent of the underlying imple-
mentation’s details. Software stacks 
can provide additional agility when 
they help to automate the mapping of 
applications to accelerators, and enable 
hardware bug workarounds to cope 
with issues that may slip through an 
accelerated development and testing 
schedule.

P rocessor architecture has changed 
significantly over the past few 

decades with the advent of multicore 
designs, design for low power, het-
erogeneous systems, and many-core 
processors that can run a hundred or 
more threads. With cloud computing 
and the emerging customizable mar-
ketplace of products, we are once again 
witnessing a sea change in the way 
computing takes place.

In this article, we have made a 
case for agility because we cannot pre-
dict the future with any level of accu-
racy. We need agility not only for rapid 
evolution of conventional architec-
ture, but also for lowering the barrier 
for specialized architectures. As Bill 
Gates once noted, “We always overes-
timate the change that will occur in the 
next two years and underestimate the 
change that will occur in the next ten. 
Don’t let yourself be lulled into inac-
tion.”33 As architects, we must develop 
the infrastructure and mindset that 
enable us to be agile and take risks in 
order to evolve with a rapidly changing 
environment and create the next dis-
ruptive technology. 
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Computer designers have traditionally  
separated the roles of storage and com-
putation. Memories stored data. Proces-
sors computed them. Is this distinction 
necessary? A human brain does not 
separate the two so distinctly, so why 
should a computer? Before addressing 
this question, let us start with the well-
known memory wall problem.1

What is the memory wall in 
today’s context? The memory wall 
originally referred to the problem of 
growing disparity in speed between fast 
processors and slow memories. Since 
2005 or so, as processor speed flat-
lined, memory latency has remained 
about the same. But as the number of 
processor cores per chip kept increas-
ing, memory bandwidth and memory 
energy became more dominant issues. 
A significant fraction of energy is spent 
today in moving data back and forth 
between memory and computing 
units, a problem that is exacerbated in 
modern data-intensive systems.

How do we overcome the mem-
ory wall in today’s computing world 
that is increasingly dominated by data- 
intensive applications? For well over 
two decades, architects have tried a 
variety of strategies to overcome the 
memory wall. Most of them have cen-
tered on exploiting locality. Here is 
an alternative: what if we could move 
computation closer to memory—so 

much that the line that divides compu-
tation and memory starts to blur?

The First Wave
Researchers discussed processing in 
memory (PIM) in the 1990s2–6 (initial 
suggestions date back to as early as the 
1970s7) as an alternative solution to 
scale the memory wall. The key idea was 
to physically bring the computation and 
memory units closer together by plac-
ing computation units inside the main 
memory (DRAM). But this idea did 
not quite take off back then, due to the 
high cost of integrating computational 
units within a DRAM die. Another fac-
tor may have been the fact that cheaper 
optimizations were still possible, thanks 
to Moore’s law and Dennard scaling.

The advent of commercially feasi-
ble 3D chip stacking technology, such 
as Micron’s Hybrid Memory Cube 
(HMC),8 has renewed our interest in 
PIM. HMC stacks layers of DRAM 
memory on top of a logic layer. Com-
putational units in the logic layer can 
communicate with memory through 
high-bandwidth through-silicon vias. 
Thanks to 3D integration technology, 
we can now take computational and 
DRAM dies implemented in different 
process technologies and stack them 
on top of each other.

The additional dimension in 3D 
PIM allows an order of magnitude 

more physical connections between 
the computational and memory units, 
and thereby provides massive mem-
ory bandwidth to the computational 
units.9–15 The available memory band-
width is so high in these systems that 
a general-purpose multicore processor 
with tens of cores is a poor candidate 
to take advantage of 3D PIM. The 
bandwidth of cheaper conventional 
DRAM is mostly adequate for these 
general-purpose processors. Better can-
didates are customized computational 
units that can truly take advantage of 
the abundant memory bandwidth in 
3D PIM data-parallel accelerators, 
such as a GPU, or even better, custom-
ized accelerators such as Google’s Ten-
sor Processing Unit.16

Although 3D PIM is a clear win-
ner in terms of memory bandwidth 
compared to conventional DRAM, its 
latency and energy advantages are per-
haps exaggerated in literature. 3D PIM 
brings computation closer to DRAM 
memory. It has no effect on the energy 
spent accessing data within DRAM 
layers, DRAM refresh and leakage, and 
on-die interconnect in the logic layer, 
which together happen to be the dom-
inant cost. To be clear, there is some 
memory latency and energy reduction 
as it eliminates communication over 
the off-chip memory channels by inte-
grating computation in 3D PIM’s logic 
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layer. However, this benefit is not likely 
to be a big win and paves a smaller 
step toward reducing the steep data- 
movement overheads.17,18

The Second Wave
Although PIM brings computational 
and memory units closer together, the 
functionality and design of memory 
units remains unchanged. An even more 
exciting technology is one that dissolves 
the line that distinguishes memory from 
computational units. Nearly three-
fourths of silicon in processor and main 
memory dies is simply to store and 
access data. What if we could take this 
memory silicon and repurpose it to do 
computation? Let us refer to the result-
ing unit as Compute Memory.

Compute Memory repurposes the 
memory structures, the ones that are 
traditionally used only to store data, 
into active computational units for 
near-zero area cost. Compute Memo-
ry’s biggest advantage is that its mem-
ory arrays morph into massive vector 
computing units (potentially, one or 
two orders of magnitude larger than 
a GPU’s vector units), as data stored 
across hundreds of memory arrays 
could be operated on concurrently. 
Because we do not have to move data 
in and out of memory, the architec-
ture naturally saves the energy spent 
in those activities, and memory band-
width becomes a meaningless metric.

Micron’s Automata Processor 
(AP)19,20 is an example for Compute 
Memory. It transforms DRAM struc-
tures to a Nondeterministic Finite 
Automata (NFA) computational unit. 
NFA processing occurs in two phases: 
state match and state transition. AP 
cleverly repurposes the DRAM array 
decode logic to enable state matches. 
Each of the several hundreds of mem-
ory arrays can now perform state 
matches in parallel. The state-match 
logic is coupled with a custom inter-
connect to enable state transition. 
We can process as many as 1,053 
regular expressions in Snort (a classic  

network-intrusion detection system) in 
one go using little more than DRAM 
hardware. AP can be an order of mag-
nitude more efficient than GPUs and 
nearly two orders of magnitude more 
efficient than general-purpose multi-
core CPUs! Imagine the possibilities if 
we can sequence a genome within min-
utes using cheap DRAM hardware.

AP repurposed just the decode 
logic in DRAMs. Could we do bet-
ter? In our recent work on Compute 
Caches,21,22 we showed that it is pos-
sible to repurpose SRAM array bit-lines 
and sense-amplifiers to perform in-place 
analog bit-line computation on the data 
stored in SRAM. A cache is typically 
organized as a set of sub-arrays; as many 
as thousands of sub-arrays, depending 
on the cache level.23–25 These sub-arrays 
can all compute concurrently on several 
hundred thousands of data elements 
stored in them with little extensions 
to the existing cache structures, while 
incurring an overall area overhead of 
4 percent. Thus, caches can effectively 
function as large vector computational 
units, whose operand sizes are orders 
of magnitude larger than conventional 
SIMD units. Of course, it also elimi-
nates the energy spent in moving data 
in and out of caches. While our initial 
work supports few useful operations 
(logical, search, and copy), we believe 
that it is just a matter of time before we 
are able to support more complex oper-
ations (including comparisons, addi-
tion, multiplication, sorting).

Supporting Compute Caches’ 
style-in-place, analog bit-line comput-
ing in DRAMs is more challenging. 
The problem is that DRAM reads are 
destructive—one reason why DRAMs 
need periodic refresh. Although in-place 
DRAM computing may not be possible, 
an interesting solution is to copy the 
data to a temporary row in the DRAM8 
and then do bit-line computing. This 
approach will incur extra copies, but 
retains the massive parallelism benefits.

Unlike DRAMs, bit-line com-
puting may work well in a diverse set 

of nonvolatile memory technologies 
(RRAMs, STT-MRAMs, and Flash). 
Researchers have already found success 
in repurposing structures in emerg-
ing NVMs to build efficient ternary  
content-addressable memory (TCAM)26 
and neural networks.27–29

Computational memories can be 
massively data parallel—potentially, 
an order of magnitude more perfor-
mance and energy efficient than mod-
ern data-parallel accelerators such as 
GPUs. Such dramatic improvements 
could have a transformative effect on 
applications ranging from genome 
sequencing to deep neural networks. 
However, capabilities of computa-
tional memories may not be as gen-
eral purpose as GPUs are today, and 
may impose additional constraints in 
terms of where data is stored. Appli-
cation developers may have to rework 
their algorithms to fully take advantage 
of Compute Memory. Modern data- 
parallel domain-specific language frame-
works such as CUDA and Tensorflow 
can be adapted to help these developers. 
It may also require runtime and system 
software support to meet computa-
tional memory constraints such as data 
placement.

A s the general-purpose core’s effi-
ciency flatlined over the past 

decade, both industry and academia 
have wholeheartedly embraced cus-
tomization of computational units. 
It is high time for us to think about 
customizing memory units as well. 
While there are many ways that one 
could think of customizing memory, 
turning it into powerful accelerators 
is one of the more exciting avenues to 
pursue. Until recently, we have viewed 
computing and memory units as two 
separate entities. Even within a pro-
cessor, caches and computational logic 
have operated as two separate entities 
that served different roles. The time 
has come to dissolve the line that sep-
arates them. 
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Ultra-Low-Power 
Processors

David Brooks
Harvard University

John Sartori
University of Minnesota

S
ociety’s increasing use of connected sensing and wearable computing has created robust demand for ultra-low-power 
(ULP) edge computing devices and associated system-on-chip (SoC) architectures. In fact, the ubiquity of ULP 
processing has already made such embedded devices the highest-volume processor part in production, with an 
even greater dominance expected in the near future. The Internet of Everything calls for an embedded processor 

in every object, necessitating billions or trillions of processors. At the same time, the explosion of data generated from these 
devices, in conjunction with the traditional model of using cloud-based services to process the data, will place tremendous 
demands on limited wireless spectrum and energy-hungry wireless networks. Smart, ULP edge devices are the only viable 
option that can meet these demands.

One big area of expansion for ULP processors is the Internet of Things (IoT). Most projections forecast the number 
of connected IoT devices to grow exponentially, easily reaching over 100 billion within the next decade. Even assuming 
a conservative ULP power budget of a few milliwatts per device, the total energy consumption of all these connected 
devices will be over 10 trillion kWh per year. That’s more energy than over half of the countries in the world consume in 
a year. Given the sheer number of devices that will be connected (IoT devices will outnumber humans by more than an 
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order of magnitude), even trying to change or 
charge all their batteries will become an infeasi-
ble task, necessitating more research on energy 
harvesting to create energy-neutral devices that 
can fend for themselves by collecting their own 
energy. Likewise, more research will be needed 
on novel ways to reduce power dramatically—
by an order of magnitude or more, enabling 
ULP devices to be integrated in more places 
and in higher quantities. In conjunction with 
this research on ultra-low power and energy, 
the fact that all these devices will be connected 
to the Internet demands more research on 
energy-efficient security measures. In a world 
where IoT devices have access to all of our 
data—personal, health-critical, financial, and 
all the rest—the attack surface for potential 
information security leaks becomes larger 
than ever. With all this critical information 
entrusted to devices that can barely scrape 
together enough power to boot up, much less 
implement a host of security protocols, ensur-
ing information security at ultra-low power 
and energy levels will be critical.

The articles in this special issue highlight 
some of the critical research and explore some 
of the potentially viable solutions that will help 
to advance the state of the art toward a more 
power- and energy-efficient future for ULP 
processing.

Beyond CMOS
The continuation of CMOS device scaling is 
of utmost importance to computer architects, 
and in recent years the perception has been that 
CMOS scaling has slowed. In “CMOS Scaling 
Trends and Beyond,” Mark T. Bohr and Ian 
A. Young dispel this notion by showing that 
through the hard work and ingenuity of device 
R&D, several new transistor design innova-
tions have been brought to bear on the prob-
lem over the past several generations of CMOS 
technology at Intel. The article also highlights 
several “beyond-CMOS” technologies that 
have the potential to complement CMOS 
by outperforming it in certain niche applica-
tions. An example highlighted in the article is  
Tunnel FETs that can drastically improve 
the energy-delay product over conventional 
CMOS. Such devices would be especially 
attractive for the ULP processors that are the 
focus of this special issue.

Implementing a Low-Power Neural 
Network on Chip
Implementing a neural network in a ULP chip 
is a challenging feat. Neural networks are one 
of those applications that require intensive 
computation that is typically delegated to 
massively parallel GPGPUs. Nevertheless, in 
“Low-Power Convolutional Neural Network 
Processor for a Face-Recognition System,” 
Kyeongryeol Bong and colleagues took on this 
challenge and fabricated a face-recognition 
chip based on convolutional neural networks 
(CNNs) that boasts power consumption of less 
than a milliwatt for a computation rate of 1 fps. 
They achieved this low power consumption by 
splitting the task of face recognition into two 
stages—face detection, which is performed 
by a low-power ASIC, and face verification, 
which is performed by a highly accurate CNN. 
In their chip, the ULP face-detection circuitry 
acts as an energy-conscientious gatekeeper for 
the higher-powered CNN logic, such that the 
CNN is called on only when needed (that is, 
when a face has been detected and extracted 
from an input image). The chip also dynam-
ically adapts its power characteristics using 
dynamic voltage and frequency scaling based 
on the number of faces detected to keep power 
consumption low even under heavy load con-
ditions. The result is a low-power chip that 
performs a task that’s integral to many ULP 
applications.

Edge–Cloud Computing
Machine learning is a key component of 
many IoT systems that must make decisions 
based on the data they gather in the wild. 
However, the computationally intense nature 
of machine learning makes it unsuitable for 
execution on ULP processors. Typically, mas-
sively parallel GPGPUs are used for such com-
putations; however, powering and carrying 
around a GPU is out of the question for most 
ULP systems, which are constrained to small 
form factors, low cost, and ultra-low power 
and energy budgets. “Flying IoT: Toward 
Low-Power Vision in the Sky” by Hasan Genc 
and colleagues explores a computing para-
digm in which data are collected at the edge 
by ULP processors but are processed by high- 
performance computing resources in the 
cloud. While this approach enables edge systems 
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to function within their restrictive constraints, 
it obviously introduces a communication 
bottleneck. The article explores the proposed 
tag-team edge–cloud computing paradigm in a 
stress-test scenario—a drone that requires real-
time results for computations performed in the 
cloud. The authors investigate how to design 
ULP systems that can meet real-time deadlines 
while simultaneously meeting requirements for 
low power, small form factor, and low cost by 
harnessing cloud computing intelligently.

Visual IoT
Visual computing  
at the edge has clear 
applications to future 
IoT devices, with 
applications rang-
ing from security 
and surveillance to 
augmented reality 
devices. Visual data 
collected through today’s 
high-resolution cam-
eras tend to demand 
quite high band-
width, and the num-
ber of such cameras is 
exploding as low-cost 
image sensors become 
common. This means 
that sending all of 
the visual data in the 
cloud for computing 
is impractical, and 
edge-based solutions 
are a growing neces-
sity. In “Visual IoT: 
Ul t r a -Low-Power 
Processing Archi-
tectures and Impli-
cations,” Vui Seng 
Chua and colleagues 
describe a mixed-mode approach to such sys-
tems, ranging from static image feature detec-
tion to dynamic video analytic applications. 
Neural networks are now an essential compo-
nent to any type of visual computing applica-
tion, and the article describes challenges and 
opportunities with neural network hardware 
accelerator designs for application in the visual 
IoT realm.

Time-Based Stochastic Computing
Stochastic computing is a potentially prom-
ising technology for ULP systems because it 
allows extreme reductions in system hardware 
for certain functions. For example, a multi-
plier, which can be synthesized as thousands 
of gates in a traditional digital circuit, can be 
implemented with a single logic gate in a sto-
chastic computing circuit. This is an exciting 
prospect for applications that are amenable 
to stochastic processing, such as real-time 
image or video processing, since they can be 

supported with hard-
ware that has orders 
of magnitude smaller 
area and power 
requirements than 
traditional hardware 
architectures for the 
applications. How-
ever, one of the main 
drawbacks of existing 
approaches for sto-
chastic computing in 
the context of ULP 
processing is that 
they reduce power 
and area but increase 
energy due to the 
data encoding used, 
which represents 
values as a probabi-
listic bitstream. This 
potentially makes 
stochastic comput-
ing infeasible for 
the vast majority of 
ULP systems, which 
are severely energy 
constrained (such 
as energy harvesting 
or battery-powered  
systems). “An Over-

view of Time-Based Computing with Sto-
chastic Constructs” by M. Hassan Najafi 
and colleagues provides an overview of a new 
time-based encoding that uses pulse-width 
modulation to harness stochastic comput-
ing’s strengths—namely, ultra-low power and 
area—for ULP computing while allowing sto-
chastic computing circuits to reach ultra-low 
energy targets as well.

The articles in this 

special issue highlight 

some of the critical 

research and explore 

some of the potentially 

viable solutions that 

will help to advance 

the state-of-art toward 

a more power- and 

energy-efficient future 

for ULP processing.
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Ultra-Low-Power Security 
Constructs
IoT systems will be successful when they 
become a pervasive element in our society. 
For this to happen, they will become embed-
ded into our daily lives in areas where secu-
rity and privacy issues are paramount. For 
example, if life-saving medical equipment or 
self-driving cars are susceptible to hacking 
attacks, practical deployments will be slow 
due to safety and regulatory concerns. IoT 
systems are susceptible to multiple attack vec-
tors due both to their placement in potentially 
hostile environments and their network con-
nectivity requirements. Due to cost reasons, 
it is also not practical to deploy significant 
hardware resources to maintain security and 
privacy. In “Hardware Designs for Security in 
Ultra-Low-Power IoT Systems: An Overview 
and Survey,” Kaiyuan Yang and colleagues 
explore a range of low-power and low-cost 
hardware building blocks that can provide 
the underpinnings for security and privacy at  
the higher levels. Examples of such blocks 
include physically unclonable functions (PUFs)  
that rely on device properties to provide a 
unique signature that provides an authen-
tication code for a given system. The article 
outlines a taxonomy of designs that can be 
used to develop PUFs and describes several 
practical hardware implementations of PUFs 
that have been realized in silicon.

W e appreciate all the authors who submit-
ted papers to this issue, and we thank 

the anonymous reviewers for their efforts. We 
hope readers will enjoy this special issue of 
IEEE Micro. 
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CMOS Scaling Trends  
and Beyond

Scaling transistors and following Moore’s law have served the 
industry well for more than 50 years in providing integrated circuits 
that are denser, cheaper, higher performance, and lower power. 
This article describes trends in CMOS scaling over the past decade 
and discusses some of the new device options and technology 
directions being explored to continue scaling into the future.

G
ordon Moore famously predicted in his 1965 paper that the number of com-
ponents per chip would continue to increase by a factor of two every year.1 
The goals of following Moore’s law are to decrease the cost per component and 
reduce the power consumed per component. In 1975, Moore updated his earlier 

prediction by forecasting that components per chip would increase by a factor of two every 
two years, and that this would come from the combination of scaling component size and 
increasing chip area.2 Back in 1965, the industry was producing chips using a minimum fea-
ture size of approximately 50 mm totaling about 50 components. Today’s leading chips use 
a minimum feature size of approximately 10 nm and incorporate several billion transistors.

Robert Dennard and colleagues described in 1974 a scaling methodology for 
metal-oxide-semiconductor field-effect transistors (MOSFETs) that would deliver consis-
tent improvements in transistor area, performance, and power reduction.3 The methodology 
called for the scaling of transistor gate length, gate width, gate oxide thickness, and supply 
voltage all by the same scale factor, and increasing channel doping by the inverse of the same 
scale factor (see Figure 1). The result would be transistors with smaller area, higher drive cur-
rent (higher performance), and lower parasitic capacitance (lower active power). This method 
for scaling MOSFET transistors is generally referred to as “classic” or “traditional” scaling and 
was very successfully used by the industry up until the 130-nm generation in the early 2000s.

For the past 20 years, we have been developing new generations of process technologies 
on a two-year cadence, and each generation scaled the minimum feature size by approxi-
mately 0.7 times to deliver an area scaling improvement of about 0.5 times (see Figure 2). 
Thus, we have been doubling transistor density every two years. But recent technology gen-
erations (such as 14 nm and 10 nm) have taken longer to develop than the normal two-year 
cadence, owing to increased process complexity and an increased number of photomasking 
steps. Nonetheless, Intel’s 14-nm and 10-nm technologies have provided better-than-normal 
transistor density improvements that keep us on pace with increasing transistor density at a 
rate of doubling about every two years.

Mark T. Bohr,  
Ian A. Young
Intel
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Transistor Innovations
As mentioned earlier, traditional MOSFET 
scaling worked well up until the 130-nm gener-
ation in the early 2000s. By that generation, the 
SiO2 gate oxide thickness had scaled to about 
1.2 nm, and electron tunneling through such a 
thin dielectric was becoming a significant por-
tion of total transistor leakage current. We had 
reached the limit for scaling transistors using 
traditional methods, and we needed to start 
introducing innovations in transistor materials 
and structure to continue scaling.

One of the first significant innovations 
was the introduction of strained silicon tran-
sistors on Intel’s 90-nm technology in 2003.4 
This innovation used tensile stain in n-channel 
MOS (NMOS) transistor channels to increase 
electron mobility and compressive strain in 
p-channel MOS (PMOS) channels to increase 
hole mobility (see Figure 3). Tensile strain was 
induced by adding a high-stress film above 
the NMOS transistor. Compressive strain was 
induced by replacing the PMOS source-drain 
regions with epitaxial SiGe depositions. The 
resultant increases in electron and hole mobil-
ity provided increased transistor drive currents 
without having to further scale the SiO2 gate 
oxide thickness. This strained silicon technique 
has been adopted by all major semiconductor 
companies and continues to be used on the lat-
est 10-nm technologies.

The need to improve the transistor gate 
dielectric to continue scaling could not be 
avoided, and Intel’s 45-nm technology in 
2007 first introduced high-k metal gate tran-
sistors.5 The traditional SiO2 gate oxide was 
replaced by a hafnium-based high-k dielectric. 
The high-k dielectric both reduced gate oxide 
leakage current and improved transistor drive 
current. The traditional doped-polysilicon gate 
electrode was replaced by metal electrodes with 
separate materials for NMOS and PMOS to 
provide optimal transistor threshold voltages. 
The combination of high-k dielectric and metal 
gate electrodes (see Figure 4) was a revolution-
ary process change that provided significant 
improvements in transistor performance while 
also reducing transistor leakage current. High-k 
metal gate transistors are now universally used 
on advanced logic technologies.

The next major transistor innovation was 
the introduction of FinFET (tri-gate) transistors 

on Intel’s 22-nm technology in 2011.6 Tradi-
tional planar MOSFETs had been able to scale 
transistor gate length down to about 32 nm to 
deliver good performance and density while also 
maintaining low off-state leakage. But scaling 
the gate length below 32 nm was problematic 
without sacrificing either performance or leak-
age. A solution was to convert from a planar 
transistor structure to a 3D FinFET structure in 
which the gate electrode had better electrostatic 
control of the transistor channel formed in a tall 
narrow silicon fin (see Figure 5). This improved 
electrostatic control provided scaled transistors 
with steeper sub-threshold slope (see Figure 
6a). Steeper sub-threshold slope either provided 
transistors with lower off-state leakage or allowed 
threshold voltage to be reduced, which enabled 
improved performance at low operating voltage 
(see Figure 6b). Operating integrated circuits 
at a lower voltage is highly desired in order to 
reduce active power consumption. All advanced 
logic technologies now use FinFET transistors 

Figure 1. Traditional MOSFET scaling as described by Robert Dennard.
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for their good density and superior low-voltage 
performance compared to planar transistors. As 
Figure 7 shows, when traditional MOSFET scal-
ing ran out of steam in the early 2000s, innova-
tions such as strained silicon, high-k metal gate, 
and FinFETs were needed, and we must now 
continually invent new transistor materials and 
structures to continue scaling.

Recent Logic Technologies
Intel’s 14-nm logic technology started vol-
ume production early in 2014. This was 
Intel’s second-generation FinFET technol-
ogy, and it used advanced features such as 

70-nm transistor gate pitch, 42-nm fin pitch, 
52-nm interconnect pitch, double patterning 
techniques, and a 6-T SRAM bitcell area of 
0.0588 mm2.7 This technology took longer to 
develop and get ready for volume manufactur-
ing due to the increased process complexity 
and mask count: about 2.5 years instead of the 
normal 2-year cadence. But this technology 
also provided better-than-normal area scal-
ing. Instead of the 0.5 times area scaling that 
new technology generations normally provide, 
Intel’s 14-nm technology provided about 0.37 
times logic area scaling compared to the previ-
ous 22-nm technology (see Figure 8).

Figure 3. Channel strain techniques used on 90-nm generation transistors. (a) NMOS transistor 
using SiN cap layer; tensile channel strain. (b) PMOS transistor using SiGe source-drain; compressive 
channel strain.

High-
stress
�lm

(a)

NMOS PMOS

SiGe SiGe

(b)

Figure 4. Comparison of transistor structures. (a) 65-nm generation transistor using SiO2 dielectric; 
polysilicon gate electrode. (b) 45-nm generation transistor using hafnium-based dielectric; metal 
gate electrode.
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Figure 5. Comparison of transistor structures. (a) Planar transistor. (b) FinFET transistor.
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Intel’s newest 10-nm logic technology is 
scheduled to start product shipments before 
the end of 2017. This 10-nm technology intro-
duces some advanced process features such as 
54-nm transistor gate pitch, 34-nm fin pitch, 
36-nm interconnect pitch, quad patterning 
techniques, and a 6-T SRAM bitcell area of 
0.0312 mm2. This technology also introduces 
some important density-improvement tech-
niques: single dummy gates adjacent to logic 
cells and the ability to make transistor gate con-
nections directly over active gates. Again, this 
technology took more than two years to develop 
and get ready for volume manufacturing due 
to increased process complexity and mask 
count, but it also delivers better-than-normal 
area scaling. The innovative features on this 
technology deliver about 0.37 times logic area 
scaling compared to the previous 14-nm gen-
eration. As Figure 8 shows, Intel’s 14-nm and 
10-nm generations each took more than two 
years to develop, but they also took bigger steps 
in terms of scaling logic area. As a result, Intel 
logic technologies continue to deliver improved 
area scaling at the rate of about 0.5 times every 
two years.

It’s apparent that after more than 50 years 
we’re continuing to scale transistor area, but are 
we delivering the other promises of Moore’s law 
and Dennard’s scaling methodology: lower cost 
per transistor, higher performance, and lower 
active power? Figure 9a shows how Intel logic 

technologies have been scaling transistor area, 
and Figure 9b shows the trend of increasing 
wafer cost due to increased process complexity. 
Figure 9c shows how the cost per transistor con-
tinues to come down due to better-than-normal 
area scaling. Figure 10 shows Intel’s trends for 
improving transistor performance (Figure 10a) 
and reducing dynamic capacitance to lower 
active power (Figure 10b). Figure 10c shows 
how performance improvement divided by 
active power consumption (performance per 
watt) continues to improve with each gener-
ation. Different products on a given technol-
ogy can choose to tune the transistor or design 
to deliver better performance or lower power, 
depending on what the application values most. 
Figure 10 also shows the strategy of developing 
performance-enhanced versions of each gener-
ation (for example, 101 and 1011) to deliver 
improved performance per watt and extend the 
life of these technologies.

Future Device Options
MOSFET transistor researchers are exploring 
device structure and channel material changes 
to enable further generations of MOSFET scal-
ing. The MOSFET implemented with stacks of 
multiple horizontal nanowires (see Figure 11b) 
is one option that, due to its superior electro-
statics, could enable further gate-length scaling 
beyond what the FinFET (see Figure 11a) can 
achieve. MOSFETs with III-V semiconductor 
channel materials are a promising option for real-
izing a higher-mobility channel than silicon (see  
Figure 12). This higher mobility can be used 
either to provide higher drive current and higher 
performance or to allow the MOSFET to be 
operated at lower voltage for lower active power.8

Lowering the supply voltage of CMOS 
logic below about 0.5 V leads to a dilemma 
between logic having high performance and 
high static leakage current versus logic with 
lower performance and low leakage current. 
This is due to the choice of MOSFET thresh-
old voltage and its electron “thermal tail” deter-
mined sub-threshold gate voltage swing of  
60 mV/decade. One alternative transistor option 
that operates differently than a MOSFET (and 
as such could be classified as a beyond-CMOS 
device) is the Tunneling Field Effect Transistor 
(TFET).9 The TFET can achieve subthresh-
old swing smaller than 60 mV/decade (that 

Figure 8. Intel’s trend for scaling logic circuit area over the past five 
generations.
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is, steeper current turn-on) and can therefore 
operate at a lower power supply voltage than a 
MOSFET. Figure 13 shows drain current ver-
sus gate voltage simulation results for nanowire 
TFETs implemented with different III-V semi-
conductor materials.

While the success of information technol-
ogy progress in the past 50 years was based on 
Moore’s law1,2 scaling and mostly one underlying 
technology—CMOS transistors—present-day 

research efforts are exploring logic technologies 
going beyond CMOS,10 with an objective to 
complement CMOS rather than to replace it. 
The goal of Beyond-CMOS research is to iden-
tify and enable an integrated circuit technology 
that will be more energy efficient than CMOS. 
If this happens, it will support the continuation 
of Moore’s law.

Beyond-CMOS research efforts have been 
underway for 10 years, being funded in the US 

Figure 9. Trends for improving logic transistor area and cost per transistor. (a) Area per transistor. (b) Wafer cost. (c) Cost per 
transistor.
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Figure 11. Comparison of transistor structures. (a) FinFET transistor. (b) Nanowire transistor.
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in large part via the Semiconductor Research 
Corporation (SRC).11 The expectation of this 
industry–university research consortium 10 years 
ago was that this field would produce a comput-
ing technology that is better than CMOS for the 
majority of its applications. Reality showed that, 
among many impressive proposals and demon-
strations, none of them beat CMOS. However, 
they do possess many valuable features, such as 
low-power operation and non-volatility. Thus, 
the current vision is that beyond-CMOS circuits 
will replace CMOS in some critically important 
computation or information processing applica-
tions. They would be monolithically integrated 
with CMOS on the same chip or packaged 
together in a multichip module.

Another expectation was that beyond-
CMOS circuits would not require any  
MOSFETs as part of their operation and could 
maybe even eliminate any charge currents in the 
quest for energy efficiency. This did not come 
true: a thorough circuit analysis reveals that a 
MOSFET transistor is needed to supply power 
and for clocking and control of the logic cir-
cuit operation. However, this does not preclude 
pursuing the key direction of beyond-CMOS 
research, which is to discover and invent com-
putation that can operate at significantly lower 
supply voltages than CMOS to enable dramatic 
improvements in energy efficiency.

To this end, beyond-CMOS benchmark-
ing12,13 (see Figure 14) was helpful in evaluating 
the potential of various materials and devices to 

implement computing technologies. It enabled 
the setting of expectations for power and perfor-
mance and revealed some pathways for improve-
ment. Experimental demonstrations have not 
yet achieved the theoretical modeling projections 
put forward in the benchmarking. One reason is 
that each computing technology requires solving 
numerous fabrication challenges.14

The various materials implementations of the 
TFET (see Figure 13) have shown that they have 
improved energy-delay product (and therefore 
power and performance) over the future CMOS 
technology node that they are benchmarked 
against (see Figure 14): the International Tech-
nology Roadmap for Semiconductors prediction in 
2011 of the 2018 CMOS node. With a poten-
tial three-times improvement in energy-delay  
product over CMOS, this is starting to be an 
interesting device option, and it does not require 
a drastic change in circuit design for logic while 
it offers some additional circuit functionality.

The spintronic devices in Figure 14 oper-
ate with a wide range of switching energy and 
at slower switching speed compared to CMOS. 
The spintronic devices that match the best 
CMOS switching energy use magnetoelectric 
materials to do the switching of nanomagnets. 
Although they are slower than CMOS, they 
have the added benefit of being non-volatile. 
Non-volatility in the logic device has the 
potential to provide energy efficiency benefits 
by taking advantage of it in the computing 
microarchitecture.

Figure 14. Simulated switching energy and delay for a 32-bit arithmetic logic unit circuit for CMOS 
and for various beyond-CMOS device options.
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A historic similarity for beyond-CMOS 
research is fitting—the disruption of bipolar 
transistors for computing logic by CMOS.15 
The latter had the advantage of lower power, 
but it was slower than bipolar and was much 
more difficult to manufacture. We believe 
that the same drive toward lower-power com-
puting should compel technologists to solve 
implementation problems for beyond-CMOS 
computing. One should understand that a 100-
times improvement in the energy-delay product 
(which is equivalent to more than four genera-
tions of historic Dennard-era CMOS scaling) 
will justify its integration for computer and 
information processing systems. As research 
into beyond-CMOS continues, it is going to 
be critical that researchers focus on the leading 
options and eliminate the less attractive ones. 
To do this will require all levels of benchmark-
ing analysis covering materials, devices, circuits, 
and computing architectures.16

Transistor scaling, and in particular  
MOSFET scaling, has served our industry 

well for more than 50 years by providing new 
generations of integrated circuit technology that 
simultaneously provided improved density, higher 
performance, reduced power consumption, and 
lower cost per transistor. At times, transistor scal-
ing was provided by the use of simple evolutionary 
techniques, but at other times more revolutionary 
technology changes were required, such as switch-
ing from bipolar to MOSFET transistors, and more 
recently by implementing high-k metal gate and  
FinFET transistors. Furthermore, 14-nm and 
now 10-nm generations have continued to deliver 
the promises of Moore’s law for improved density, 
performance, power, and cost.

Scaling of the MOSFET transistor will 
continue for future CMOS generations as 
far as researchers can see by exploiting the 
options in device structure and channel mate-
rials. Beyond-CMOS research into quantum 
nanoelectronics or nanomagnetics is aimed 
at inventing and developing another inte-
grated circuit technology that offers improved 
power and performance. This will happen at 
the appropriate time when it can be integrated 
onto CMOS in a manufacturing process that 
offers lower cost per function and improved 
power and performance. 
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Low-Power Convolutional 
Neural Network Processor 
for a Face-Recognition 
System

The authors propose a low-power convolutional neural network 
(CNN)-based face recognition system for user authentication in 
smart devices. The system comprises an always-on functional 
CMOS image sensor (CIS) for imaging and face detection, 
and a low-power CNN processor (CNNP) for face verification. 
Implemented in 65-nm CMOS technology, the system consumes 
0.62 mW to evaluate one face at 1 fps and achieves 97 percent 
accuracy.

W
ith the increase in the number of smart devices per person,1 researchers 
are investigating always-on face recognition for these devices to recognize, 
authenticate, and interact with users. Compared to fingerprint authentica-
tion, which requires users to make contact with each device, face authenti-

cation has an advantage in its camera-based operation, which provides a nonintrusive way 
to unlock multiple devices. Moreover, in the Internet of Things (IoT) era, in which every 
device should be intelligent and interact with its user, always-on face recognition is consid-
ered an essential functionality.

The most challenging part of realizing face-based unlock for battery-powered wearable 
devices such as smart watches is achieving low power consumption. Typically, always-on 
systems comprise two stages: always-on event detection and event-driven processing.2 The 
always-on event detection of face recognition includes image capturing and face detection, 
and the event-driven processing includes face verification. Because face verification should 
have high accuracy to prevent unauthorized users from getting permission, a convolutional 
neural network (CNN) becomes an essential element to satisfy the accuracy requirement, 
and it results in much more power consumption in the event-driven tasks compared to 
that in the always-on tasks.3,4 However, the always-on tasks may have more impact on the  
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battery life according to the frequency of 
events; therefore, the power consumption of 
both stages should be independently mini-
mized with dedicated architectures.

Previously, researchers proposed a low-
power image sensor for always-on applications5 
and several hardware accelerators4,6 for face rec-
ognition. However, in their system architecture, 
an image sensor chip and a digital processor 
chip were separated, and the digital processor 
performed the entire processing for both face 
detection and face verification. Hence, for the 
always-on tasks, the system architecture should 
deal with the imaging and face-detection pro-
cessing independently, and the entire image 
data continuously generated from the always-on 
image sensor should be transferred to the digi-
tal processor to check whether a face is present. 
For event-driven face verification, researchers 
achieved insufficient accuracy due to the use of 
hand-crafted features,6 and adopted CNN and 
proposed a dedicated hardware with dynamic 
voltage, accuracy, and frequency scaling for 
energy efficiency.4

In this article, we propose an always-on face 
recognition system to achieve low power con-
sumption with high accuracy.3 For always-on 
imaging and face detection, we propose a func-
tional CMOS image sensor (CIS) architecture 
in which a face-detection accelerator is inte-
grated with an image sensor in a single chip to 
reduce the chip-to-chip communication and 
remove frame buffer by transferring the face 

region-of-interest images only when faces exist. 
Moreover, we consider the use of column-level 
processing in the functional CIS to manage 
the required on-chip static RAM (SRAM) 
size during face-detection processing and to 
improve energy efficiency. For event-driven 
face verification, we present a CNN processor 
(CNNP). Because workload varies dynamically 
with the number of faces in a given input scene, 
dynamic voltage and frequency scaling (DVFS) 
from nominal voltage to near-threshold voltage 
is realized to minimize power consumption. In 
addition, we adopt tensor decomposition to 
reduce the convolutional layers’ workload,7 and 
the CNNP architecture based on transpose-read 
SRAM (T-SRAM) reduces the power con-
sumption of using the tensor decomposition  
by enabling efficient local memory access.

Overall Processing Flow
Figure 1 shows the proposed face recognition 
system’s overall processing flow. We use the 
Viola-Jones algorithm for face detection,8 and 
face verification adopts CNN to generate face 
descriptors for input faces and a simple classi-
fier to classify the descriptors.

When an image frame is captured, subwin-
dows are evaluated at different positions by slid-
ing a subwindow in the face-detection stages. At 
this time, we evaluate multiple scales of subwin-
dows to detect faces of various sizes presented 
in the scene. The Viola-Jones algorithm com-
prises a number of cascaded classifying stages, 

Figure 1. Overall processing flow. Face detection and verification using the Viola-Jones algorithm and convolutional neural 
network (CNN).
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each of which contains several Haar-like filters. 
The classifying stages are processed in order, and 
in each stage, the given windows are passed or 
rejected based on the results of the Haar-like 
filters. The Haar-like filters are composed of 
black and white rectangular regions, and the 
result is given by comparing the intensity sum-
mation over those two regions. After the whole 
windows enter the first stage, only the windows 
passed can go forward to the next stage, and the 
windows that passed the last stage are classified 
as faces.

In face verification, the CNN’s feedforward 
operation is performed for every detected face. 
This work used tensor decomposition for the 
convolutional filters7 to reduce the CNN’s large 
computational workload. As Figure 2 shows, a 
convolutional layer with a d 3 d 3 c 3 m filter  
is approximated by two convolutional layers with 
vertical dx1xcxn filters and horizontal 1xdxnxm 
filters. In our test, the tensor decomposition 
enables two to three times workload reduction, 
while the accuracy degradation is managed to be 
less than 1 percent based on the LFW dataset.9

Functional CIS Architecture for 
Always-On Face Detection
Figure 3a shows the previous system architec-
ture with a separated image sensor and digi-
tal processor. When performing the always-on 
tasks, including image capturing and face  

detection, in this architecture, even if the cap-
tured image frame contains no face, the whole 
image data should be streamed to the digital 
processor to check whether a face is present. In 
addition, it often requires a frame buffer to store 
the image frame until the processor completes 
the face-detection processing. Hence, the power 
reduction using a face-detection accelerator in 
a digital processor has been limited in reducing 
the overall power consumption of the always-on 
tasks, because the chip-to-chip communication 
must always be fully turned on, regardless of the 
existence of a face.

Figure 3b shows the proposed system 
architecture using the functional CIS to resolve 
this issue. This architecture integrates the face- 
detection accelerator with the image sensor in a 
single chip. Then, the functional CIS performs 
all of the always-on tasks, and it can control its 
output data to be only the region-of-interest 
images with detected faces, while turning off 
the CNN chip and its I/O when there is no 
event coming from the always-on functional 
CIS. Also, the amount of data generated by the 
functional CIS is significantly reduced from the 
entire image frame to the partial face images, 
and the CNN chip usually can keep this data 
with on-chip memory not accessing the off-
chip frame buffer.

Figure 4 shows the overall architecture of 
the functional CIS. It comprises an image sensor,  

Figure 2. Tensor decomposition. Workload reduction by tensor decomposition and resulted accuracy 
degradation in face verification.
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a column-level analog face-detection unit 
(AFDU), a digital face-detection unit (DFDU), 
and a controller. Following the rolling shutter 
operation,10 the pixel array of the image sen-
sor is read out in a row-by-row manner with 
a fixed time interval. While the image sensor 
generates a row, it is stored in the analog mem-
ory of the AFDU, and the AFDU processes the 
first few stages of the cascaded classifiers. After 
that, only the passed subwindows are converted 
to the digital domain and moved to the win-
dow memory of the DFDU, and the remain-
ing stages are handled by the DFDU. To sum  
up, the face-detection processing in the func-
tional CIS is performed through two steps  
(see Figure 5a). This is to improve the energy 
efficiency of Haar-like filtering operations and 
to adjust the memory size required for the face- 
detection processing to the on-chip memory 
size of the functional CIS.

The conventional approach to process 
Haar-like filtering is based on the integral 
image.8 Although it requires significant initial 
processing effort to generate the integral image, 
it makes the intensity summation over a rect-
angular block to be three add/sub operations, 
which is simple and energy efficient when 
processing a large number of Haar-like filters. 
However, as Figure 5b shows, greater than  
50 percent and greater than 90 percent of the 
input windows are rejected until the first and 
the third stages of the cascaded classifier, respec-
tively, and the energy efficiency when using 
the integral image is decreased for these early- 
rejected windows. The AFDU can improve it 
by processing the Haar-like filtering with direct 
summation of pixel intensities without any initial  

processing, which is more energy efficient 
when processing a small number of Haar-like 
filters. As Figure 5c shows, when combining the 
AFDU and the DFDU, the energy consump-
tion first has the same value as AFDU, and 
after the third stage in this case, it follows the 
DFDU. Due to the energy consumption at the 
AFDU, the accumulated energy consumption 
after the third stage is larger than the case of 
using only the DFDU. However, because the 

Figure 3. System architecture for face recognition: (a) previous system architecture with a separated image sensor and digital 
processor; (b) proposed system architecture with a functional CMOS image sensor (CIS).
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number of the subwindows rejected until the 
third stage is much larger than the rest, the 
overall energy consumption is improved by  
39 percent (see Figure 5d).

The number of classifying stages pro-
cessed by the AFDU is usually determined on 
the basis of the energy consumption. How-
ever, the AFDU can process more stages than 
the energy-optimal point to control the data 
size of the passed subwindows, which varies 
dynamically depending on the input image. 
Plain background scenes make a few subwin-
dows after going through the AFDU by the 
energy-optimal stage, but complex foreground 
scenes generate several hundreds of the passed 
subwindows. Because there is a limit to the 
number of the subwindows that can be stored 
in the on-chip memory—40 subwindows in 
this work—the DFDU’s window memory can 
be overflowed when the AFDU transfers more 
subwindows than the DFDU finishes process-
ing. To prevent this, the RISC monitors the 
available space in the window memory and the 
number of passed subwindows at the AFDU 
and extends the boundary stage over the energy- 
optimal point until enough space becomes 
available in the memory. The RISC can monitor 
and reconfigure the AFDU by accessing its 
memory-mapped registers.

CNNP Architecture for Event-Driven 
Face Verification
Figure 6a shows the overall architecture of the 
CNNP. The CNNP comprises 4 3 4 process-
ing elements and local distributed memory. The 
4 3 4 processing elements are interconnected 
by a mesh-type network, and the boundary 
processing elements are connected to the exter-
nal interfaces.

Figure 6b shows the processing element’s 
detailed block diagram. The local SRAM can fetch 
32 words per cycle to a register file. Each convo-
lution unit of the processing element includes 
a 16-way SIMD MAC datapath, in which the 
input weights are shared. While the partial sums 
of the convolution are accumulated at the same 
column, the input operands of the MAC opera-
tion are given by loading a row vector of an input 
feature map from the register file or shifting the 
existing row by one column. When shifting, the 
operand at the headmost column can be trans-
ferred to the neighbor processing element to con-
nect multiple processing elements for various sizes 
of feature maps. In a single processing element, 
four convolutional units are integrated, and the 
CNNP with a 4 3 4 processing element array can 
support 1,024 MAC operations per cycle.

Because the number of faces varies 
dynamically depending on input scenes, the 

Figure 5. Face detection in the functional CIS. (a) Processing flow with the analog face-detection unit 
(AFDU). Implementation results: (b) the ratio of the rejected subwindows, (c) energy consumption for 
one subwindow, and (d) energy consumption for one frame.
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face-verification workload also changes, and 
the CNNP doesn’t have to operate with its 
maximum throughput. To minimize the power 
consumption when a small number of faces 
is given, the CNNP adopts DVFS. Because 
the CNN’s processing cycles are determinis-
tic, the DVFS mode of the CNNP is decided 
by the latency requirement and the number 
of faces detected. In this way, the CNNP’s 
DVFS mode is changed at the frame rate of 
the face-recognition system. If there is no face,  
the CNNP is fully turned off.

In addition, as explained, this work 
adopted tensor decomposition to reduce the 
workload for processing the convolutional 
layer. When processing the horizontal filters, a 
single SRAM access can complete the convo-
lution operation, because the direction of the 
horizontal filters is matched to the direction 
of row feature vectors. However, SRAM can-
not read column feature vectors at once, whose 
elements are connected to the same bit line, 
and the vertical filtering must fetch it through 
multiple SRAM accesses. As Figure 7b shows, 
although tensor decomposition decreases the 
latency, the SRAM’s activity factor—hence,  
the dynamic power consumption—increases 
due to the inefficient memory accesses during 
vertical filtering. This work utilizes T-SRAM, 
which has two read modes: normal read for 

accessing a row vector and transpose read for 
accessing a column vector.3 Thanks to the T-SRAM, 
the inefficient memory access during the verti-
cal filtering can be resolved by the transpose-read 
mode, and 21 percent more energy is saved with 
the tensor decomposition. As a result, the total 
energy consumption for processing a convolu-
tional layer is decreased by 78 percent.

Implementation Results
Figure 8 shows the chip photograph of the 
functional CIS and the CNNP fabricated 
using 65-nm CMOS technology and the per-
formance summary. The functional CIS and 
the CNNP occupy 3.30 3 3.36 mm2 and  
4 3 4 mm2 die area, respectively. At a 1 frame 
per second (fps) framerate, the functional CIS 
consumed 24 to 96 μW for imaging and face 
detection, depending on the number of faces 
in input scenes. The CNNP operates at 0.46 
to 0.8 V supply voltage with 5 to 100 MHz 
operating frequency, and the peak power con-
sumption with maximum processing element 
utilization is 5.3 and 211 mW, respectively.

Based on the voltage and the frequency 
pairs in Figure 9a, five DVFS modes are decided 
for the CNNP (see Figure 9b). The DVFS 
mode is selected to handle the faces detected 
from the input image frame within the latency 
requirement. At the fastest operating mode, the 

Figure 6. Convolutional neural network processor (CNNP) architecture. (a) 4 3 4 processing elements with local distributed 
memory. (b) Processing element block diagram.
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CNNP can evaluate at most 75 faces during 
1 second latency. The slowest operating mode 
(5 MHz operating frequency at 0.46 V supply 
voltage) is determined by the minimum energy 
point, and at this condition, the CNNP con-
sumes 0.6 mJ to evaluate one face image with 
the target CNN, which requires 1.26 GMAC 
(giga multiply-accumulate operation) for four 
convolutional layers and one fully connected 
layer. In this evaluation, the target CNN is approx-
imated by the tensor decomposition to have 0.72 
GMAC operations, and the energy efficiency  
is 1.2 TOPS/W, whereas the effective energy 

efficiency considering the original workload  
is 2.1 TOPS/W. The approximated CNN  
causes 0.2 percent accuracy degradation and 
achieves 97.4 percent accuracy at the LFW 
dataset.

W e proposed a functional CIS integrated 
with an always-on face detector and a 

CNNP to realize always-on face recognition for 
user authentication of smart devices.

The functional CIS had two stages that 
reject the unnecessary workload for the following 

Figure 7. Tensor decomposition in the CNNP with the T-SRAM. (a) Convolution of horizontal and vertical filters with normal 
read and transpose read modes. (b) Implementation results: processing latency, SRAM activity factor, and normalized energy 
consumption.
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stages: one is the AFDU, which determines the 
workload of the data converter and the DFDU, 
and the other is the functional CIS itself, which 
regulates the activity of the CNNP and its I/O. 
Although the concept of having an analog- 
domain rejecting stage for always-on image sen-
sors at the front end still has many challenges 
on its robustness, scalability, and applicability for 
more advanced detection algorithms, this kind 
of rejecting stage will find its use in emerging 

always-on devices that require minimal power 
consumption over various input scenarios.

In addition, the CNNP opened the use of 
CNN for low-power applications along with the 
low-power techniques such as tensor decom-
position with the T-SRAM and DVFS. How-
ever, deeper CNNs with more computational 
workload have been showing better accuracy in  
various applications, and future CNN processors 
will have better energy efficiency. 

Figure 8. Chip photograph and performance summary.
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Flying IoT: Toward  
Low-Power Vision  
in the Sky

The authors study cognitive computer vision in a new design space 
called the Flying IoT. They investigate ultra-low-power computing 
challenges on a state-of-the-art platform involving a commercial 
micro UAV. To improve the drone’s performance while maintaining 
low power, they propose a sensor-cloud architecture to process 
its computer vision algorithms with simple software optimizations 
that enable the drone to consume less power than cutting-edge 
embedded processors while achieving better performance.

T
he Internet of Things (IoT) is becoming a major paradigm, enabling applications 
in industries from smart cities1 to health care2 and dietary assessment.3 IoT devices 
embed sensors and low-power processors into the physical world, allowing a rich 
set of information to be gathered by a diverse set of devices. IoT devices are becom-

ing so common that they are expected to make up 18 billion of the 29 billion connected 
devices worldwide by 2021.4 The widespread deployment of IoT devices necessitates that 
we understand the challenges of designing solutions for these next-generation platforms.

IoT devices are on the cusp of a revolution as they start to embrace some form of 
intelligence via cognitive or deep learning computing capability to provide intelligent end 
user services. For instance, smart swim watches seek to distinguish between swim strokes, 
and digital home assistants seek to understand human voices and language. Drones are an 
emerging form of new IoT devices, flying in the sky with full network connectivity capa-
bilities. Intelligent drones with cognitive computing skills need the capability to automati-
cally recognize and track objects to free users from the tedious task of controlling them, all 
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of which must be performed within the power- 
constrained environment of a Li-Po battery.

In this article, we study a cognitive drone 
platform, a domain we refer to as the Flying 
IoT, to quantify the power and performance 
characteristics of cognitive applications on 
these emerging mobile devices. Specifically, we 
study an application called Follow the Leader, 
which automatically detects, tracks, and follows 
a moving human target. The application is cen-
tered on a machine learning task called object 
detection, which is its most computationally 
intensive kernel. The ability to perform basic 
computer vision tasks like object detection is a 
necessary step toward new and intelligent appli-
cations such as sports photography and package 
delivery. Cognitive applications are often very 
computationally intensive, which makes them 
difficult to run on embedded computers that 
have low-power, lightweight, small-size design 
requirements. For example, state-of-the-art 
machine-learning models for image classifica-
tion, such as ResNet, require gigaflops to pro-
cess a single image. Computing these models 
in real time requires many ALUs in a processor, 
increasing chip size and consequently leading 
to larger heatsinks and larger, heavier devices, 
which increases the drones’ take-off weight and 
decreases their flight time.

The challenge of performing object detec-
tion on drones is to balance performance and 
power efficiency. To operate successfully, Fol-
low the Leader must detect a person multiple 
times per second, or it could lose the person 
it is attempting to track. This real-time per-
formance requirement is difficult to satisfy on 
extremely low-power CPUs, or even GPUs, 
even for simple shallow machine learning mod-
els. For complex multiclass deep models like 
convolutional neural networks (CNNs), desk-
top or server-level processors are required. So, 
extremely low-power, low-performance proces-
sors alone are not sufficient without hardware 
specializations, but hardware specialization 
introduces design complexity and nonrecurring 
engineering costs.

As an alternative to high-performance, 
low-power hardware specialization approaches, 
we investigate a general-purpose software par-
adigm to sustain low power consumption and 
small processor form factor. Using a range of 
off-the-shelf low-power to high-performance 

processors, we show that it is impractical to 
simultaneously achieve real-time performance 
and low power when executing a cognitive 
drone application. Therefore, we propose a 
sensor-cloud architecture to partition data col-
lection and processing between the edge and  
the cloud. We characterize a drone application 
that runs on the i.MX6, a low-power, low- 
performance system, and on the TX1, a high-
power, high-performance system. Both of these 
computational systems are typically found on 
existing drone platforms. Neither can provide 
the necessary performance and energy efficiency 
to make our application viable. Subsequently, 
we characterize the effects that incorporating 
the cloud has on the performance, power, and 
energy consumption of the drone application 
on these platforms. We show that by offloading 
complex object-detection models to the cloud, 
we can improve performance while minimizing 
edge power to negligible levels. The sensor-cloud 
architectures sustained low power on an energy- 
constrained drone platform, while delivering 
the real-time performance needed by continuous 
object detection and decision making.

Finally, we demonstrate how various 
common software-level optimizations, such as 
image downsampling and lossy compression, 
can trade small accuracy loss for significant per-
formance and energy efficiency improvements.

Experimental Setup
In this section, we provide an overview of our 
drone platform, the processors we evaluate, and 
the Follow the Leader workload under study.

Drone Computing Platform
For a typical Flying IoT computing platform, 
we use the i.MX6, a low-power, low-performance 
ARM Cortex A-9 processor that comes with  
the 3DR Solo, a commercially available 
state-of-the-art hobbyist drone. The 3DR Solo 
is designed in a fashion typical to many auton-
omous drones, and its processor is indicative 
of the computational performance one might 
expect to find on a typical Flying IoT platform. 
The i.MX6 is powerful enough to enable only 
simple flight operations such as instructing a 
drone to start taking pictures once it has reached 
a certain height.

To evaluate higher-performance edge pro-
cessors, we also attach a state-of-the-art embedded  
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processor, the Jetson TX1, to the drone in 
place of the i.MX6. The TX1 is equipped with a 
GPU that is typically more power-hungry than 
a CPU. However, the performance per watt of a 
GPU for object-detection tasks, which we use in 
this study, is much higher than that of a typical 
CPU.5 Thus, we can expect that the TX1 con-
sumes less power to run our applications within 
our performance constraints than a CPU capa-
ble of achieving the same performance would 
consume. The TX1 is also equipped with a 
Cortex-M processor. This CPU, which runs an 
Ubuntu Linux system, is responsible for kernel 
and GPU management, whereas the GPU runs 
tasks such as object detection.

Cloud Server
We envision future cloud computing systems to 
support drone services. The cloud server we use 
is equipped with a 3.6 GHz Intel i7 processor 
and a GeForce GTX 1080 Ti graphics card and 
is connected to the drone through Wi-Fi. In 
the future, emerging 5G networks are expected 
to guarantee Wi-Fi speeds6 while becoming 
more energy efficient than 4G mobile data 
networks.7 To run our cognitive workloads, we 
installed our server with CUDA 8.0, cudNN 
v5.1, OpenCV 3.1, and the Caffe deep learning 
framework.

Power Measurements
It is difficult to measure the power consumption 
of the cores of the i.MX6 and the TX1. There-
fore, we instead measure their full-board power 
by using the DroneKit software library’s power 
module for the i.MX6 and by using INA mon-
itors that can be accessed programmatically for 
the TX1.8 Board power, in this context, refers 
to the power consumed by all components 
on the carrier boards of the i.MX6 and TX1, 
including CPUs, GPUs, and network commu-
nication components such as Wi-Fi modules. 
For this study, we do not consider the power 
consumption of a drone’s mechanical compo-
nents, such as its motors, as this study focuses 
primarily on the power consumed by drones for 
computations and network communication.

The DroneKit library function we use to 
measure the i.MX6’s power returns the total 
power consumed by not just the i.MX6’s car-
rier board but also by drone electronics such as 
GPS sensors and IMUs. Therefore, to remove 

the idle power consumed by these other com-
ponents from our readings, we subtract all 
DroneKit power readings by the idle power 
consumption of the drone, and we add to it the 
idle power consumption of the i.MX6,9 which 
lets us estimate its power consumption.

Cognitive Workload
To quantify the performance of our computing 
platforms, we developed a cognitive drone appli-
cation that is typical of the Flying IoT domain. 
We describe the application, the dataset it runs 
on, and its computational kernels below.

Application. We create a Follow the Leader 
application where our drone detects and fol-
lows a moving human target in real time. Many 
smart drones, in domains from security to 
sports photography, must be capable of follow-
ing human targets, whether to record video of 
a quickly moving athlete or to monitor a suspi-
cious individual in a crowd. To detect targets, 
our application runs object-detection algo-
rithms on images taken from the drone’s cam-
eras. The drone then flies along the horizontal 
plane, centering its target in the middle of the 
drone’s field of view. An autonomous drone 
application has strict real-time requirements, 
because it must fetch, analyze, and react to sen-
sory data quickly enough to avoid its moving 
targets from exiting its field of view. In this 
work, we set a real-time performance goal of  
10 frames per second (fps).

Dataset. To ensure a controlled test envi-
ronment, we evaluate the drone application 
indoors, with the drone stationary, replacing 
its camera input with “positive test” images 
from the INRIA Person dataset (http://pascal 
.inrialpes.fr/data/human).10 The drone reads 
images from the dataset and treats them as 
inputs from its own camera, attempting to fly 
toward the people in those images. In prac-
tice, the application’s image inputs would be 
dynamically changing, whereas the images 
from the INRIA dataset are static. Regardless, 
the proposed evaluation model is sufficient, 
because the application’s performance does not 
change based on whether or not the images it 
is operating on are related to the images that 
came before. The object-detection algorithms, 
for example, run at the same speed regardless.
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One limitation of using a static image 
dataset is that it does not precisely represent the 
performance of a physical camera. To overcome 
this issue, we convert the images in the dataset 
to the BMP format for experiments involving 
the i.MX6, and we keep the original PNG for-
mat for experiments involving the TX1. This 
minimizes the difference between the time 
spent decoding images from the dataset and 
the time that would have been spent fetching 
images from physical cameras to within about 
0.04 seconds.

Cognitive algorithms. To allow our Follow  
the Leader application to detect targets, we 
evaluate both multiclass and single-class 
object-detection algorithms. Multiclass object 
detectors can detect multiple different types of 
objects in a single image, whereas single-class 
object detectors are designed to detect only a 
single type of object at a time.

We pick two state-of-the-art CNN multi-
class object detectors that are trained end-to-end 
from raw image pixels—Faster R-CNN and 
YOLO—and two single-class object detectors 
that are trained using hand-crafted features—
Haar cascade classifiers and histogram of ori-
ented gradients (HOG) detectors. For Faster 
R-CNN, we use the official Python implemen-
tation along with the pretrained model, ZF. For 
YOLO, we use the official implementation and 
the pretrained model trained with the COCO 
dataset. For the Haar and HOG single-class 
object detectors, we used the CUDA imple-
mentation in OpenCV 2.4.13 when GPUs 
were available, and the CPU implementation 
when they were not. Methods to improve 
CNN efficiency, such as pruning, are outside 
the scope of this article; our focus, instead, is 
on evaluating the performance and power of 
preexisting models and algorithms.

Performance and Power 
Characterization of Object  
Detection on the Drone
We characterize the performance and power 
of different processors running Follow the 
Leader on the edge. We show that edge proces-
sors cannot achieve real-time performance for 
this application without consuming excessive 
amounts of power. Drones typically have quite 
constrained battery capacities, which severely 

limits their flight time. Excessive power con-
sumption by processors can reduce the amount 
of time they are in the air even further. Soft-
ware optimizations such as downsampling can 
improve performance and power but still fall 
far short of satisfying the power and perfor-
mance goal.

When running on the drone, Follow the 
Leader’s workflow can be broken into several 
pipeline stages: fetching images, preprocess-
ing images, detecting objects in those images, 
and taking action to move the drone toward 
detected targets. These stages, taken together, 
constitute a single frame of our application, 
and we quantify the performance of our 
application by the number of frames that are 
executed every second.

Object Detection on Low-Power  
i.MX6 Processor
The i.MX6 on the drone is a low-power, 
low-performance chip typical of battery- 
constrained Flying IoT devices. We charac-
terize its power and performance and show 
that although the i.MX6 satisfies a low-power 
device’s power budget, its performance is far 
too low to provide real-time cognition.

Performance. As Table 1 shows, when Follow 
the Leader runs locally on the i.MX6, it fails 
to achieve anything close to our real-time goal 
of 10 fps, owing to the time taken to perform 
object detection. The application runs at less 
than 0.1 fps with single-class object detectors 
due to the i.MX6’s simple in-order microarchi-
tecture and its low 1 GHz frequency. Object 
detection, a key task, is the overwhelming bot-
tleneck, suggesting that machine learning algo-
rithms are the performance limiters in cognitive 
Flying IoT applications.

Algorithm optimizations. Reducing image 
resolution via downsampling enhances perfor-
mance without noticeably affecting the accu-
racy of our object detectors.11 By approximating 
the original images with smaller-sized images, 
downsampling can simplify the computation 
task of the algorithm and shorten computing 
time. As Figure 1a shows, downsampling by 
some scaling factor greatly improves Follow the 
Leader’s performance on the i.MX6 because 
it reduces the time spent on object detection. 
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However, it still fails to reach even one fps, let 
alone anything close to our real-time target.

Power and energy. The i.MX6 consumes lit-
tle instantaneous power, but because it takes so 
long to process frames in the application, the 
total energy that it spends per frame is quite 
large (see Figure 2a). The i.MX6 consumes 
between 0.9 and 1.7 W of instantaneous power 
when running Follow the Leader with Haar 
and HOG object detection. This low instanta-
neous power consumption is almost negligible, 
which would have made the i.MX6 the perfect 
candidate for cognitive drone platforms, but 
its low computing performance (see Figure 1a) 
decreases the energy efficiency so much that a 
full 25 J is required to process a single image in 
some circumstances.

Fortunately, downsampling images can 
improve the energy efficiency of Follow the 
Leader on the i.MX6 by four to six times (see 
Figure 2a), although computing performance is 
still too low to allow real-time operation.

Object Detection on High-Performance 
TX1 GPU
Ultra-low-power CPU architectures like the 
i.MX6 do not satisfy the performance needs 
of real-time object detection. Therefore, we 
explore a higher performance embedded sys-
tem on chip (SoC) as an alternative and analyze 
the power and performance tradeoffs. We run 
the object-detection algorithms on the Nvidia 
Jetson TX1 because its GPU provides higher 
performance for these applications and is more 
power efficient than a CPU. At the time the 
research was conducted, the Nvidia Jetson TX2 
platform was yet to be released.

Performance. As Table 2 demonstrates, our 
application performs much better on the TX1, 
because its GPU can execute the object-detection 
phase much faster than the i.MX6’s CPU can. 
However, CNN-based detectors such as YOLO 
and Faster R-CNN still occupy over 90 percent 
of the total application time, and the TX1 still 
fails to achieve the 10 fps real-time performance.

Table 1. Performance breakdown when running Follow the Leader on a low-power 
computer (i.MX6).

Algorithm Fetch (%)
Preprocess 

(%)
Analyze 

(%) Act (%) Overall (s)
Frames per 

second

Haar 0.50 0.18 99.30 0.01 18.24 0.05

HOG 0.76 0.28 98.93 0.02 11.17 0.09

Figure 1. Performance variation when downsampling images. (a) Performance versus downsampling for 
i.MX6. (b) Performance when reducing resolution for TX1. A scaling factor of 100 percent means retaining 
the original image, whereas scaling 50 percent means scaling the image down to half of its original size.
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As earlier, we attempt downsampling 
to increase our application’s frame rate. As  
Figure 1b shows, Haar and HOG’s perfor-
mance increases to around 10 fps, which is on 
par with the 10-fps target we set for real-time 
decision making.

However, downsampling does not enhance 
the performance of our CNN models, because 
the models evaluate input images of a fixed size, 
which is set when the models are being trained.

Power and energy. The TX1’s higher perfor-
mance comes at the cost of higher instanta-
neous power consumption compared to the 
i.MX6, but its energy efficiency is far better 
than that of the i.MX6. Figure 2b shows the 
TX1’s energy consumption per frame with dif-
ferent algorithms and downsampling ratios. 
Our application’s power consumption on the 
TX1 is roughly 3 to 4.5 W when using Haar 

and HOG object detectors, about two to three 
times the power consumption of the i.MX6. 
When running YOLO, the TX1 again con-
sumes approximately 3 W, but when running 
Faster R-CNN, the TX1’s instantaneous power 
consumption shoots up to approximately 9 W.

Regardless of how much more instanta-
neous power the TX1 consumes compared to 
the i.MX6, it is still much more energy efficient, 
consuming 6 to 15 times less energy to process 
each frame of the application when running 
HOG and 15 to 32 times less energy when 
running Haar. Even then, however, the TX1’s 
larger form factor, increased take-off weight, 
and greater idle power consumption might 
cause significant power drains for smaller, more 
battery-constrained drones such as nano aerial 
vehicles; such drones require a computing plat-
form with a small size and low idle power con-
sumption for practical operation.

Table 2. Performance breakdown when running Follow the Leader on a high-
performance computer (TX1).

Algorithm
Fetch 

(%)
Preprocess 

(%)
Analyze 

(%) Act (%) Overall (s)
Frames per 

second

Haar 24.65 0.07 74.02 1.25 0.21 4.79

HOG 22.35 0.07 76.50 1.09 0.23 4.41

YOLO 1.76 0.01 98.20 0.02 3.25 0.31

F-RCNN 8.45 0.07 91.28 0.21 0.67 1.49

Figure 2. Energy consumption per frame: (a) i.MX6 and (b) TX1. The scaling factors are shown in the 
figure, where 100 percent means the original figure size is not scaled down. Note that the y-axis of (a) 
is scaled to three times the y-axis of (b).
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Downsampling reduces HOG and Haar 
power and energy consumption because a 
reduction in the size of the image inputs reduces 
the number of operations to compute, but for 
the CNN-based method, downsampling does 
not seem to have any effect. With software 
downsampling, GPU-equipped SoCs such as 
the TX1 can approach real-time performance 
for single-class object detection, but they still 
fail to approach real-time performance for the 
multiclass detectors.

Sensor-Cloud Architecture for Low-
Power Real-Time Object Detection
We propose a sensor-cloud system to bring  
server-level computational capability to 
low-power IoT devices such as drones. In a  
sensor-cloud system, computationally intensive 
tasks are offloaded to the cloud while data col-
lection tasks are done at the edge. We modify 
our Follow the Leader application so that it 
offloads object detection, our bottleneck stage, 
to the cloud, enhancing our application’s per-
formance while maintaining a low power con-
sumption. In fact, with software optimizations 
such as compression, even low-performance 
CPUs like the i.MX6 can achieve the perfor-
mance of the TX1 on the edge.

The sensor-cloud application’s workflow 
is represented by the following pipeline stages:  
the drone fetches images, preprocesses them, 
compresses them, and transmits them to 
the cloud. The cloud then decompresses the 
images, analyzes them using object-detection 
algorithms, and sends the results back to the 

drone. Finally, the drone takes action based on 
the response from the cloud.

Real-time applications such as Follow the 
Leader cannot tolerate long communication 
delays between drones and the cloud. Thus, 
our performance characterization takes into 
account the time delays associated with net-
work communication in the application. One 
assumption we make is that there is no failure 
in network connectivity.

Performance Measurement
As Table 3 shows, the i.MX6 shows significant 
speed improvements when running Follow 
the Leader on a sensor-cloud architecture. The 
single class detectors ran 22 to 39 times faster 
than they did in the i.MX6’s non-cloud imple-
mentation, and as an added improvement, the 
sensor-cloud system was able to use the multi-
class detectors that the i.MX6 could not imple-
ment on its own.

The TX1 experiences a relative perfor-
mance improvement of nine and two times over 
its non-cloud implementation when running 
YOLO and Faster R-CNN, respectively. How-
ever, it experiences performance deterioration 
when using single-class detectors. This is because 
the time saved by the cloud’s increased process-
ing capability is partly nullified by the time taken 
to transmit data to and from the edge.

We also find that for the sensor-cloud sys-
tem, the performance bottlenecks are image 
compression and transmission, rather than object 
detection. This is because the GPU in the cloud 
is powerful enough to run object-detection  

Table 3. Performance breakdown on the sensor-cloud system using unscaled images and the PNG format 
on a low-power computer (i.MX6).

Algorithm
Fetch 

(%)
Preprocess 

(%)
Compress 

(%)
Transmit 

(%)
Decompress 

(%)
Analyze 

(%) Act (%)
Total  

time (s)

Frames 
per 

second

Haar 5.15 15.78 53.03 16.84 1.85 7.17 0.18 0.52 1.94

HOG 5.75 15.96 54.71 18.06 1.80 3.53 0.18 0.50 1.98

YOLO 4.56 14.15 50.18 16.70 1.33 12.90 0.18 0.56 1.78

Faster 
R-CNN

5.16 13.40 48.44 15.04 1.45 16.35 0.16 0.59 1.70
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algorithms quickly. We find that compres-
sion is more important for the i.MX6 because  
its CPU spends about half its time in this 
phase. On the TX1, compression runs faster 
because its CPU core has higher single-thread 
performance.

Because compression and transmission are 
the bottlenecks in the sensor-cloud system, we 
optimize our application by exploring faster, 
more compact, lossy compression formats to 
reduce both compression and network trans-
mission time.

For our initial experiments, in Tables 3 
and 4, we compress our images into the lossless 
PNG image format. A lossy compression algo-
rithm, on the other hand, could improve our 
application’s performance, because lossy algo-
rithms are typically faster and create smaller 
data packages to transmit. We investigate the 
JPEG format, which is an extremely popu-
lar lossy format for images. JPEG images can 
be saved in any “quality” from 100 to 0 per-
cent. As quality decreases, compression ratios 
improve, but less information is preserved. 
Lowering JPEG quality from 100 to 60 percent 
does not noticeably reduce the accuracy of our 
four object-detection algorithms.11

As Figure 3 shows, we compare the speed 
of our Follow the Leader application under  
various conditions: using the lossless PNG for-
mat; using the lossy JPEG format at 100, 80, and 
60 percent quality; and using the uncompressed 
BMP format to send data. We find that the PNG 
format, the BMP format, and the JPEG format  
at 100 percent quality have the lowest perfor-
mance, because they incur high transmission 

penalties. The JPEG format at 80 and 60 percent 
quality, on the other hand, is faster.

Software optimizations such as image 
downsampling and lossy compression vastly 
improve the performance of Follow the Leader, 
allowing it to reach fps rates that were impos-
sible in the edge-only implementation. We  
maximize performance by downsampling our 
images by 50 percent and then compressing 
them using the JPEG format at 60 percent 
quality. At the highest speeds, we are able to 
surpass our 10 fps goal for single-class detectors 
(Haar and HOG) on the TX1 and to approach 
very close to the real-time goal with single-class 
detectors on the i.MX6.

Both the i.MX6 and the TX1 achieve simi-
lar speeds with multiclass detectors (YOLO and 
Faster R-CNN) at the highest optimization levels, 
because as our optimizations become more 
aggressive, the bottleneck for our application 
when using multiclass detectors increasingly 
becomes the speed at which the cloud server 
itself can process images. However, although 
both the i.MX6 and the TX1 fail to reach 
real-time performance (that is, 10 fps) with 
multiclass detectors, the TX1 achieves perfor-
mance improvements of 4 to 15 times over its 
non-cloud implementation.

Power and Energy
In addition to improving performance, switch-
ing to a sensor-cloud system can potentially 
reduce power and energy consumption at the 
edge (see Figure 4). On the i.MX6, the instan-
taneous power consumption falls only slightly, 
but the performance improvement brought 

Table 4. Performance breakdown on the sensor-cloud system using unscaled images and the PNG format  
on a state-of-the-art computer (TX1).

Algorithm
Fetch 

(%)
Preprocess 

(%)
Compress 

(%)
Transmit 

(%)
Decompress 

(%)
Analyze 

(%) Act (%)
Total 

time (s)

Frames 
per 

second

Haar 25.61 0.17 16.83 37.03 12.95 6.94 0.39 0.26 3.81

HOG 28.11 0.18 16.62 39.36 12.47 2.88 0.39 0.27 3.72

YOLO 17.79 0.12 12.22 36.63 8.99 23.92 0.32 0.36 2.77

Faster 
R-CNN

21.61 0.14 14.57 39.96 10.81 12.53 0.38 0.30 3.30
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Figure 3. Frame rate versus compression algorithm and resolution. The numbers in the boxes represent frames per second 
(fps). Sensor-cloud performance increases significantly with JPEG compression and downsampling. (a) Haar (i.MX6); (b) HOG 
(i.MX6); (c) YOLO (i.MX6); (d) Faster R-CNN (i.MX6); (e) Haar (TX1); (f) HOG (TX1); (g) YOLO (TX1); (h) Faster R-CNN (TX1).
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by the cloud causes our energy consumption 
per frame to plummet to below 1 J per frame. 
The TX1’s instantaneous power consump-
tion falls by 0.5 to 2 W for the Haar, HOG, 
and YOLO detectors, and by a full 6.4 W for 
Faster R-CNN, because the application no lon-
ger uses the GPU. These instantaneous power 
savings help reduce the energy consumed per 
frame for all detectors, but especially for YOLO 
and Faster R-CNN, which consume 6 to 11 
times less energy to process frames. Typically, 
in a sensor-cloud system, GPUs would not be 
installed on the edge. We can see from these 

results that utilizing GPUs in the cloud instead 
of on the edge can yield significant power and 
energy savings.

Our previous software optimizations do 
not significantly affect the instantaneous power 
consumption of our computing platforms. 
However, the optimizations allow the appli-
cation to process many more frames per sec-
ond while consuming approximately the same 
amount of power. Thus, in Figure 5, we can 
see that both the i.MX6 (Figures 5a through 
5d) and the TX1 (Figures 5e through 5h) save 
significant amounts of energy on every frame 

Figure 5. Energy consumption per frame (in joules per frame) versus compression algorithm and scaling factor. The numbers in 
the boxes represent the energy consumed per frame of the application. Compression and downsampling improve the system’s 
energy efficiency. (a) Haar (i.MX6); (b) HOG (i.MX6); (c) YOLO (i.MX6); (d) Faster R-CNN (i.MX6); (e) Haar (TX1); (f) HOG (TX1); 
(g) YOLO (TX1); (h) Faster R-CNN (TX1).
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they process. The i.MX6, in particular, con-
sumes less than 0.1 J per frame under our most 
aggressive optimizations, which, as Figure 3 
shows, are sufficient to bring our application 
to near-real-time performance with single-class 
detectors.

With appropriate compression and downs-
ampling optimizations, sensor-cloud architec-
tures can reduce edge power significantly com-
pared to placing all the computation on the 
edge. Meanwhile, sensor-cloud architectures 
enhance application performance to almost 
the level of the real-time target by offloading 
computationally intensive software kernels to 
the cloud.

T he Internet of Things is entering a new 
paradigm where devices on the edge need 

both cognitive capability and the ability to 
interact directly with their environments in real 
time. Although our work demonstrates that 
sensor-cloud architectures can accelerate Fly-
ing IoT applications to near-real-time perfor-
mance, it also exposes some of the challenges 
associated with them.

The performance of sensor-cloud appli-
cations is significantly limited by the speed at 
which they can compress and transmit data. 
Currently, compression on drone processors 
is typically done by CPUs. However, by devel-
oping specialized compression accelerators, 
researchers can alleviate the pressure put on 
CPUs, dramatically improving performance.

Furthermore, it will be important to inves-
tigate the implications of network stability on 
drone applications that utilize the cloud. Our 
study uses a Wi-Fi network to connect the 
drone to the cloud, but it will be worthwhile 
to look into the impact of 4G and future 5G 
networks on the speed and energy efficiency of 
drone applications. 
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Visual IoT: Ultra-Low-Power 
Processing Architectures 
and Implications

This article describes three key implications in ultra-low-power 
visual edge processing: the constrained data footprint, limited 
power-efficient computation, and difficulties processing large- 
scale data. The authors review three case studies—small-scale 
visual recognition for digits and characters, medium-scale visual 
recognition for hand gestures, and large-scale visual processing 
requiring video summarization—to show that co-designing 
algorithms and architectures for ultra-low-power processing in 
edge devices helps address the key challenges.

C
ameras are widely used in multiple applications ranging from security (sur-
veillance and monitoring), entertainment (recording of public and personal 
events such as sports and music), and, more recently, interactive environments 
(augmented and merged reality) and robotics and drones (navigation, deliv-

ery, interaction, and assistance). In the visual Internet of Things (IoT),1 critical challenges 
must be addressed because of the large bandwidth needs of visual data and the tradeoff 
between computing and communication. One approach is to move the visual data from 
an ultra-low-power edge device to a higher-performance platform (gateway or cloud) for 
computation. Another approach is to accomplish a lot of the processing at the edge device 
in order to conserve visual communication bandwidth. There are also hybrid approaches 
that partition overall work intelligently between the edge and the cloud to optimize overall 
efficiency. In this article, we focus on the key implications of performing visual processing 
on ultra-low-power edge devices and examine how to achieve the best efficiency for realistic 
end-to-end usages.

Visual processing at the edge device has to work within the ultra-low-power constraints, 
which typically manifest themselves in three types of challenges: the amount of static  
RAM (SRAM) available on-die is severely constrained due to leakage and dynamic power, 
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the computational processing is constrained 
because it is typically on an ultra-low-power 
microcontroller class core, and the availability  
of significant storage on the edge device is 
also constrained due to form factor and power 
limitations. To understand and address such 
processing challenges for visual edge devices, 
we examine three levels of visual processing: 
small-scale visual processing, in which the edge 
device must recognize static digits and charac-
ters, but needs to accomplish this task within a 
data footprint constraint; medium-scale visual 
processing, in which the edge device must 
recognize static hand gestures from a human 
within a computational power constraint; and 
large-scale visual processing, in which the edge 
device must assist in video summarization, 
which involves finding salient frames in a video 
stream and ensuring that the salient frames 
are retained to provide sufficient coverage and 
representation of the incoming visual stream 
over time. Our key observation from these 
case studies is that co-designing software and 
hardware approaches can yield significant effi-
ciency improvements, which are required for 
ultra-low-power edge processing.

Visual IoT Overview
Figure 1 shows an end-to-end visual IoT plat-
form comprising edge devices, communication 
gateways, and visual cloud servers. We focus on 
the edge device from an ultra-low-power pro-
cessing perspective and examine three scales of 
processing below.

Small-Scale Visual Processing
Typically, in a visual IoT usage, cameras are posi-
tioned to detect or recognize specific objects or  

attributes (for example, license plate recognition 
or reading highway signs). Current image- 
recognition pipelines are gateway or cloud 
based and thus the classification pipeline does 
not consider limitations on device memory and 
computation. The goal of these solutions is to 
build highly accurate models that classify images 
with a deep layer neural network (NN) architec-
ture.2,3 However, running the same pipeline on 
a small form factor edge device requires several 
optimizations, from input image scaling to new 
transforms, feature size compression, effective 
memory reuse, and optimum model size for 
classification. We will walk through the entire 
flow for digit and character recognition and 
show how NN implementations need to be 
optimized to fit within an edge device footprint.

Medium-Scale Visual Processing
In medium-scale visual processing, we consider 
the problem of achieving a robust and light 
algorithm implementation for edge devices 
to naturally interact with users using gesture 
(hand-pose) recognition. We will describe 
the entire processing flow from segmentation 
to feature extraction to classification of hand 
poses. We show that such processing is chal-
lenging because it needs to be accomplished on 
a power-constrained edge device with limited 
computational and memory capabilities. We 
show that achieving hand-pose recognition 
within such a device requires acceleration, and 
we outline a novel NN accelerator that accom-
plishes the end goal of power efficiency.

Large-Scale Visual Processing
Effective consumption of large video data leads 
to the need for efficient video summarization 

Figure 1. Visual Internet of Things (IoT) usage scenarios: from small-scale to large-scale visual 
processing at the edge device.
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applications that can filter out salient parts of a 
video. The video summarization pipeline gen-
erally comprises feature extraction, a similarity 
measure, and key frame selection (see, for exam-
ple, previous work by Shayok Chakraborty and 
colleagues4). To perform video summarization 
on mobile and wearable environments, the video 
summarization pipeline’s computational com-
plexity is a bottleneck for real-time implemen-
tation. We focus our attention on speeding up 
a key bottleneck of the summarization, namely 
histogram of oriented gradients (HOG) process-
ing. We outline a HOG acceleration approach 
that can make such processing power efficient 
on edge devices for online video summarization.

Visual IoT: Small-Scale Processing
In this section, we describe an image-recognition 
workload that we developed using two-layer, 
fully connected feed-forward NN for the digit 
and character recognition of English alphabets. 
This image recognition had to be accomplished 
on a power-constrained edge device, and we 
used the Arduino 101 as a reference platform 
for this work. To address the data footprint 
constraints, we introduced the following major 
optimizations:

•	 Define new image transforms to eliminate 
the need for convolution.

•	 Resample the input image to the smallest 
size possible (that is, 20 pixels 3 20 pixels) 
and still get satisfactory classification per-
formance.

•	 Identify a feature extraction method that 
can operate on images of this small size 
and reduce the number of features per 
image without compromising too much 
accuracy.

•	 Optimize the number of neurons in vari-
ous layers. Develop a hierarchical ensemble 
design for classification. In other words, 
break the entire classification into several 
smaller tasks, design one weak classifier for 
each task, and, finally, combine outputs to 
generate a consolidated final result.

Through these optimizations, our imple-
mentation managed to recognize VGA quality 
images (feature extraction and classification) at 
8 frames per second (fps) on Arduino 101 with 
SRAM of less than 20 Kbytes.

Recognition Pipeline and System 
Components
Figure 2a summarizes the major building blocks 
of the image-recognition pipeline running on 
Arduino 101. We put together a low-resolution 
image-recognition system using an Arduino 
101 board and VGA Arducam camera shield. 
The board contains an Intel Curie module 
that has two tiny cores, an x86 (Quark) and a 
32-bit ARC architecture core, both clocked at 
32 MHz. The Curie module has 80 Kbytes of 
SRAM, but the Arduino Sketch exposes only 
24 Kbytes of SRAM available for this work-
load. We evaluated the performance using the 
MNIST and MSFT datasets.5

Image Transforms
The captured image first undergoes down- 
sampling to generate a 20-320-pixel image. 
We employed linear interpolation for simplicity 
and observed no major performance degrada-
tion. The RGB image is converted to grayscale 
and scaled to keep the value range uniform. We 
avoided any image filtering or transforms that 
involve convolution operations.

Feature Engineering
We carried out feature engineering to meet 
the limited system resource requirements 
while maintaining good accuracy. Taking 
motivation from the HOG developed by 
Navneet Dalal and Bill Triggs,6 we used this 
feature extractor because it focuses on the 
shape of the characters, maintains size and 
rotational invariance, and can control com-
putational complexity and the feature vector 
dimension size for recognition tasks. The fea-
ture extraction method involves evaluating 
weight-normalized local histograms on the 
gradient angle of the image pixels over a grid 
of overlapping sliding windows. The algo-
rithm computes intensity gradients from raw 
pixels along both the x and y dimensions of 
each image and derives 2D gradient magni-
tude and orientation matrices. The entire 
image is then divided into small spatial regions 
(the size of each region controls the granular-
ity or resolution of the features) within which 
the local histograms are formed over gradi-
ent orientations. Instead of simple counting 
over each angular bin, a weighted bilinear 
transform has been performed to develop the  
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histogram, wherein the weight is governed by 
the function of gradient magnitudes. Finally, 
the histogram values are normalized using the 
Euclidian norm to make the features scale 
invariant. After experimentations, we decided 
to include the size of spatial regions of six pix-
els along x and y with 50 percent overlap and 
divided the whole 180-degree angular region 
to six bins, each covering 30 degrees of angu-
lar space. The dimension of the feature vector 
obtained from the entire image using these 
parameters is 96. Figure 2b demonstrates the 
features extraction process for two examples.

Model Design and Optimization
We investigated three model designs to solve 
the problem of digit and character recognition 
on Arduino 101.

Model design 1 (MD1). We started by designing 
a single two-layer fully connected feed-forward 
NN model to classify all digits and letters in 
one attempt (see Figure 2c). The NN has 96 
input nodes (feature dimension per image) 
and 62 output nodes (10 digits 1 26 upper-
case letters 1 26 lowercase letters). We con-
strained the number of hidden layers to one 
to keep it within the computational envelope 
of an ultra-low-power edge device. In a typi-
cal fully connected NN design, model param-
eters involve weights and biases between the 
input-to-hidden and hidden-to-output layers. 
We used a five-fold cross-validation method 
to determine the optimum number of hidden 
nodes that provides the average best accuracy. 
The number of hidden nodes we found suitable 
for this case is 250; then we started seeing an  

Figure 2. Small-scale image-recognition pipeline and edge-optimized image classification models. (a) Major building blocks 
and pipeline. (b) Feature extraction process for digits 9 and 5. Ensemble model design for (c) MD1, (d) MD2, and (e) MD3.
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overfitting effect on the validation set. Addi-
tionally, we also used regularization to limit the 
growth of NN weights. This model performs 
satisfactorily, but the recognition pipeline 
needed more than 150 Kbytes of RAM, which 
we do not have on Arduino 101.

Model design 2 (MD2). This design was our 
first step toward an ensemble/hierarchical 
architecture. We used weak classifiers operating 
at various stages and aggregated their results to 
produce the final classification decision. Figure 
2d demonstrates the design. Each feature vec-
tor (f1 … f96) from an input image is passed 
to the first model (MD,U,L), which classifies it 
among three classes: digit (D), uppercase letter 
(U), or lowercase letter (L). The second stage 
comprises three models: digit (MD), upper-
case letter (MU), and lowercase letter (ML). 
On the basis of the decision in the first stage, 
the corresponding model is chosen in the sec-
ond stage—that is, MD is chosen if the MD,U,L 
output (CD1) shows the highest likelihood of a 
digit. The task of MD is to perform classifica-
tion among 10 digits (0 to 9) and pass on like-
lihoods to the third model, MF, which applies a 
simple post-processing filter and does the final 
classification decision based on the highest like-
lihood. The pipeline works in a similar way for 

characters. Models MD,U,L, MD, MU, and ML 
are all two-layer NNs with only 20 nodes at 
the hidden layer. The advantage of this design 
is that we can keep each model size much 
smaller (that is, less than 1/10th the size of the 
model described in MD1). The MD2 design is 
about 24 Kbytes, which is the upper threshold  
that the Arduino OS allows. The slight down-
side is additional latency for loading models 
into RAM.

Model design 3 (MD3). We generated a mod-
ularized ensemble design with even less RAM 
usage compared to MD2. The input image 
breaks down into five spatial regions (four 
corners and one center, each 10 pixels wide), 
as shown in Figure 2e, and a separate model 
has been trained for classifying each region. 
In other words, when comparing with MD2, 
each NN model (MD,U,L through ML) is now 
a combination of five smaller NN models. 
From a higher level, MD3’s architecture and 
functionality are the same as those of MD2; 
the only change is the size and number of 
models (5 to 10 hidden nodes per model). 
We reduced each model’s size to 25 percent  
in MD2, and our entire MD3 pipeline from 
capture to the recognition result takes only  
12.3 Kbytes, which sufficiently fits into Curie. 

Table 1. Benchmark results on accuracy, latency, and memory.

Performance measures MD1 MD2 MD3 Comp*

Digits (accuracy) 97.9% 95.1% 95.0% 99.0%

Uppercase (accuracy) 80.0% 78.6% 78.2% 82.0%

Lowercase (accuracy) 73.0% 70.2% 70.1% 75.0%

Capture/transforms (processing time) 2,765 ms 2,774 ms 2,768 ms N/A

Feature extraction (processing time) 118 ms 118 ms 118 ms N/A

Classification (processing time) 3.06 ms 3.9 ms 7.8 ms N/A

Model size 150 Kbytes 18 Kbytes 6.4 Kbytes N/A

Total pipeline size 160 Kbytes 23.8 Kbytes 12.3 Kbytes N/A

* Best-known published numbers.
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Classification time increases due to an increase 
of models, but MD3 excels in terms of the  
lowest memory footprint.

Results
Table 1 summarizes our results and shows that 
our implementation (MD3) takes 12.3 Kbytes 
of SRAM, which is within the allowable range 
of the Arduino 101 Sketch OS. The average 
latency of the entire inference pipeline from 
capture to classification display on LCD runs 
in less than 3 seconds.

Visual IoT: Medium-Scale 
Recognition
In this section, we investigate the ultra-low-power 
processing implications for gesture (hand-pose) 
recognition.

Processing Flow for Gesture Recognition
As Figure 3a shows, our gesture algorithm com-
prises four main steps. Step one (color segmen-
tation) is responsible for extracting the image 
color histogram and clustering image pixels 
based on color. Each layer contains one or 
more objects, including one layer that contains 
the background. To perform the segmentation, 
our algorithm maps the image to the hue- 
saturation (HS) color space, creates a histo-
gram image in the HS space mapping every 
pixel color into a cell of the histogram, and uses 

an iterative method to cluster pixels. Step two 
(principal object search) uses k-means segmen-
tation to identify principal objects in each layer. 
Step three (binarization) performs binarization 
and normalization of each piece to generate a 
collection of candidate patterns, and step four 
(classification) uses a convolutional neural  
network (CNN) to recognize the embedded 
patterns. Figure 3b shows the hand-pose clas-
sification pipeline.

Neuromatch: Optimized Neural Network
For our pipeline, the CNN tends to be the big-
gest bottleneck. More specifically, layer three of 
the CNN (a fully connected layer) consumes 
the most power. From this observation, we 
designed a hardware accelerator for the NN. 
Our proposed artificial NN implementation, 
Neuromatch, reduces the memory footprint 
of a traditional NN by approximately eight 
times, avoids the use of double-precision float-
ing units, eliminates the use of transcendental 
functions, and reduces to zero the number of 
multiplications in the feed-forward layers, thus 
reducing power and improving performance.

Shifted neuron. Our Neuromatch imple-
mentation replaces a traditional neuron with 
a “shifted neuron” using bit shifts instead of 
multiplication (see Figure 3c). By using this 
shifted neural network (SNN) approach, we 

Figure 3. Recognition flow for gesture recognition and optimized neural network (NN) classification 
models. (a) Pipeline overview. (b) Classification model. (c) Optimized NN approach.
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can reduce the neuron complexity in terms of 
power and performance. Additionally, the use 
of bit shifts instead of multiplications reduces 
the memory footprint to store the weights, 
because now we are storing the number of bit 
positions to shift the input instead of storing 
typical floating-point data.

Sigmoid function approximation. In Neuro-
match, the output of the shifted neuron is then 
input to the activation function. Sigmoids are 
the most widely used activation function. For 
Neuromatch, we used a linearly approximated 
sigmoid function. The basis of such approxima-
tions is similar to previous approaches.7

Hardware implementation. We implemented 
the Neuromatch hardware subsystem on a 
state-of-the-art process node, and our synthe-
sis results show that the implementation is 
efficient with a small footprint and sub-mW 
power consumption. We evaluated Neu-
romatch’s performance for algorithms for  
handwritten digit, hand-pose, and voice com-
mands recognition. The complete subsystem 
where Neuromatch was tested integrates the 
optimized NN solution with a microcontroller 
core, a convolution hardware accelerator, and 
an interconnection fabric. For hand-pose rec-
ognition, the 29-3-29 pixel images were passed 
to the convolution accelerator as a first stage; 
once the convolution was finished, the result-
ing vector of 1,250 data words was the input  
for Neuromatch. To train and test the hand- 
written digit-recognition algorithm, we used the 

available MNIST dataset. The data used for the 
hand-pose-recognition algorithm was collected 
locally. We compared Neuromatch’s accuracy 
against a traditional NN implementation using 
the same network configuration and the same 
input vectors. The performance metric consid-
ered in these results is the time consumed by 
Neuromatch to classify the provided data, with 
a clock frequency of 100 Mhz. Table 2 shows 
the accuracy and performance results. Neuro-
match can match the accuracy results of much 
heavier floating-point NN implementations  
for chosen applications. Neuromatch accom-
plishes this with much lower computational 
and power costs.

Visual IoT: Large-Scale 
Summarization
In this section, we investigate the low-power 
processing implications of HOG processing for 
video summarization.

HOG and HOG-LX for Video 
Summarization
Because visual IoT devices tend to capture a lot 
of video, it is challenging to determine salient 
parts that might be worth viewing or analyz-
ing later. Summarizing videos is an import-
ant problem to address, and it is challenging 
because it requires understanding the changes 
across many frames in a long-running video 
as well as the minimum number of frames to 
best represent it. An example summarization 
pipeline consists of feature extraction on each 
frame, followed by an analysis of similarity 
across frames, and then selection of the key 
frames that best represent the video.

HOG is one of the most popular and 
fundamental image features and a basis for 
other higher-level and more complex feature 
sets.8,9 Although the HOG features have been 
optimized for object-recognition tasks, scene 
descriptions using HOG tend to be compu-
tationally costly. As Figure 4a shows, for sum-
marization, HOG tends to be the most costly 
operation in terms of computations. Many 
hardware accelerators for HOG have been 
developed for real-time object detection.10 
Most of the previous architecture studies on 
HOG have been focused on achieving real time 
up to 1080p, especially for object-detection 
applications.11 To reduce the original HOG’s 

Table 2. Accuracy and performance: 
digit and hand pose.

Performance 
measures Digit

Hand 
pose

Testing size 10,000 100

Floating-point NN 
accuracy

99% 99%

SNN accuracy 96% 97%

SNN performance 52 ms 52 ms
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computations while minimizing performance 
degradation as a scene descriptor, we proposed 
a low-complexity HOG (called HOG-LX) as 
an efficient front end to many computer vision 
applications. It reorganizes the order of com-
putations and creates operations per histogram 
channel. The design of the HOG-LX scheme in 
Figure 4b is focused on hardware acceleration, 
which can be leveraged for low-power, low-cost 
products, including wearable and mobile plat-
forms. The complete detailed architecture of 
HOG-LX is available in previous work.12 Here, 
we enumerate some of the optimizations made 
to the HOG computation.

Accelerated histogram binning. Each cell 
computes an orientation histogram from 
image gradients within an n 3 n cell region. 
We replaced expensive per-pixel computations 
with a new scheme that converts the per-pixel 
binning into operations per histogram channel. 
For example, with a cell size n 5 8 and histo-
gram channels m 5 9, 364 operations (n2) are 
reduced to 39 operations (m).

Histogram channel finding. We developed a 
fast channel finder that avoids the expensive 
arctan operation used in the original HOG 
implementations. It minimizes the number 
of comparisons using the symmetry of tan-
gent, thereby decreasing multiplications and 
memory requirement for boundary tangent 
values.

Per-channel computation. We optimize per- 
channel operations by first determining chan-
nels and constituent gradients, then combin-
ing gradients belonging to the same channels 
through a vector sum, which results in a single 
gradient per channel. The remaining expensive 
operations are then performed only on a single 
vector.

Simplification for lightweight computations.  
From various experimental case studies, we 
found that the level of sophistication in HOG 
can be adjusted depending on applications, 
especially for scene saliency, in which HOG 
is used as a global scene descriptor.12 To 
eliminate nonhardware-friendly operations, 
HOG-LX chooses four simplifications: skip 
the bilinear voting in the histogram binning, 
no arctangent computation in the histogram 
binning, use L1 norm of a gradient vector sum 
in the voting, and use L∞ norm in the contrast 
normalization.

Data-reusable scanning for efficient memory 
usage. To reduce the memory storage require-
ments at a given time, we divide the input image 
into vertical tiles with overlapping border cells. 
The novel tiled memory scanning keeps histo-
grams of horizontally adjacent cells of a single 
tile instead of keeping an entire image in the 
local memory. The tile width can be adjusted to 
the local memory size as much as needed under 
memory-constrained conditions.

Figure 4. Video summarization pipeline and our low-complexity histogram of oriented gradients (HOG-LX) approach.  
(a) Breakdown of video summarization flow. (b) HOG-LX for efficient video summarization.
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HOG-LX Analysis and Evaluation
We used ModelSim, a Verilog-based tool for 
simulation, to evaluate HOG-LX’s efficiency.12 
For 1080p with 30 fps video using a 20-cell 
width tile, HOG-LX can achieve 1.17 gigaop-
erations per second (GOPs) with 0.85 Mbits 
per second of memory bandwidth. The original 
HOG requires 15.12 GOPs and 3.07 Gbits per 
second of memory bandwidth. For accuracy 
comparison between HOG and HOG-LX, 
we used the UCF-101 action dataset13 and 
observed similar discrimination. See previous 
work for a detailed analysis of the HOG-LX 
benefits.12

I n this article, we focused on the 
ultra-low-power processing implications for 

edge devices in the visual IoT domain. We 
showed that the challenges in computational 
and memory needs while staying within the 
processing power constraints can be addressed 
through intelligent co-design of algorithms 
and models as well as accelerators. We believe 
the data and the findings in this article will be 
useful to researchers and architects working on 
visual IoT technologies and solutions going 
forward. 
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Ultra-Low-Power Processors

An Overview of Time-Based 
Computing with Stochastic 
Constructs

Computing on time-based data is a recent evolution of research in 
stochastic computing (SC). As with SC, complex functions can be 
computed with low area cost, but the latency and energy efficiency 
are favorable compared to computations on conventional binary 
radix. This article reviews the design and implementation of 
arithmetic operations on time-encoded signals and discusses the 
advantages, challenges, and potential applications.

S
tochastic computing (SC), a paradigm first introduced by W.J. Poppelbaum1 and 
Brian Gaines2 in the 1960s, has received considerable attention in recent years, 
particularly after Weikang Qian and colleagues reintroduced the concept to the 
electronic design automation community.3,4 It has since been explored as a poten-

tial paradigm for emerging technologies and “post-CMOS” computing. SC systems have 
very low area cost. This generally translates to low power consumption, making the para-
digm interesting for ultra-low-power processing systems.

In SC systems, logical computation is performed on random bitstreams called stochastic 
numbers (SNs). Two representations are used:

•	 In the unipolar representation, each real valued number x (0 # x # 1) is represented by 
a sequence of random bits, each of which has probability x of being 1 and probability 
1 – x of being 0.

•	 In the bipolar representation (– 1 # x # 1), each bit in the stream has a probability  
(x 1 1)/2 of being 1 and 1 – (x 1 1)/2 of being 0.

For example, 10011, 10101, and 11100 are all SNs representing 0.60 in the unipolar and 
0.2 in the bipolar representations.

SC offers some intriguing advantages over conventional binary radix. Complex func-
tions can be implemented with simple hardware. This enables the design of low-area and 
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low-power arithmetic units. For instance, 
multiplication can be performed with a single 
AND gate, and scaled addition can be formed 
with a single multiplexer unit. Also, SC pro-
vides tolerance to soft errors (that is, bit flips),4 
timing errors,5 and clock skew.6 The obvious 
disadvantage of SC is the latency. A stochastic 
representation is exponentially longer than con-
ventional binary radix. This translates to long 
operation times, particularly if high accuracy is 
required.7 Long bitstreams can be compensated 
for, to some extent, by shortened clock cycles. 
Nevertheless, long latencies translate into high 
energy consumption and so offset any gains 
made by simplified hardware.

This article explores an evolution of the 
concept of SC. Instead of encoding data in 
space, as random bitstreams, we encode values 
in time. The time encoding consists of periodic 
signals, with the value encoded as the fraction 
of the time that the signal is in the high (on) 
state compared to the low (off) state in each 
cycle. We call these pulse-width modulated 
(PWM) signals (see Figure 1).

Our approach is motivated by the obser-
vation that, as technology has scaled and device 
sizes have gotten smaller, the supply voltages 
have dropped while the device speeds have 
improved.8 Control of the dynamic range in 
the voltage domain is limited; however, con-
trol of the length of pulses in the time domain 
can be precise.8,9 Encoding data in the time 
domain may be more accurate and efficient 
than converting signals into binary radix.

This time-based representation is an excel-
lent fit for low-power applications that include 
time-based sensors, such as image processing 
circuits in vision chips. Converting a variety of 
signals from an external voltage to a time-based 
representation can be done much more effi-
ciently than a full conversion to binary radix. 
This enables a savings of at least 10 times in 
power at the outset.10

By exploiting pulse width modulation, 
signals with specific probabilities can be gen-
erated by adjusting the frequency and duty 
cycles of the PWM signals. These signals can 
be treated as inputs to the same logical struc-
tures used in stochastic computation, with the 
value defined by the duty cycle. This obser-
vation is motivated by noting that the sto-
chastic representation is a uniform, fractional 

representation. All that matters in terms of 
the value that is computed is the fraction  
of time that the signal is high.6 For example, 
if a signal is high 68.7 percent of the time, it 
is evaluated as 0.687 (see Figure 1).

This article reviews a transformative new 
idea: a technique for performing computa-
tion on time-encoded analog values directly 
with ordinary CMOS digital logic.10 This is 
related to work on a deterministic approach 
to SC.10–12 We have shown that, if properly 
structured, computation on deterministic bit-
streams can be performed with the same cir-
cuits as are used in SC, yielding the following 
benefits:

•	 Unlike stochastic methods, our determin-
istic methods produce completely accurate 
results, not approximations, with no errors 
or fluctuations.

•	 The cost of generating deterministic 
streams is a small fraction of the cost of 
generating streams from random or pseu-
dorandom sources.

•	 Most importantly, the latency is reduced 
by a factor of 1/2n, where n is the equiv-
alent number of bits of precision in 
binary.

Computation on signals encoded in time 
is directly analogous to this deterministic 
approach to SC. In this article, we review the 
performance of different stochastic operations 
for data processing of inputs generated by a 
sensing circuit; such data is time-encoded with 
PWM signals. We discuss the advantages, chal-
lenges, and potential applications for computa-
tion on such time-encoded signals.

Figure 1. Encoding in time with a periodic analog signal. The value 
represented is the fraction of the time that the signal is high in each cycle—
in this case, 0.687.
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Time-Based Encoding of Stochastic 
Numbers
Conventionally, the inputs to stochastic circuits 
are random bitstreams. Sensing circuits, such 
as image sensors, convert the sensed data (for 
example, light intensity) to an analog voltage 
or current. The voltages or currents are then 
converted to digital form, as binary radix, with 
costly analog-to-digital convertors (ADCs). 
Finally, stochastic bitstream generators, con-
sisting of random number generators (that is, 
linear-feedback shift registers) and compara-
tors, are used to convert the data from binary 
radix format to stochastic bitstreams.4

Recent work has demonstrated low-cost 
converters that directly convert sensed data 
from analog form to stochastic bitstreams.13,14 
These greatly reduce the hardware footprint 
and power consumption of the front end of sto-
chastic circuits. Nevertheless, due to the long 
latency of operating on random bitstreams, the 
overall energy consumption—defined as the 
integral of power consumption over time—
remains high. In particular, when high accuracy 
is needed, the length of stochastic bitstreams 
becomes prohibitive (for example, more than 
1,024 cycles). Even with a higher working fre-
quency, the latency is high; this makes stochas-
tic processing of digital bitstreams inefficient in 
terms of energy.

However, with sensors that produce 
time-encoded outputs, which in turn become 
inputs to the SC circuit, we can work directly 
with these analog signals instead of converting 
them into digital bitstreams. This results in a 
significant saving in energy at the front end. 
Another compelling advantage is the improve-
ment in the processing time. By using time- 
encoded signals, the total processing time 
can be reduced to a time equal to only one 
clock cycle.12 The precision of the compu-
tation now depends on the precision of the 
PWM signal in time, rather than the length 
of the bitstream. Experimental results on image 

processing applications show up to 99 percent 
speedup in performance and 98 percent saving 
in energy dissipation when processing time- 
encoded signals instead of conventional digital 
bitstreams10,12

Figure 2 shows the flow of computing 
on time-encoding signals. Assuming that the 
sensing circuit’s output is in voltage or cur-
rent form, an analog-to-time converter (ATC) 
circuit (that is, a PWM signal generator) 
is used to convert the sensed data to a time- 
encoded pulse signal. This circuit is very low 
cost, both in terms of hardware area and energy  
consumption (approximately 30 mm2 and 
0.08 pJ, respectively, for 1 GHz frequency, 
when supplying the converter with an external 
clock source). The converted signal is processed 
using the same circuit constructs as are used in 
SC. The output is converted back to a desired  
analog format using a time-to-analog converter 
(TAC). This is simply a voltage integrator.

The implementation cost of an ATC, 
which consists of an analog comparator, a ramp 
generator, and a clock generator, is a function 
of its frequency. Increasing the frequency (and 
thus decreasing the period of the PWM signal) 
increases the implementation cost of the com-
parator and ramp generator, but lowers the cost 
of the clock generator (for example, a lower 
number of inverters in a ring oscillator leads to 
a higher oscillation frequency). For frequency 
ranges of lower than 3 GHz, the clock gener-
ator has the dominant cost and so increasing 
the frequency lowers the total implementation 
cost of the ATC. However, care must be taken 
because increasing the frequency lowers the 
effective number of bit (ENOB) of time-based 
representation, which might then decrease the 
accuracy of the computation. For comparable 
accuracy levels, the synthesis results in our pre-
vious work show a 40 percent hardware cost 
reduction when replacing the conventional 
SN generator with ATCs in image-processing 
applications.10

Figure 2. Time-based computing with stochastic constructs. An ATC converts the sensed data to a 
time-encoded pulse signal. The converted signal is processed using the stochastic circuit, and the 
output is converted back to a desired analog format using a TAC.
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Independence in Stochastic Circuits
Stochastic operations can be divided into two 
main categories with respect to correlation 
between their inputs: operations that require 
independent (that is, uncorrelated) inputs, 
and operations that require highly correlated 
inputs. Multiplication and scaled addition 
and subtraction are the most common sto-
chastic operations that require independent 
inputs for correct functionality. An AND 
gate multiplies two unipolar SNs only if its 
inputs are independent bitstreams. A multi-
plexer (MUX) connected to two SNs as the 
main inputs and another SN as the select 
input accurately performs scaled addition and 
subtraction only if the select input is indepen-
dent of the two main inputs. (Note, however, 
that the main inputs need not be independent 
of each other.)

With time-encoded PWM signals, we set 
the duty cycle to be the value represented. For 
operations that require independent inputs, 
such as multiplication using an AND gate or 
scaled addition using a MUX, PWM signals 
that are not harmonically related must be 
used.10 To see why, consider connecting two 
PWM signals with the same duty cycle and the 
same frequency to the inputs of an AND gate. 
This produces an output equal to the inputs 
and not the product of the values. Inharmonic 
frequencies are selected for the input signals, 
and the operation is run for the least-common 
multiple (LCM) or multiples of the LCM of 
the period of the input signals, to produce 

highly accurate results. Figure 3 shows exam-
ples of performing multiplication and scaled 
addition using time-encoded PWM signals.

Three properties are exclusive to the oper-
ations with independent time-encoded inputs:

•	 Property 1. Each independent input must 
have a frequency inharmonic to the fre-
quencies of other independent inputs. A 
separate clock source is, therefore, required 
for each independent input.

•	 Property 2. Increasing the number of inde-
pendent inputs increases the operation 
time. The period of the output signal and 
so the operation time equals the product 
of the periods (1/frequency) of the inde-
pendent time-encoded inputs. Thus, by 
increasing the number of independent 
inputs, the circuit must run for a longer 
time to produce accurate results.

•	 Property 3. The accuracy of operations is 
inversely proportional to the frequency 
of input signals. Although increasing the 
frequency lowers the operation time, it 
decreases the ENOB in representing the 
input values and so the accuracy in the 
computations.

Compared to conventional bitstream-based 
SC, time-encoding the inputs can significantly 
improve the processing time and hardware area 
and power cost, and so the energy consump-
tion of operations that require independent 
inputs.

Figure 3. Examples of stochastic operations with independent time-encoded inputs. (a) Multiplying two time-encoded 
pulse-width modulated (PWM) signals using an AND gate. IN1 represents 0.5 with a period of 20 ns, and IN2 represents 0.6 
with a period of 13 ns. The output signal represents 0.30 (78 ns/260 ns), the expected value from multiplication of the inputs.  
(b) Scaled addition using a multiplexer (MUX). IN1 and IN2 represent 0.2 and 0.6 with a period of 5 ns, and Sel represents 0.5 
with a period of 4 ns. The output signal represents 0.40 (8 ns / 20 ns), the expected value from the scaled addition of the inputs.
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Correlation in Stochastic Circuits
The second category of stochastic operations 
includes those that require highly correlated 
inputs. An XOR gate implements absolute- 
valued subtraction |x1 – x2| when it is supplied 
with highly correlated inputs—that is to say, 
where the two input streams have maximum 
overlap in their 1s.15 As an example, connect-
ing S1 5 11101 and S2 5 10001, two cor-
related stochastic streams representing 4/5 and 
2/5, to the inputs of an XOR gate produces 
S3 5 01100, the expected value for absolute- 
valued subtraction. This operation is partic-
ularly useful in stochastic implementation of 
image-processing algorithms, such as Robert’s 
cross-edge detection algorithm.16

An AND gate with independent inputs 
works as a multiplier. However, with highly 
correlated inputs, it gives the minimum of the 
two stochastic streams. An OR gate supplied 
with highly correlated streams gives the max-
imum of the two stochastic streams. Thus, a 
basic sorting unit can be constructed with 
only an AND and an OR gate: supplied with 
two correlated inputs, it produces the smaller 
of the two values on one output line, and 
the greater of the two on the other. Such a 

low-cost implementation of sorting can save 
orders of magnitude in hardware resources 
and power when compared to the costs of a 
conventional binary implementation. Such cir-
cuits are important for applications such as the 
median filtering noise-reduction algorithm.17

Comparison of SNs is another common 
operation in stochastic circuits. A low-cost sto-
chastic comparator using a simple D-type flip-
flop was proposed in our previous work.12 For 
correct functionality, the inputs of the flip-flop 
must be correlated. For a digital representation, 
all 1s in each stream must be placed together 
at the beginning of the stream. The first SN 
should be connected to the D input, and the 
second one should be connected to the falling 
edge triggered clock input. The output of com-
paring two SNs, N1 and N2, will be 0 if IN1 
, IN2, and 1 otherwise.

When representing SNs with time- 
encoded PWM signals, high correlation or 
maximum overlap is provided by satisfying two 
requirements: choosing the same frequency 
for the signals, and having maximum over-
lap between the high parts of the signals. For 
example, two PWM signals that have the same 
frequency, and each has the high part located 

Figure 4. Examples of stochastic operations with correlated time-encoded inputs. (a) Performing stochastic absolute-valued 
subtraction, minimum, and maximum operations on two synchronized PWM signals: IN1 represents 0.3 and IN2 represents 0.7. 
Both PWM signals have a period of 10 ns. (b) Comparing stochastic numbers (SNs), represented by synchronized PWM signals, 
using a D-type flip-flop: (up) IN1 , IN2, and thus Out 5 0; (down) IN1 . IN2, and thus Out 5 1.
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at the beginning or end of each period, are 
called “correlated” or “synchronized” signals.12  
Figure 4a shows two synchronized PWM sig-
nals and the outputs of performing the sto-
chastic absolute-valued subtraction, minimum, 
and maximum operations on these. Note that 
the expected output is produced after a single 
cycle of the PWM input signals. Continuing 
the operations for additional cycles (the dot-
ted lines) does not improve the accuracy of the 
results.

Figure 4b also shows two possible cases of 
comparing SNs, represented by PWM signals 
using a D-type flip-flop. When IN1 is smaller 
than IN2, the falling edge of the PWM signal 
representing N2 causes the flip-flop to sample a 
low-level signal, and thus logical-0 is produced 
at the output. When N1 is greater than N2, the 
PWM signal representing N1 is still at a high 
level when the falling edge of IN2 occurs. So, 
logical-1 will be produced at the output of the 
flip-flop.

The exclusive properties of operations  
with correlated time-encoded inputs include 
the following:

•	 Property 1. The output of performing sto-
chastic operations on synchronized PWM 
signals is ready after running the operation 
for only one period of the input signals. As 
Figure 4 shows, the fraction of time each 
output signal is high is the same in all peri-
ods of each output signal. In such cases, 
continuing the operation for additional 
periods (the dotted lines in the figures) 
does not change the value or, most impor-
tantly, the accuracy of the output.

•	 Property 2. In contrast to stochastic opera-
tions with independent inputs that needed 
time-encoded signals with inharmonic 
frequencies, the inputs of correlated opera-
tions must have the same frequency. Thus, 
only one source, generating one clock sig-
nal, suffices.

Similar to operations that require independent 
inputs, by time-encoding of inputs, the pro-
cessing time, area, and power cost, and con-
sequently, energy consumption of operations 
that require highly correlated inputs can all be 
greatly reduced when compared to those of the 
conventional bitstream based processing.

Applications
Growth in digital and video imaging cameras, 
mobile imaging, biomedical imaging, robotics, 
and optical sensors has spurred demand for low-
cost, energy-efficient circuits for image process-
ing. Prior work on SC has shown this computing 
paradigm’s potential in low-cost implementa-
tion of image and video-processing algorithms. 
Image processing based on time-encoded signals 
could have significant impact in this applica-
tion area, particularly when power constraints 
dominate. Time-encoded, mixed-signal process-
ing can be performed on the same chip, with 
analog-to-time conversion followed by logical 
computation on the time-encoded signals, using 
stochastic constructs.

Figure 5 shows the conventional binary 
implementation and the core stochastic logic 
for the Robert’s cross edge-detection algo-
rithm. The figure summarizes the synthe-
sis results, which are based on a 45-nm gate 
library. Two sets of numbers are reported: one 

Figure 5. The Robert’s cross edge-detection circuit: (a) conventional binary 
implementation, (b) core stochastic logic, and (c) synthesis results and the 
results of processing a 128 3 128 sample input image using the binary 
design, a stochastic design with 256-bit random SNs, and time-based SNs. 
(For details of the implementations, see our previous work.10)
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for a stochastic design, processing 256-bit ran-
dom streams, and one for a time-based design. 
Both of these designs share the same core 
logic, shown in Figure 5b. The conventional 
bitstream-based stochastic design uses the ran-
dom stochastic stream generator proposed by 
Qian and colleagues.4 The time-based design 
uses the ATC proposed in our previous work10 
for time-encoding the inputs.

Considering the critical path of the core 
stochastic logic as the minimum allowed 
period of the signals when time-encoding 
the input data, 0.51 ns is selected as the 
period of the four main inputs and 0.34 ns 
is selected for the period of the select input. 
(For more details on choosing the period of 
the time-encoded signals, see our previous 
work.10) As Figure 5 shows, the time-based 
design has significantly lower area and power 
costs than the conventional binary and sto-
chastic designs. The processing time and the 
energy consumption are also dramatically 
improved.

Mixed-signal design is attractive for VLSI 
implementations of neural networks (NNs) 
for reasons of speed and energy efficiency. 
Also, mixed-signal solutions do not suffer 
from the quantization effects that arise with 
analog-to-digital conversion. NNs are com-
putationally complex, which makes them a 
good candidate for processing with low-cost 
stochastic logic. Digital bitstream-based pro-
cessing of data in stochastic NN often requires 
running for more than 1,000 clock cycles 
to achieve an accuracy close to that of con-
ventional deterministic fixed-point binary 
designs, which then leads to high energy con-
sumption. Time-based SC has the potential to 
mitigate these costs, offering energy-efficient 
designs. Unlike conventional SC, the com-
putations can be completely accurate with no 
random fluctuation. The approach could have 
a significant impact in the design of near-sen-
sor NN accelerators.

Challenges
Time-based computing is a mixed-signal tech-
nology that combines an analog representation 
in time with digital processing, using stochastic 
constructs. In this section, we briefly discuss 
different challenges in the development and 
application of method.

Analog Noise
Recent work has shown that by properly struc-
turing digital bitstreams, completely deter-
ministic computation can be performed with 
stochastic logic.11 The results are completely 
accurate with no random fluctuations. Due to 
the mixed-signal nature of time-based process-
ing, computations on time-encoded signals are 
susceptible to noise; one cannot promise 100 
percent accuracy. Analog noise cannot be com-
pletely eliminated from signals and therefore 
from computation. By careful design of ATC 
and TAC, and by choosing appropriate fre-
quencies, however, the error can be made very 
low (less than 0.001 percent mean absolute 
error).

Resolution
The resolution in time-based processing is lim-
ited by noise, rather than by the length of bit-
streams, as it is with SC. While there is no limit 
in the resolution of SNs represented by digital 
bitstreams, the resolution in our time-encoded 
approach is limited by the maximum ENOB of 
the ATC (that is, the PWM generator). For a 
minimum frequency of 10 MHz, current ATCs 
can achieve a maximum ENOB of 11 to 12 bits.

Truncation
With time-encoded signals, operations should 
run for a specific amount of time to produce 
correct results. For operations with indepen-
dent inputs, this time equals the product of 
the period of the input signals; for operations 
with correlated inputs, it equals the period of 
the input signals. Running the operation for 
longer or shorter than the required time results 
in truncation error.10 In contrast, stochastic 
bitstreams have the property of progressive pre-
cision, meaning that short subsequences of an 
SN can provide low-precision estimates of its 
value.16 The longer the stream runs, the more 
precise the value. Given enough time, the out-
put converges to the expected correct value, 
and consequently, the truncation error is gen-
erally low.

Synchronization
Operations using synchronized PWM signals 
are limited to only the first level of logic in a cir-
cuit. Providing the required synchronization—
that is, having maximal overlap between the 
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high part of the input signals—is difficult to 
achieve for the second and higher logic levels.

A naive solution is to convert the output 
of each level back to an analog format, then 
perform an analog-to-time conversion and 
feed this to a higher level. However, this naive 
method decreases the accuracy and is costly in 
terms of latency, area, and energy.

Skew
The synchronization must be perfect in oper-
ations that require synchronized inputs. 
On-chip variations or noise sources affecting 
clock generators can result in deviations from 
the expected period, phase shift, or slew rate of 
the signals. Different delays for AND and OR 
gates, for example, can be a source of signifi-
cant skew in implementing sorting-based cir-
cuits. The skew in each stage is propagated to 
the next, resulting in a considerable skew error 
for large circuits. Mitigating the skew by delay-
ing some signals is complex and costly, and may 
offset gains in area and power.

Rotation
Relatively prime stream lengths, clock division, 
and rotation were three methods explored by 
Devon Jenson and Marc Riedel for processing 
bitstreams deterministically.11 Choosing inhar-
monic frequencies for the time-encoded signals 
corresponds to the “relatively prime” method 
in Jenson and Riedel.11 A high-frequency 
time-encoded PWM signal is connected to the 
select input of the MUX in previous work by 
Najafi and Lilja12 for an accurate scaled addi-
tion operation. This approach corresponds  
to the “clock division” method in Jenson and 
Riedel.11 In their “rotation” method,11 digital 
bitstreams are stalled for one cycle at powers 
of the stream length, causing each bit of one 
bitstream to see each bit of the other stream 
exactly once. Considering the high working 
frequency of time-based SC, stalling PWM  
signals for a very short and precise amount of 
time might not be possible.

Sequential Circuits
Sequential finite-state machine (FSM)-based 
approaches exist for implementing complex 
functions with SC.18,19 These methods depend 
on randomness in different ways than combina-
tional methods do. It is not clear how to translate 

these sequential constructs to deterministic com-
putation on time-based PWM signals.

C omputation on time-based encodings 
offers significant advantages over both 

deterministic and conventional stochastic 
approaches. It generally results in circuits that 
are much less costly in terms of area and power, 
particularly for applications where the inputs 
are presented in analog voltage or current form. 
The savings in the analog-to-time conver-
sion step compared to a full analog-to-digital 
conversion are significant. Accordingly, the 
approach is a good fit for low-power real-
time image-processing circuits, such as those 
in vision chips. In future work, we will 
develop an ultra-low-power video-processing  
unit using the discussed time-based processing  
approach. We also use this processing  
approach in a low-cost, energy-efficient 
implementation of convolutional NNs and 
near-sensor NN accelerators 
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Hardware Designs for 
Security in Ultra-Low-Power 
IoT Systems: An Overview 
and Survey

This article presents a survey of state-of-the-art hardware designs 
optimizing the tradeoffs between security, power, and costs in 
ultra-low-power systems like the Internet of Things. The authors 
analyze the connections between hardware specs and system 
demands to bridge the gap between research conducted in different 
communities. They also identify open problems in designing future 
ultra-low-power and secure hardware.

T
he emergence of the Internet of Things (IoT) and pervasive computing are 
expected to enable physical things in the world to collect, process, and exchange 
data over the Internet. The blending of physical and cyber worlds will open up 
opportunities to revolutionize healthcare, transportation, infrastructure, and man-

ufacturing industries (see Figure 1). The fundamental technology enablers are ubiquitous 
ultra-low-power (ULP) and ultra-low-cost edge devices equipped with sensors, actuators, 
computers, and network connectivity. In particular, ULP systems that can operate on bat-
teries or even on harvested energy for years will enable many disruptive applications, such as 
implanted and wearable medical and fitness devices, environmental monitors for ecosystem 
study and protection, and industrial applications.

At the heart of all the ubiquitous applications in Figure 1 is a huge amount of 
personal, sensitive, or confidential data to be processed and transmitted. Therefore, 
security and privacy issues are among the most important challenges faced by this tech-
nology. Securing these ULP systems poses additional difficulties beyond conventional 
computer system and network security due to strictly limited computing resources, 
stringent power budgets, severe cost pressures, and the devices’ physical accessibility to 
attackers. Security within ULP systems must be improved and optimized at every sys-
tem stack. This article focuses on the lower stacks of the system, namely the hardware 
building blocks.

Kaiyuan Yang
Rice University

David Blaauw,  
Dennis Sylvester
University of Michigan
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The identification and authentication of 
physical items are among the most fundamental 
requirements for secure IoT systems. Common 
examples include RFIDs for supply chain man-
agement, smart cards for owner verification, and 
wireless sensor nodes for secure data transmission.  
Identification can be established with any form 
of public identifier, such as physical marks or 
electronic IDs stored in nonvolatile memory 
(NVM) devices. Comparatively, authentica-
tion is much more demanding; it requires one 
entity of a protocol (the verifier) to be assured 
of the claimed identity of the other entity (the 
prover)—that is, to distinguish genuine physi-
cal things from counterfeited ones and prevent 
impersonation attack in networks. One-way or 
mutual authentication should be implemented 
depending on the targeted applications. A 
common approach to authentication relies on 
challenge-and-response protocols, in which the 
verifier asks a question and the prover must 
provide a valid answer to be authenticated. The 
questions and answers are agreed on in advance. 
The most common implementation of such a 
protocol is based on cryptographic primitives 
and secret keys. However, implementing these 
two primitives in IoT devices faces challenges 
of severe power and cost budgets, as well as 
physical attacks ranging from direct probing 
to side-channel monitoring. Therefore, a new 
security primitive aiming at secure key storage 
and lightweight authentication, called physi-
cally unclonable function (PUF), has emerged 
in recent years. The essential idea of PUF is to 
employ manufacturing variations as entropy 
sources to generate a random mapping function 
unique to each fabricated instance, which was 
first envisioned with optical and silicon demon-
strations in 2002.1,2 Over the years, however, it 
has been shown that PUFs face several critical 
issues related to their reproducibility, physical 
security, and vulnerability to modeling attacks.

In addition to identification and authen-
tication of IoT devices, the secrecy and integ-
rity of sensitive data being transmitted within 
the network, usually wirelessly, are also critical. 
Until now, cryptographic primitives have been 
the only practical methods to achieve the secu-
rity requirements. High power consumption is 
the main challenge to implementing all kinds of 
cryptographic primitives in IoT devices. Figure 2 
shows the energy costs of encryption compared 

to other building blocks of a typical IoT system. 
Similar to entity authentication, these designs 
face vulnerability to physical attacks. Attackers 
can exploit power and electromagnetic (EM) 
radiation information of the physical implemen-
tation to reveal the secret keys.

In this article, we present a survey of the 
state-of-the-art hardware designs optimizing 
the tradeoffs between security, power, and costs 
(including design and manufacturing). Most of 
the designs have silicon prototypes and measure-
ment results. Open questions in designing future 
ULP secure hardware are discussed as well.

Cryptography-Based Entity 
Authentication
Figure 3 shows common challenge-and-response 
authentication protocols using cryptographic 
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primitives and secret keys. There are two types  
of solutions: block ciphers or hash functions 
with secret keys shared by the verifier and 
prover, and public-key ciphers with secret keys 
protected by provers. Both of these require 
hardware blocks for random number genera-
tion, cryptographic computation, and secret 
key storage. Novel implementations of these 
blocks are necessary to keep them within power 
and cost budgets while keeping them secure 
from potential attacks.

Secure Crypto Engine
Cryptographic primitives such as block ciphers, 
public-key ciphers, and hash functions are the 
most widely used building blocks in secure  
systems. As Figure 2 shows, running these algo-
rithms in software is not practical for ULP pro-
cessors in IoT devices, because of the large latency, 
low energy efficiency, and limited memory space. 
Therefore, hardware accelerators for ULP devices 
are critical to reducing overall power consumption, 
but the available power and area budget limit the 
use of existing high-throughput and high-efficiency 
accelerators targeting server applications.4 Recent 
research efforts have focused on developing light-
weight accelerators for cryptographic algorithms 
that consume less power and area without the loss 
of energy efficiency. We selected the most widely 
used block cipher, Advanced Encryption Standard 
(AES), for a case study. Many of the design tech-
niques can be adopted by other algorithms as well.

Lightweight AES engine. AES is a block cipher 
working on 128-bit input blocks. It takes 
10/12/14 rounds for 128/196/256 key lengths. 
Within each round, the data is processed in four 
steps, including AddRoundKey (mixing input 
data and round key by XOR), SubBytes (non-
linear operation based on an SBox), ShiftRow 

(cyclically shifting the four rows by 1/2/3/4 
bytes), and MixColumn (modular polynomial 
multiplication with a constant array). Early 
design efforts focused on high-speed designs 
using pipelined and loop-unrolled architec-
tures. One of the fastest and most efficient 
designs was developed by Sanu Mathew and 
colleagues.4 However, the specs of such designs 
are not suitable for ULP systems, and their 
architectures have delay overhead when used 
in cipher modes with feedbacks (such as CBC-
MAC), which are widely used for authenticated 
encryption protocols suitable for IoT systems.

One of the earliest lightweight AES engines 
with complete measurement results and signifi-
cantly improved power and area costs was pre-
sented in 2006.5 It uses an 8-bit iterative data-
path to save area and power, and it employs an 
SBox calculated in a composite field GF(24)2 in 
runtime, instead of directly storing the GF(28) 
lookup table in the ROM. This technique was 
first introduced in 2001,6 and was optimized 
over the years to achieve better efficiency and 
a smaller footprint. Almost all recent AES 
designs have adopted SBox in the composite 
field, and it is shown to be beneficial to both 
ULP and high-performance designs. Mathew 
and colleagues performed an exhaustive search 
of optimal polynomials to construct the com-
posite field,7 presenting a 22-nm lightweight 
AES engine using only 1,947 gates for encryp-
tion. The results show that the worst polyno-
mial choice will have 30 percent area overhead 
compared to the best one. Another innovation 
is removing the high power and area costs 
associated with ShiftRow byte permutations.7 
Mathew and colleagues moved this step to the 
start of each round by rescheduling the input 
data loaded to the data registers according to 
the ShiftRow rules.

Figure 3. Basic authentication protocol using cryptographic primitives.3
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Yiqun Zhang and colleagues proposed the 
latest lightweight AES design,8 observing that 
intermediate registers take about 50 percent of 
total power and area in an 8-bit iterative AES 
design. They proposed the following techniques 
to reduce the number of registers (see Figure 4):

•	 removing ShiftRow, similar to Mathew’s 
work7;

•	 reducing MixColumn registers from 128 
to 48 bits by rescheduling the data update 
sequence;

•	 replacing data, key, and intermediate reg-
isters with latches to save area and power; 
and

•	 optimizing shift registers by shifting only 
one-hot addresses instead of all the data 
registers.

All of these techniques exploit the fixed and 
known data access patterns of cipher computa-
tions and can be applied to other ciphers. Table 1 
summarizes the design metrics of the aforemen-
tioned AES accelerators.

Resistance to side-channel attacks. At the 
same time, research has shown that physical 
implementations of secure ciphers can leak 

information about the secret keys being used for 
encryption. Researchers have proposed various 
attack algorithms to break the key from power 
consumption and EM radiations. Differential 
power analysis (DPA) is a powerful attack that 
does not require knowledge about the detailed 
implementation of the victim hardware.9 This 
type of noninvasive attack is a growing concern 
for IoT devices because adversaries can easily 
get hold of a device and measure its power and 
EM information with low-cost devices. This 
is in contrast to invasive attacks that require 
expensive equipment to deploy. Therefore, 
these side-channel attacks are more likely to tar-
get low-cost commercial systems that represent 
the majority of IoT devices.

There are two categories of defense against 
side-channel attacks: relying on new physical 
implementations, and using algorithm-level 
random masking. Although both serve the 
purpose of reducing the signal-to-noise ratios 
adversaries can get, they have distinct prop-
erties. Physical hiding can be evaluated only 
heuristically through measurements, but it can 
be helpful to defend against almost any attack 
algorithms. On the other hand, algorithmic 
masking by adding random variables and trans-
forming computations can be provably secure 

Figure 4. Register elimination in the Advanced Encryption Standard (AES) datapath.8
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against certain types of attacks, but the deter-
mined nature of the masking algorithms makes 
them potentially vulnerable to higher-order 
attacks. Figure 5 shows a taxonomy of defenses. 
We focus on the progress of physical hiding in 
this article.

Physically hiding side-channel information 
leakage has been approached in different ways, 
including using logic gates that consume the 
same power for different transitions, a power 
management unit that randomizes the power 
consumption seen from outside the chip, and 
on-chip monitors detecting malicious probing. 
Ideally, the first approach can have the stron-
gest protection against side-channel attacks by 
closing the source of side-channel information 
leakage. However, differential logic cells such as 
Differential Cascode Voltage Switching Logic 
and even specially optimized logic gates like 
Sense Amplifier Based Logic10 cannot fully 

equalize the current consumptions of different 
transitions because of parasitics. Therefore, we 
can evaluate these designs’ security levels only 
in terms of the signal-to-noise ratio, or by the 
number of measurements to disclosure of the 
secret keys. These differential logic gates are also 
more complicated to design with and consume 
more than twice the energy compared to con-
ventional CMOS logic gates.

To reduce the power consumption, 
researchers adopted charge-recycling adia-
batic logic, which was originally developed for 
high-efficiency and use-differential logic states, 
for resistance to side-channel attacks. The con-
cept was first proposed in 2006,11 and was 
demonstrated with a complete silicon imple-
mentation until 2015.12 The results show that 
the adiabatic AES core requires 2001 times 
more power traces to find the correct key in a 
DPA attack, and it consumes only 70 percent of 
the power, compared to a baseline implementa-
tion with standard CMOS logic gates. However, 
the area overhead is about twice that of the base-
line area. Thus, adiabatic logic might be the best 
option for now to physically hide side-channel 
leakage. The power overhead can be almost 
negligible, even compared with optimized AES 
designs, but the area overhead caused by differ-
ential cells and off-chip inductors can prevent 
their application in low-cost devices.

The second category of defense tar-
gets equalizing or randomizing the power 

Table 1. Performance summary of state-of-the-art lightweight AES accelerator.

Design 
specifications

P. Hamalainen et al. 
(EUROMICRO 06)5 S. Mathew et al. (JSSC 15)7 Y. Zhang et al. (VLSI 16)8

Technology 130 nm 22 nm 40 nm

Voltage (V) N/A 0.9 0.43 0.9 0.47

Power (mW) 17.98 3.9 13 0.45 4.39 0.1

Throughput 
(Mbps)

232 104 432 83.6 494 46.2

Efficiency (pJ/b) 77.5 37.5 31 5.38 8.85 2.24

No. of gates 3,200 3,900 1,947 2,228

Figure 5. Taxonomy of side-channel defenses.
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consumption measured externally. It aims 
at defending against adversaries with lim-
ited resources and motivations to physically 
probing the chip for side-channel attacks. 
As discussed previously, this represents the 
major scenario that a side-channel attack 
will be carried out. One of the earliest pro-
posals in this direction involves the use  
of a switched-capacitor current equalizer (see 
Figure 6).13 The equalizer has three phases, 
controlled by closing one of the three switches 
to recharge the capacitor, supply power, and 
discharge the capacitor to a predefined level. 
Three equalizers work in a staggered fashion 
to ensure continuous operation of the crypto 
core. As expected, keys are not disclosed 
even after 10 million measurements, when 
only the equalizer’s power input is exposed 
to adversaries. This design incurs 33 percent 
power overhead and 25 percent area overhead 
to the baseline. To further reduce the power 
overhead, a recent effort adds a control loop 
randomization block into an integrated buck 
voltage regulator to randomize, instead of 
equalizing the power drawn from the exter-
nal source. This design adds a mere 5 percent 
power overhead and 103 gates area overhead 
to the baseline while being able to resist  
Correlation Power Analysis (an improved ver-
sion of conventional DPA attack) and Test 
Vector Leakage Assessment.14

These defenses are effective only against 
power side-channel attacks. Researchers have 
shown that EM radiation can leak as much infor-
mation and EM probes can even collect local-
ized data to reduce noise.15 To defend against 
EM attacks, researchers proposed an EM probe 
monitor based on a LC oscillator implemented 
on top of a protected circuit.16 A coil made by 
top-layer metal is used as a sensor for EM probes. 
It is based on the observation that EM probes 
getting close to the chip surface will reduce 

the inductance of the coil and therefore can be 
detected by monitoring the frequency of an LC 
oscillator built with the coil as L. Calibration  
and referencing techniques are developed for the 
monitor to detect probes greater than 0.1 mm 
away from the chip surface. This EM monitor 
adds 9,000 mm2 area overhead and consumes 
17 mW in 180-nm CMOS.

Random Number Generation
Random numbers are critical to cryptographic 
systems to prevent replay attacks and key 
guesses. Two types of random number gener-
ators are widely used: pseudorandom number 
generators (PRNGs), which use a fixed algo-
rithm and initial random seed to generate a 
sequence of numbers that can be approximated 
as random numbers; and true random number 
generators (TRNGs), which harvest entropy 
from physical noise sources, do not require 
an initial seed, and do not present any peri-
odicity. Although many PRNGs are designed 
to be indistinguishable by adversaries from a 
truly random sequence without knowing the 
input seed, the seed’s security and randomness 
become a concern in IoT devices because of the 
limited randomness the device can use (such 
as user input) and the physical accessibility by 
attackers. On the other hand, the main issues 
with TRNGs are high power, high cost, and 
potential vulnerability to external disturbance 
and attack.

An intuitive approach to on-chip TRNGs 
is to amplify resistor thermal noise directly and 
quantize it into digital bits.17 However, such 
a design requires several high-performance 
analog blocks to mitigate nonideal effects (for 
example, comparator offset or reference varia-
tion) that lead to biased, low-entropy outputs. 
These designs generally consume higher static 
power, occupy larger area, and have less tech-
nology portability. Therefore, recent research 

Figure 6. Operating principles of switched-capacitor current equalizer.13
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efforts have focused on digital implementa-
tions of TRNG that exploit thermal noise in 
metastable circuits18,19 and oscillators.20 While 
metastability-based TRNGs offer high speed 
and efficiency because of the fast transition 
between metastable and stable states, the tran-
sition is easily affected by device variations and 
environmental conditions so that the generated 
bits are deterministically biased without com-
plicated postprocessing or calibration steps.21 
Comparatively, oscillator-based TRNGs offer a 
simpler design to achieve higher raw entropy at 
the cost of slower speed. They have also been 
found to be vulnerable to a supply injection 
attack that injection-locks the oscillator in a 
TRNG to an external oscillator to reduce its 
jitter.22 State-of-the-art TRNGs have focused 
on improving the speed and efficiency of 
oscillator-based TRNGs while achieving high- 
entropy raw outputs23–26 and providing light-
weight quality check and entropy improvement 
to existing TRNGs.27

The keys to further improving TRNGs are 
to decouple the output bias from process vari-
ation and environmental conditions, to auto-
matically stop TRNG operation, and to imple-
ment a runtime quality check for TRNGs. 
This leads to the development of edge-chasing 
TRNGs that use the phase differences of multi-
ple oscillations in one or multiple oscillators for 
random number generation. Kaiyuan Yang and 
colleagues introduced this concept in 2014,23 
in which three edges were injected into the 
same ring oscillator to oscillate independently, 
as shown in Figure 7a. In these designs, all three 
oscillations have exactly the same frequency 
because they happen in the same physical oscil-
lator, but they have different phases because of 
their initial phase and independently accumu-
lated noise. The fluctuation of phase differences 
among the three oscillations is determined 
by random noise and accumulated over time. 
Therefore, given enough time, two of the three 
oscillations will meet and cancel each other 

Figure 7. Simplified diagrams for state-of-the-art true random number generators (TRNGs), based work by the following authors: 
(a) K. Yang et al. (ISSCC 14)23; (b) Q. Tang et al. (CICC 14)24; (c) K. Yang et al. (JSSC 16)25; and (d) E. Kim et al. (ISSCC 17).26

+ –
– +

+ –
– +

+ –
– +

OSC_REF Phase
detector

Phase
detector

Counter

Controller Counter

Reset

Configure
OSC

OSC

Start

START

START
OUT

Stop

Counter

Stop

Reset

O- O+

S

EN

IN-IN+

RD

RD

RD

RD

RF

RS RS

RS

RF

Edge
1

Edge
2

Edge
3 OUT

OSC

OSC A

OSC B

START

Counter

Beat frequency detector

Capacitor
bank

ResetD Q

(a) (b)

(c) (d)



www.computer.org/micro	 November/December 2017	�  79

because of their opposite phase. The time it takes 
for this first-hit-and-collapse event to happen 
is decided by random noise and therefore used 
as the proposed TRNG’s entropy source. To 
achieve a uniform distribution of output bits, it 
has been shown that if the first-hit-and-collapse 
time is quantized into small enough bins, the 
least significant bits of the time can be a good 
approximation to a uniform distribution. Var-
ious designs have adopted similar techniques 
over the years to convert a distribution of time 
into uniform bits.23–26 Because this design is 
not affected by process variations,23 it can be 
synthesized with commercial standard cells and 
placement-and-routing tools (with manually 
defined rules) and was verified in both 65-nm 
and 28-nm CMOS technologies. However, this 
design does not provide runtime quality check 
and self-tuning capabilities to avoid entropy 
degradation and denial-of-service attacks 
caused by supply injection at certain frequen-
cies. The authors proposed to use low-pass fil-
ters to protect the TRNG core against supply 
injection attacks,23 which can also be applied 
to most other designs.

A different design with a similar concept 
was proposed in 2014.24 The authors used the 
chasing time of two oscillations in different 
oscillators with precalibrated small delay dif-
ference. As Figure 7b shows, OSC_A is cali-
brated during start-up to be slightly faster than 
OSC_B, and they are started simultaneously 
until OSC_A runs one more cycle and over-
takes OSC_B. In this way, the chasing time is 
bounded within a smaller range, with the aver-
age value decided by the deterministic delay 
difference, so that the TRNG speed is more 
constant compared to our previous work23 
and provides a knob for tuning the amount of 
entropy being accumulated.

Yang and colleagues proposed an improved 
design25 that combined these previous 
approaches23,24 by integrating two oscilla-
tions into one even-stage ring oscillator to save 
area and power. As Figure 7c shows, the two 
injected edges travel different paths in the even-
stage oscillator, which emulates the two oscilla-
tors in Tang’s work24 and avoids the complexity 
of detecting the chase time, because the two 
oscillations will cancel each other when they 
meet. In Tang’s work,24 the calibration of the  
two oscillators is done with capacitor banks, 

occupying a relatively large area and offering 
limited resolution. A different calibration tech-
nique is employed by Yang and colleagues,25 
who use the intrinsic process variations for fine-
grained tuning. Multiple copies of identically 
designed delay cells are implemented in parallel, 
and a random search will go over different con-
figurations to find one that falls into the desired 
operating range. This approach is simpler and 
requires less area, but can take more trials to 
set up than the binary search in Tang’s work.24 
Yang also provides an analytical model assum-
ing a normal distribution of jitter,25 which also 
applies to Tang’s design.24 The chasing of two 
oscillations is modeled by a random walk with 
constant drift, and the first-hit-and-collapse 
time is shown to follow an inverse Gaussian 
distribution. Mean and variance of the distri-
bution can also be solved by analytical expres-
sions, which helps researchers understand and 
optimize these designs. These two values are also 
directly related to the TRNG’s operating con-
ditions, which can be used as monitors of the 
physical random generation process to improve 
the TRNG’s robustness to environmental vari-
ations and even deliberate supply injection 
attacks. Yang and colleagues describe a runtime 
calibration loop based on these monitors and 
experimentally verify its robustness against –40 
to 120°C and 0.6 to 0.9 V variations.25 They 
also show that supply injection attacks can be 
monitored and thwarted by retuning the oscil-
lator to run at a different frequency.

Eunhwan Kim and colleagues offer the 
latest improvement aiming at resistance against 
supply injection attack and simplified startup 
process (see Figure 7d).26 They eliminate the 
precalibration step25 by using differential delay 
cells and forcing the differential paths to start 
with the same phase. The time for the transition 
from 0° to the normal 180° phase difference is 
affected by random noise, and the average time 
is decided by resistor Rs in Figure 7d, similar 
to previous work.24,25 The multiple resistors are 
the key to the robustness against process vari-
ations and power injection attack by adding 
feedback and limiting oscillation amplitude in 
delay cells. Table 2 provides a summary of the 
TRNGs.

Although the raw entropy of TRNGs has 
been significantly improved, postprocessing 
algorithms to further improve and guarantee 
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randomness are of great interest to commercial 
products to avoid both the potential critical 
failure of the entropy source and strong physi-
cal attacks, and to adopt legacy TRNG designs. 
According to a National Institute of Standards 
and Technology recommendation,28 block 
ciphers like AES in CBC-MAC mode and cer-
tain HMAC functions are ideal for condition-
ing random bits. For example, the complete 
TRNG system in Intel CPUs targeting desk-
top and server applications includes on-chip 
health and wellness tests and conditioning cir-
cuits based on counter-mode AES.21 However,  
these designs require significantly larger area 

and power than the TRNG entropy source 
core, rendering them unsuitable for ULP IoT 
and wearable devices.27 Intel recently developed 
a lightweight TRNG system employing three 
independent entropy sources based on meta-
stability and the Barak-Impagliazzo-Wigderson 
randomness extractor with an 8-bit datapath.27 
The prototype in 14-nm CMOS costs only a 
fraction of power and area compared to conven-
tional approaches (see Table 3) while maintaining 
close-to-ideal Shannon entropy and min-entropy 
across 0.4 to 0.95 V supply variations. The effi-
ciency can be further improved to 3 pJ/bit when 
operating it at near-threshold 0.4 V.

Table 2. State-of-the-art low-power TRNGs.

 Design 
specifications K. Yang et al. (ISSCC 14)23

Q. Tang et al. 
(CICC 14)24

K. Yang et al. 
(JSSC 16)25

E. Kim et al. 
(ISSCC 17)26

Technology 28 nm 65 nm 65 nm 40 nm 65 nm

Voltage (V) 0.9 0.9 0.8 0.9 1.08

Power (mW) 0.54 0.046 0.13 0.046 0.289

Throughput (Mbps) 23.16 2.8 2 2 8.2

Efficiency (pJ/b) 23 57 66 23 (11 at 0.6 V) 36

Area (mm2) 375 960 6,000 836 920

Operating voltage 
range

N/A N/A 0.8 to 1.2 0.6 to 1 1.08 to 1.44

Resistance to power 
injection attack

Need filter Need filter N/A Yes Yes

Pretuning No No Yes Yes No

Table 3. Comparison of postprocessing methods for TRNG.

Design specifications AES-CBC SHA-256 S.K. Mathew et al. (JSSC 16)27

Full-entropy throughput 7 cycles/bit 7.25 cycles/bit 8 cycles/bit

No. of gates 32,000 19,000 4,900

Energy/full-entropy bit 49 pJ 34 pJ 9 pJ
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In summary, a number of novel TRNG 
designs have been proposed in recent years that 
achieve better randomness with smaller area, 
lower power, less complexity, and better design 
portability. Researchers have also studied inten-
tional attacks such as power supply injection. 
However, the quality of the generated random 
bits has been verified only with certain statis-
tical tests; more theoretical analysis and mod-
eling of the designs are expected to facilitate 
the adoptions of these designs and the devel-
opment of future low-power, high-entropy 
TRNGs. At the same time, a plethora of exist-
ing randomness extraction algorithms used in 
cryptography should be studied and optimized 
for lightweight TRNG conditioning.

Secret-Key Storage
For authentication and encryption, it is neces-
sary to securely store a digital key on chip. In 
this section, we describe two types of secret-key 
storage using nonvolatile memory and PUFs. 
We present recent progress in the design of 
both types of key storage.

Nonvolatile memory. Conventionally, the 
secret keys are usually stored in on-chip  
or stand-alone NVMs, including one-time  
programmable memory (such as ROM, elec-
tronic fuse, and antifuse) and nonvolatile  
random-access memory (such as electrically eras-
able programmable read-only memory and flash 
memory). However, a wide range of invasive 
(depackaging and probing) and semiinvasive 
(depackaging only) attacks can be used to read 
the data stored in these memories. Additionally, 
most of these memories require extra fabrication 
steps, which is not desirable for low-cost IoT 
systems and which cannot scale together with 
CMOS technologies. In responding to these 
needs, new memory technologies and designs 
are introduced for security applications.

In 2017, TSMC reported an antifuse tech-
nology using only standard 10-nm FinFET 
transistors.29 The data is programmed by gate 
oxide breakdown during the enrollment phase. 
Each memory cell comprises just two FinFETs 
with 0.028 mm2 area in 10-nm technology. For 
side-channel resistance, each bit is stored in two 
cells with complimentary values so that power 
consumption during read will not reveal infor-
mation about the stored keys. This technique 

also improves the read margin for reliability. 
This design has overcome most of the security 
and cost concerns of using conventional NVMs 
for key storage. The only potential drawbacks 
are that it cannot destroy its own storage when 
being tampered, and it can be easily duplicated 
once a key is exposed. Additionally, it is still 
vulnerable to certain high-resolution, high- 
accuracy invasive and semi-invasive attacks, but 
should be secure enough for most applications.

Weak PUF for key generation. In addition to 
new NVMs, a drastically different key storage 
method has emerged over the years that relies 
on hardware-intrinsic process variations to gen-
erate and store secret keys. This concept was first 
proposed for chip identification,30 but has been 
renamed as “weak PUFs” as a category of the 
prevailing PUF concept2 and increasingly used 
for security. Because the keys are not stored in 
digital formats and are sensitive to invasive 
attacks, they are believed to be more secure 
than conventional key storage solutions. At 
the same time, PUFs are completely designed 
with CMOS transistors so that they can benefit 
from technology scaling and be easily migrated  
to different technologies, ranging from cost- 
sensitive to high-performance applications.

Almost all weak PUFs are designed with 
a differential structure to generate a response 
by comparing the characteristics of a differen-
tial pair, such as the voltage, current, and delay. 
Because process variation follows a normal 
distribution, PUFs are likely to have unreli-
able responses when the difference between 
the two arms is small. To solve this problem 
for security applications, helper data is gener-
ated during the initial enrollment phase and is 
used by the reproduction unit to recover the 
correct response in subsequent authentication 
sessions. Jeroen Delvaux and colleagues provide 
an in-depth overview of helper data algorithms 
to ensure reproducibility and uniformity of 
PUF key generation.31 By replacing NVM 
in Figure 2 with weak PUF and a reproduc-
tion unit, we can achieve authentication using 
weak PUF. Although error-correction codes 
are widely used to ensure reliable key genera-
tion,32–34 the information leakage and power 
and area costs associated with the correction 
are not negligible. To push the boundary for 
optimization, researchers have been building 
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custom PUF cells that outperform conven-
tional designs using static RAM (SRAM) and 
oscillators in every aspect. This section presents 
some state-of-the-art custom PUF cell designs 
that can potentially alleviate the concerns about 
unreliable PUF responses.

Output reproducibility across process, 
voltage, and temperature (PVT) variations 
and density of the array are two critical met-
rics directly related to the security and cost of 
a PUF. The most popular PUF designs use the 
random power-up state of standard SRAM 
array35 because SRAM IPs are widely available 
and already included in many systems. How-
ever, some off-the-shelf SRAMs are biased 
toward the “1” state,35 and therefore require 
postprocessing to improve uniformity. On the 
basis of the same working principle as SRAM, 
researchers have designed custom PUF cells 
based on cross-coupled inverters,33,36 which 
include reset switches that bring the struc-
ture to a metastable state for evaluation (see  
Figure 8a). Without further postprocessing 
techniques, these custom PUF cells do not 
achieve much better stability (around 6 to 8 
percent bit-error rate [BER] at nominal condi-
tion) and occupy a larger cell area. However, 

they don’t require manipulation of the power 
rail and can save a significant amount of power.

Recent custom PUFs with new circuit struc-
tures significantly improve the reproducibility 
and uniformity of native PUF outputs while 
saving area and power. In 2015, Anastacia Alva-
rez and colleagues presented a current mirror- 
based PUF cell (see Figure 8b).37 Having a 
static operation and local quantization to PUF 
output greatly suppresses the noise effects on bit 
reproducibility, achieving around a 0.3 percent 
BER (that is, more than 20 times improvement 
over the SRAM PUF), but at the cost of a large 
cell. To further reduce area and improve repro-
ducibility, Bohdan Karpinskyy and colleagues 
introduced a PUF cell using serially connected 
NAND gates.34 As Figure 8c shows, the first 
stage has input and output pins shorted, which 
forces its output to stay at the transition voltage 
of the NAND gate. This design does not have 
an explicit differential structure, but the com-
parison happens between the transition voltage 
of the first and second stage. The large gain of 
the NAND gate around the transition voltage 
is used to reliably amplify their difference to 
digital PUF outputs. However, this PUF cell is 
sensitive to supply voltage and could experience 

Figure 8. Circuit diagrams of state-of-the-art weak physically unclonable functions (PUFs), based on 
the following work: (a) S. Mathew et al. (ISSCC 14)33 and Y. Su et al. (JSSC 08)36; (b) A. Alvarez et al. 
(ISSCC 15)37; (c) B. Karpinskyy et al. (ISSCC 16)34; (d) K. Yang et al. (ISSCC 17).38
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a large short-circuit current during operation. 
The latest PUF design extends Karpinskyy’s  
ideas by replacing the NAND gates with 
two-transistor amplifiers (see Figure 8d).38 This 
amplifier is biased at the deep subthreshold 
region to achieve a very high gain (more than 
40) with ultra-low power consumption (about 
5 pW). Similar to Karpinskyy’s work,34 the dif-
ference of switching voltages between the first 
and second stages is amplified by four cascad-
ing two-transistor amplifiers. The designers add 
two more transistors the same as the 8T SRAM 
cell’s read port for reading, so that the PUF can 
be arranged in a crossbar array for maximum 
density, throughput, and efficiency. Table 4 
provides a summary of the PUFs’ design specs.

Although the advances in PUF cell designs 
help release the burden on error correction and 
uniformity, these postprocessing techniques 
are indispensable. At the same time, research-
ers have shown that with advanced backside 

imaging systems and Focused Ion Beams, PUF 
outputs of 600 nm SRAM cells can be read 
and edited by adversaries with standard uni-
versity failure analysis equipment.39 There is 
no theoretical barrier to apply the same attack 
to the more-advanced silicon PUFs mentioned 
here, although the ultra-low power consump-
tion can potentially increase the requirements 
on imaging.37,38 Even though this cloning 
attack is demonstrated with only 600-nm PUF, 
researchers should rethink the physical secu-
rity of PUFs, especially when compared with 
new NVMs like the 10-nm antifuse discussed 
earlier. The main difference between the PUFs 
we studied and NVMs is the former’s volatile 
nature, which is contradictory to reproduc-
ibility and intentionally removed in NVMs. 
For future weak PUF–based solutions, efforts 
should be made not only on lower costs with 
reliable operation, but also on capabilities to 
detect physical attacks actively or passively and 

Table 4. State-of-the-art weak PUFs.

Design specifications
S. Mathew et al. 

(ISSCC 14)33
Y. Su et al. 

(JSSC 08)36
A. Alvarez et al. 

(ISSCC 15)37
B. Karpinskyy et 
al. (ISSCC 16)34

K. Yang et al. 
(ISSCC 17)38

Technology 130 nm 22 nm 65 nm 45 nm 180 nm

PUF cell area/bit (F2) 1,092 9,628 6,036 2,613 553

Total area/bit (F2) 1,767 N/A ,36,450 N/A 843

Native unstable bits (no. of 
evaluations)

N/A 30% (5,000) 1.73% (400) N/A 1.67% (2,000)

Bit-error rates (nominal condition) 
(%)

3.04 8.3
0.97*

N/A 0.1† 0.13

Tested operating 
conditions

Temperature 
(°C)

0 to 80 25 to 50 25 to 85 –25 to 85 –40 to 120

Supply (V) 0.9 to 1.2 0.7 to 0.9 0.7 to 1 N/A 0.8 to 1.8

Bit errors per 10°C (%) 0.68 N/A 0.47 0.15 0.2

Bit errors per 0.1 V (%) 1.82 0.49* 1.27 N/A 0.2

PUF core energy (fJ/bit) 930 13 15 N/A 11.3 at 1.2 V
1.51 at 0.8 V

Normal inter-PUF Hamming 
distance

0.506 ,0.49 0.5014 0.498 0.499

* After stabilizing techniques including burn-in, 15-bit temporal majority voting, and dark bits masking. † With 2-bit glitch detector to 
remove.
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respond to these attacks by using the volatile 
nature.

Hardware Designs for PUF-Based 
Entity Authentication
PUFs are usually categorized into strong and 
weak PUFs.40 Both types of PUFs can be 
modeled as a challenge-and-response func-
tion. The difference between them is related 
to the scalability of the function. Weak PUFs 
usually have a challenge space linearly related 
to their area so that only a limited number of 
challenge-and-response mappings is possible in 
practice. Strong PUFs, on the other hand, pro-
vide a large challenge space that usually expo-
nentially increases with PUF area, and therefore 
a huge number of mappings can be generated. 
Because of a large number of random map-
pings, strong PUFs can be used in challenge- 
response protocols for authentication as well as 
for key generation, whereas a weak PUF can be 
used only for reusable secret keys. This section 
focuses on using strong PUFs for lightweight 
authentications.

If the challenge-and-response mappings 
are truly random, strong PUFs are ideal for 
secure and lightweight authentication for ULP 
devices. However, the limited number of ran-
dom variables in strong PUF circuits and a 
relatively simple combination of these ran-
dom variables cannot remove the correlations 
between different challenge and response pairs. 
This issue was first envisioned in the original 
silicon PUF proposal1 and later proved to be a 
very effective attack against the most popular 
arbiter-based strong PUF.41 Figure 7 shows the 
arbiter-based PUF,42 which uses two delay lines 
with N multiplexers in between to reconfigure 
the two delay paths. The N inputs to multi-
plexers are used as challenges to the PUF, and 
the racing of the two delay paths (judged by an 
arbiter) is used for PUF outputs. This design 
proposes an effective method to create an expo-
nential challenge space with limited resources. 
However, because the challenge-and-response 
function can be approximated with a linear 
model, machine learning algorithms like lin-
ear regression and evolution strategies can 
easily find the random variables in PUF with 
a few challenge-response pairs (CRPs).41 To 
defend against modeling attack and overcome 
other non-idealities in existing strong PUFs, 

researchers have suggested several authenti-
cation protocols using strong PUFs. Delvaux 
and colleagues present an excellent description 
and comparison of 19 strong PUF protocols 
in literature.3 Eight of them are identified as 
promising solutions and categorized into two 
groups. Protocols in the first group work in a 
similar fashion as weak PUF-based authenti-
cation (see Figure 3). Cryptographic compu-
tation is still required to improve security, and 
all the strong PUF versions can be simplified 
to weak PUF versions. Researchers claim that 
strong PUFs are more secure against physical 
attacks, because a modeling attack is required 
to duplicate the device. This requires a longer 
attack time, but the strong PUF versions are 
not theoretically more secure than the weak 
PUF versions. The burden returns to the strong 
PUF implementation. The second group of 
potential protocols (PUF obfuscation) is closer 
to the original challenge-and-response PUF 
proposal2 and keeps the lightweight prop-
erty by eliminating cryptographic primitives. 
To satisfy these requirements, slender PUF,43 
noise bifurcation PUF,44 and lockdown pro-
tocol45 all require the use of a benign model 
of the strong PUF stored in the server and 
a TRNG on chip. For these protocols, the 
design of PUF circuits is even more compli-
cated, because they require modeling by the 
owner and resistance to modeling attacks. This 
is possible only by using compound PUFs that 
have access to the internal simple PUFs during 
initial enrollment.

As you can see, protocol designs solve only 
part of the problem; better strong PUF designs 
are necessary to complement the protocols and 
help achieve better protection against practical 
attackers. The fundamental contradiction and 
tradeoff in strong PUFs are between complexity 
of the function and reproducibility. When the 
function is more complicated and nonlinear, 
a small perturbation of the random variables 
will significantly change the final response. 
This seems an impossible mission, because 
only a combination of them can achieve strong 
security—for example, a reproducible NVM 
key and complicated cryptographic primitives 
(assuming no physical attacks). Fortunately, we 
can optimize the PUF design in two directions 
following the two groups of authentication 
protocols.
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Reproducible but Learnable PUFs
One direction is following the second group 
by constructing a compound PUF. Researchers 
have shown both empirically41 and theoret-
ically46 that XORing the outputs of enough 
independent learnable PUFs can make the 
computing requirement intractable for prac-
tical attackers. However, the noise associated 
with each PUF is accumulated in the XOR 
PUF, which limits the number of PUFs that can 
be XORed. According to the accurate modeling 
of the BER of the XOR PUF (equation 6 in 
work by Meng-Day Yu and colleagues45), it can 
be approximated as the number of PUFs mul-
tiplying the BER of each PUF, when the BER 
of each PUF is small. Therefore, by reducing 
the BER of a single PUF to half, the number of 
PUFs can be doubled in XOR PUF while keep-
ing the same false-acceptance rate and false- 
rejection rate. In addition, the time and train-
ing data required to perform a modeling attack 
on XOR PUF is growing exponentially with 
the number of XORs. Thus, the goal here is to 
improve the BER of a single PUF, not consid-
ering the complexity of the mapping function.

A recent progress in this direction replaces 
the delay lines in an arbiter PUF with a ring 
oscillator.47 Delay cells are configurable by 
input challenges to create a large challenge 
space. Similar to the edge-chasing TRNG,25 
two edges are inserted to opposite positions of 
an even-stage oscillator and chase each other. 
During this process, the mismatch between 
them is increasing linearly with time, while 
noise is increasing as a square root function 
of time. In this way, the PUF’s entropy source 
(process variation) is amplified relative to noise 
to achieve better reproducibility. In addition, 
the time for the chasing to finish can be mea-
sured by a counter and used to indicate the 
amount of mismatch between the two edges. 
This in-situ monitor can accurately monitor the 
PUF under a varying environment and make 
decisions about the confidence of this specific 
CRP. By using it, unreliable responses can be 
excluded in runtime to significantly reduce the 
BER. The measurement results of a 40-nm pro-
totype show that the BER can be reduced to 
less than 10–8 when 30 percent of the CRPs are 
discarded.47 To further lower power, improve 
efficiency, and improve the BER, delay cells 
are biased at the near-threshold region. Future 

work in this direction must carefully consider 
side-channel attacks, which have been shown 
to be effective against slender PUF, controlled 
PUF, and XOR PUFs by using reliability 
of response and power side channels.48,49 
Although the concern has been alleviated by 
enforcing the number of accesses to a PUF in 
lockdown protocol,45 other defenses are worth 
investigating.

Difficult-to-Learn PUFs
The second direction is related to the first 
group of strong PUF protocols. Improving a 
single PUF’s resistance to modeling attacks 
will increase the difficulty of attacking these 
protocols with combined physical and mod-
eling attacks. However, the reproducibility of 
these new PUFs must be kept low enough to 
avoid other problems. Two designs targeting  
modeling-resistant strong PUFs were pub-
lished in 2017.50,51 In the former, reconfig-
urable subthreshold transistors connected in 
serial and parallel are used to create a non-
linear mapping.50 In the latter, challenges are 
changed to sequences of inputs and the PUF is 
changed from combinational logic to sequen-
tial logic for nonlinearity.51 The design is based 
on a commercial 6T SRAM array initialized to 
its power-up value, similar to power-up SRAM 
PUF.35 By sequentially shorting different rows, 
the final state of the last accessed row depends 
on all the previously accessed rows and the 
access sequence. By choosing more rows 
from an array, a large challenge space can be 
achieved. Both works show similar resistance 
to linear regression and SVM-based machine 
learning attacks with up to 10,000 training 
data, while keeping comparable BERs com-
pared to conventional SRAM and arbiter 
PUFs.50,51 These designs are promising but 
require more rigorous attacks that are designed 
with knowledge of the PUF.

Data Security
The demands for data security can be achieved 
only by cryptographic primitives, including 
symmetric key ciphers for encryption, hash 
functions for integrity, and public key ciphers 
for signature and key exchange. We have dis-
cussed these systems’ building blocks, includ-
ing cipher engines, random number generators, 
and key storage.
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For resource-constrained devices, ASIC 
accelerators can provide the best possible  
efficiency, power, and area. Many defenses 
against side-channel attacks are also easier to 
integrate together with ASIC implementations.

However, one thing to notice is that there 
will be a wide range of IoT devices and com-
munication standards in the ecosystem, and 
therefore flexibility of the security algorithm 
and protocol is important. This represents a 
different optimization space compared to a 
pure ASIC design that can exploit fixed opera-
tions. Some recent works propose the use of in- 
memory computing52 and a flexible-bit-width 
Galois Field arithmetic logic unit with SIMD 
instructions53 to accelerate the most demand-
ing computation in many cryptographic and 
even error-correction algorithms. They achieve 
5 to 20 times improvement over software 
implementation and within a few times to 
state-of-the-art ASIC designs.

ULP devices are expected to support a wide 
range of new and disruptive applications like 

the IoT. The power and cost budget and physical 
attack threats demand new hardware and system 
designs to ensure the security of these devices. 
In this article, we discussed the need for better 
hardware blocks to support entity authentication 
and data security. We presented a survey of recent 
hardware designs matching these needs in order 
to show the state of the art. We also identified 
open problems and future directions for ULP 
hardware designs for security. We showed that 
the selection of protocols and hardware design is 
strongly dependent on specific applications—for 
example, systems that already require encryption 
engines are more suitable for weak PUF-based 
authentication protocols. Also, certain stereo-
types about the physical security of PUFs and 
NVMs need to be reconsidered and studied 
because of new attacks and defenses. 
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Awards

The International Symposium on Com-
puter Architecture (ISCA) has a tradi-
tion of awarding the ACM SIGARCH/
IEEE-CS TCCA Influential ISCA 
Paper Award at the conference each 
year. This award is conferred on the 
authors of a paper from the ISCA con-
ference that occurred 15 years prior 
and which had a substantial impact on 
the field in terms of research impact 
and/or industrial influence. The selec-
tion process starts by soliciting nom-
inations by members of the current 
year’s ISCA Program Committee. The 
top papers are then voted on by the full 
PC (excepting conflicts). The results of 
this vote are conveyed to a selection 
committee comprising the current 
ISCA PC Chair (David Brooks), the 
ACM Special Interest Group on Com-
puter Architecture (SIGARCH) Chair 
(Sarita Adve), and the IEEE Com-
puter Society Technical Committee on 
Computer Architecture (TCCA) Chair 
(Dean Tullsen). The award includes  
an honorarium for the authors and a 
certificate.

At ISCA 2017, the award was 
presented to the authors of the ISCA 
paper published in 2002 titled “Drowsy 
Caches: Simple Techniques for Reduc-
ing Leakage Power.” The paper was writ-
ten by Krisztián Flautner, Nam Sung 
Kim, Steven M. Martin, David Blaauw, 
and Trevor N. Mudge. At the time of 
publication in 2002, the computer 

architecture community was beginning 
to realize that power concerns would  
be a major problem for future high- 
performance and mobile micropro-
cessors. However, most attention was 
focused on dynamic power consump-
tion, rather than the static, or leakage, 
power that was growing in importance. 
In fact, at the time it was projected that 
leakage power would dominate total 
power consumption below the 90-nm 
technology node. “Drowsy Caches” was 
one of the first papers to address this 
growing problem area.

Like most influential papers in 
computer architecture, the key idea 
of the Drowsy Cache is simple. The 
authors observe that for fixed periods 
of time, most cache accesses occur on a 
small subset of cache lines. The Drowsy 
Cache is designed to take advantage of 
this property by splitting the cache 
lines into active and drowsy states. In 
the active mode, the cache line can 
be accessed as normal. In the drowsy 
mode, the supply voltage to the cache 
line is reduced to the point where the 
leakage current is significantly reduced, 
but the voltage is maintained at a level 
that allows data retention. A small per-
formance hit is incurred when moving 
between the drowsy and active states, so 
the paper proposes architectural policy 
mechanisms that can be implemented 
to move lines between the states. The 
paper shows that with simple policy 

mechanisms, up to 90 percent of the 
cache lines can be in the drowsy state 
without impacting the overall per-
formance by more than 1 percent. 
The drowsy approach contrasts with 
prior Gated VDD techniques that turn  
off cache lines completely, resulting 
in state loss and the need to fetch the  
data from lower levels of the memory 
hierarchy.

A groundbreaking aspect of the 
paper was the strong collaborative 
effort between computer architecture 
and circuit design. This is reflected 
both in the list of authors and the 
Drowsy Cache design itself. Memory 
circuits are notoriously difficult to 
design because of the tradeoff between 
array density and susceptibility to pro-
cess variation and on-chip noise. Thus, 
one concern with the Drowsy Cache 
approach is that the techniques needed 
to create the drowsy mode would be 
unreliable or require significant chip 
area. The paper provides comprehen-
sive circuit diagrams to explain how 
the memory circuits need to be mod-
ified to support drowsy operation. The 
paper also includes detailed HSPICE 
simulations demonstrating cross-talk 
analysis of internal nodes of the mem-
ory and the expected leakage savings 
benefits. At the same time, the previ-
ously proposed Gated VDD techniques 
required somewhat complex control 
algorithms to maintain correctness due 
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to the loss of state from completely 
disabling the cache lines. The Drowsy 
Cache paper describes a relatively sim-
ple architectural policy mechanism and 
evaluates the overall energy savings and 
performance impact on both in-order 
and out-of-order microprocessor cores 
using state-of-the-art architectural sim-
ulation approaches across a range of 
benchmarks. In this regard, the paper 
is a model for researchers working at 
the interface between computer archi-
tecture and circuit design.

T he Drowsy Caches paper has had a 
substantial impact on the research 

community and has been cited more 

than 1,000 times as of September 
2017. One can also see the influence 
of the Drowsy Cache work in mod-
ern microprocessors that implement 
aggressive power optimizations in the 
cache hierarchy. For example, the Intel 
Xeon Processor 7100 includes leakage 
power management in the L3 cache 
design. The design uses sleep transis-
tors that allow fine-grained control of 
leakage power in the cache subarray 
blocks with wake-up counters that can 
be programmed to balance switching 
and leakage power. Clearly, the Drowsy 
Cache paper has withstood the test 
of time and is a worthy recipient of  
the 2017 SIGARCH/TCCA Influen-
tial Paper Award. 

David Brooks is the Haley Family Pro-
fessor of Computer Science at Harvard 
University. Contact him at dbrooks@
eecs.harvard.edu.
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Micro Economics

Mainstream writers do not discuss 
online sex and porn for fear of touch-
ing unseen landmines that offend read-
ers. It is part of a phenomenon that I 
call the hush-hush norm. There are per-
meable boundaries between rebellious 
and mainstream hackers, and between 
porn and mainstream content provid-
ers. Yet, the mainstream press discusses 
all of it as if sex and porn do not exist.

That is, until recently. Some  
crusading US lawmakers introduced 
legislation for amending the Commu-
nications Decency Act, aiming at inter-
rupting activities that enable human 
trafficking. The changes aspire to place 
more responsibility on those who host 
content. While well-meaning, the effort 
upends carefully calibrated understand-
ings at many online firms, who fear 
unintended consequences.

This is a new effort in an old 
debate in policy or business circles. For 
years, debates were tied up in abstract 
knots, dominated by lawyers with an 
interest in the nuances of free speech 
and censorship and the legal boundar-
ies of questionable behavior.

Why act now? Because, as any 
Internet denizen knows, some corners 
of the Internet have grown more sala-
cious, vulgar, and boorish. Just talk to 
any parent. It is too easy for children’s 
curiosity to lead them to the sleazy 
online square, and every parent now 
worries whether a child has enough 

sense to handle a disingenuous text. 
What is a parent to do—keep them off 
YouTube for fear of much worse?

Look, here is where I am going. 
I have occasionally listened to these 
debates and, as a market analyst, 
noticed the lack of economics. Spe-
cifically, a range of economic institu-
tions grew up around the hush-hush 
norm. The norm served one purpose 
years ago, and today it serves another. 
Although the hush-hush norm got us 
into this mess, it will not get us out. Its 
role needs to be identified and brought 
to light so that appropriate actions get 
taken now.

In case it is not obvious, those last 
few paragraphs serve as a warning. The 
content of this column is not suitable 
for children or, for that matter, Puri-
tans. And one more warning: this col-
umn will have failed if some part of 
this situation does not make you angry.

The Gray Zone
Start with something obvious: there is 
a lot of porn on the Internet. It comes 
in a vast variety of flavors and fantasies 
and genders. Speaking as a non-lawyer, 
and merely as a rule of thumb, most 
porn is legal in the US if a site issues 
appropriate warnings and stays far 
away from minors and prostitution.

If the hush-hush norm had not 
reduced news coverage, market ana-
lysts in the past would have said 

something like this: Online porn com-
peted for sales against salacious VCR 
tapes, live shows, subscription maga-
zines, and revenue in hotel rooms for 
“adult entertainment.” More recently, 
and after decades of this competition, 
the price for online porn is quite low, 
often free, and it has taken plenty of 
market share from offline sales.

Data suggests the online market 
for porn and sex is, at most, a niche 
market. As part of a research project 
about surfing, a colleague and I exam-
ined online visitor behavior for the top 
10,000 most popular US websites in 
2008 and 2013, and we could not miss 
the porn sites. We found online sex 
comprised approximately 7 to 8 per-
cent of websites, and users spent about 
2 to 3 percent of their time on such 
sites. Also, many households spent no 
time at such sites.

Those numbers imply two things 
relevant to today’s topic. On the one 
hand, online sex cannot support 
much online ad spending. Related, 
subscriptions can’t amount to much 
money—merely a rounding error on 
total e-commerce revenue. On the 
other hand, online sex has to have an 
outsized influence on the web. There is 
so much available for web crawlers to 
find. That means search engines regu-
larly must make decisions about how 
to classify the activity, and whether to 
sell ads for it.

The Hush-Hush Norm

Shane Greenstein
Harvard Business School
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The hush-hush norm does shape 
what search engines do. The earli-
est “pay-for-placement” schemes in 
search engines did not ignore porn. 
They tried to make money selling porn 
providers’ ads. That approach made a 
little money and temporarily raised a 
lot of attention with investors. How-
ever, it did not work out so well: Many 
of those ads annoyed users, who were 
uninterested in this niche. The users 
stopped coming, so did the advertisers, 
and those sites eventually closed.

As a young firm, Google adopted 
a policy consistent with the hush-hush 
norm. It banned ads linked to porn, 
just as it had banned ads for alcohol, 
smoking, and gambling. Yet, Google 
did not ban anything from its organic 
search service, showing links for any-
thing users clicked. The rationale: 
Some users wanted those links, just 
privately, and it was not Google’s job 
to censor. Hush-hush. Eventually, and 
not trivially, Google also made revenue 
on ads to those users.

That approach solved one prob-
lem but created another, since it did 
not meet the needs of families. In their 
book, How Google Works (Hachette 
Book Group, 2014), Eric Schmidt and 
Jonathan Rosenberg describe develop-
ing algorithms to recognize and filter 
pornography. As it turned out, those 
filters worked well enough and quelled 
any call for change.

That basically describes where the 
US settled in the prior decade. Google’s 
filters seemed to affirm the belief—to 
which the Valley is predisposed—that 
clever technology could fix any issue, 
even with sex.

The Status Quo
The hush-hush norm prevented a 
robust public conversation about the 
status quo. Seth Stephens-Davidowitz’s  
best-selling book Everybody Lies  
(Harper-Collins, 2017) offers a good 
place to start understanding. The book 
tried to break through the shroud of 
nondiscussion. This book won’t tell 

you much about the dark side of sex 
market. Rather, it focuses on large-scale 
societal-level patterns by presenting 
and analyzing the vast range of Google 
search requests related to private topics.

As it turns out, many users ask 
Google questions they would never 
share in public, especially about 
sex. That reveals a lot about society. 
Many desire and feel things they do 
not express publicly. No reader can 
walk away from the data in this book 
without realizing that a complex sex-
ual world lives behind the hush-hush 
norm. More to the point, despite var-
ied and complex private lives, many 
businesses made money directly or 
indirectly off porn without ever saying 

so. That removed pressure to alter what 
grew up around the norm.

For many years, online porn has 
been a small fraction of the hosting, car-
rier, and content traffic. Firms in those 
markets often labeled the source as 
“miscellaneous” on their income state-
ments. Most financial analysts learned 
to interpret, and everyone simply car-
ried on. Only carriers complained 
about the situation, particularly when 
pirated porn clogged capacity. While 
the complaints had some merit, they 
also were a bit disingenuous. Plenty of 
legit porn also clogged capacity at the 
same time.

Many entrepreneurs also adapted 
to the norm. Many pitched their firm 
as if sex did not exist.

There are just too many exam-
ples to enumerate, so take this rule 
of thumb: If a new app or online site 
had a strong visual or video-sharing 
capability, and no religious branding, 
then sometimes the entrepreneur built 
a sexual angle into the business. You 
just had to ask about it privately. If 
there was one, the founder knew what  
it was, and if not, the founder would say  
so, too.

This is an explanation, not an 
excuse. I am not saying this was a good 
or bad strategy, or morally corrupt or 
enlightened. My only point: this is 

how the norm worked. Some tried to 
make money, and everyone carried on 
in public as if sex did not exist.

(You might respond that a few 
years ago Tinder removed all pretense. 
Yes, they did. Is it a trend? This is a 
niche market, so I doubt it is. Let’s 
move on.)

Firms also benefited from imitat-
ing technical advance in porn. That 
pattern arose because, long story short, 
many “lead users” and technological 
“pioneers” have touched porn. The 
presence of lead users in porn goes back 
to VCR tapes and bulletin boards, and 
more recently, peer-to-peer software, 

Google’s filters seemed to affirm 

the belief—to which the Valley is 

predisposed—that clever technology 

could fix any issue, even with sex.
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which moved data-intensive salacious 
videos between users. In the present 
era, hackers developed innovations in 
buffering, compression, and rendering 
of video streaming and applied these 
innovations to pirated material and, 
um, sexual services.

How do mainstream firms bene-
fit? Firms have assigned employees to 
“analyze” technical advance in porn 
and “borrow” the useful parts, some-
times from open source communities.

To be frank, while others have 
told me about this “borrowing,” I 
do not know how widespread it is. 
It might be impossible to ever know. 
No mainstream firm has ever publicly 

crowed about learning from these lead 
users. It is hush-hush, after all.

Nonetheless, the foregoing leads 
to a sarcastic aside: The next time you 
watch a great basketball highlight on 
your browser, try not to think about 
who performed the test drives for that 
sharp picture.

Freedom’s Limits
Today we live in a world where porn 
remains just a click away, and so do vir-
tual red-light districts, as well as activ-
ities much worse. Not talking about it 
just lets problems fester.

First of all, every parent knows 
the filters have flaws. An airtight fil-
ter interferes with browsing. With 

anything less than airtight, any suffi-
ciently clever teenager can find what 
they are looking for.

Let me digress with a short edito-
rial right here. Let’s not blame technol-
ogy for human behavior. Clever teen-
agers found a way before the Internet, 
too. And I say this as a parent: nothing 
substitutes for a frank conversation 
between parents and children. (It is 
not easy being a parent now, and never 
has been.)

Notice the root of the problems—
namely, technical success. Modern 
search technology is simply too good 
at finding everything. There are degrees 
of sleazy libertine exploitation that 

never used to be available to a young 
person’s fingertips.

In plain language: Search engines 
make it too damned easy for a young 
and nontechnical user to find this stuff.

Let’s also put this in perspective. 
While it is not an everyday problem, this 
is a place where even a little bit is too 
much. You would not take your child or 
younger sibling to an X-rated movie, so 
why tolerate it during Internet surfing?

Let’s also recognize why this is a 
difficult legal problem. For all intents 
and purposes, adults can exercise free-
dom. Legal lines need to be drawn, and 
those are not always bright lines.

Here is a mild example of the 
issue. There are large numbers of sites 

for escort services and masseuses. Some 
are legit, but many merely offer a thin 
veil on prostitution. Just try explaining 
this to your child when they run across 
such a site by accident.

Craigslist’s experience illustrates a 
related problem. For many years, per-
sonal ads allegedly served as a home 
for prostitution, and Craigslist had 
repeated run-ins with law enforce-
ment. Eventually, Craigslist adopted  
more restrictive terms of service and 
banned the illegal ads.

Alas, the results are unsatisfying. 
Many of the ads in those sections 
today still are unsuitable for inno-
cent readers, to put it euphemistically. 
Moreover, much of the illegal explicit 
activity merely moved elsewhere, such 
as Backpage, which now receives most 
of the official ire, allegedly for facil-
itating prostitution by minors. And 
Craigslist and Backpage want every 
parent to keep their child off the site? 
Uh huh. Good luck with that.

Let’s not forget malware, which 
varies between annoying and destruc-
tive. Much originates from porn sites. 
The hush-hush norm makes this prob-
lem more difficult to address. After all, 
Yelp does not accumulate ratings for 
porn sites, and it is not about to start a 
list of bad sites.

Some readers will point out that 
such lists exist in the security commu-
nity, and technically adept users know 
how to act. Yes, but let’s be realistic. Most 
mainstream users are not that adept, and 
many do not even know how to ask.

It is possible to continue with 
additional examples of fraud, but for 
the sake of brevity, let’s get to the worst 
of these examples. I am not entirely 
certain when or why a few criminals 
involved in sex trafficking lost all sense 
of shame and raised the profile on their 
activities. It did not happen all at once, 
but—very long story short—it seems 
to be another example where no good 
deed went unpunished in technology.

It started with good intentions, as 
an antidote to crackdowns in repressive 

Notice the root of the problems—

namely, technical success. Modern 

search technology is simply too 

good at finding everything.
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regimes. That motivated additional tech-
nical advances in protecting privacy—for 
example, better VPNs and encryption 
(among other inventions). Tor disasso-
ciated the browser from an IP address, 
hiding a surfer’s location and identity.

At the same time, a set of shame-
less participants, now virtually anony-
mous, started developing markets for 
international drug dealing on the dark 
web. Along with it came child pornog-
raphy and exploitive human trafficking. 
All along, some block chain exchanges 
turned a blind eye, laundered electronic 
money, and left no traceable identity. 
And so it grew: the dark web began 
to contain some of worst examples of 
online human depravity.

A few years ago, one of the places 
for illegal commerce, the Silk Road, 
became too big for law enforcement 
to ignore. The authorities managed to 
close it. Remarkably, two new places, 
AlphaBay and Hansa Market, quickly 
emerged. Again, authorities closed 
them. Again, and recently, this market 
has managed to recreate itself. Don’t 
believe me? Just go to Reddit or 4chan 
or plenty of other places and search.

That description leaves out plenty 
of detail, but that should be enough to 
get the idea. The scope of modern tech-
nology makes human depravity avail-
able to every online participant in the 
dark web, and it is becoming increas-
ingly accessible in the regular web.

More broadly, while legal rules and 
social norms created private spaces for 
some online users to pursue their niche 
interests, those same norms have fos-
tered something else—thriving sleazy 
markets that seem difficult to stamp out.

W hy amend the Communica-
tions Decency Act? To many, 

it appears the Internet is managed by 
technically adept firms that—dare I say 
it—lack more leadership. Pointedly, 
where are the restrictive terms of ser-
vice to ban content that contributes to 
child porn and the international drug 

trade? Moralizing is easy: what decent 
human being refuses to try to stop this 
type of depravity in his or her own 
backyard? There are many enablers, so 
there is no need to point at any one of 
them in particular. Can a law compel 
any of them to care?

Now I will editorialize. I have 
been studying technology my entire 
professional career. Like most technol-
ogists, I take pride in technical ingenu-
ity, and for years I believed extensions 
to the technical frontier resulted in 
unalloyed gains. But the more I study 
this situation, the more I question the 
presumption about “unalloyed.” It is 
not possible to take pride in the illegal 
parts of online sex. These actions do 
not improve the human condition.

More to the point, the web devel-
oped with unbridled degrees of unques-
tioned license. Now some bad actors have 
catalyzed attempts to end that discretion. 
Frankly, I see the point in the suggested 
restrictions. Enough is enough. There is 
no good reason to allow a decent society 
to put up with this crap any further.

Let me say it another way. If the 
Valley’s management cannot be both-
ered to take responsibility, then a bunch 
of crusading legislators in DC will act. 
I would rather see the Valley’s manage-
ment preempt the legislation, wouldn’t 
you? What are they waiting for? 

Shane Greenstein is a professor at the 
Harvard Business School. Contact him 
at sgreenstein@hbs.edu.
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