
Jayashree Mohan, Dhathri Purohith,

Matthew Halpern,

Vijay Chidambaram, Vijay Janapa Reddy

Storage on Your Smartphone Uses
More Energy Than You Think

2

Limited battery capacity is a

major concern!

However, battery density doubles

only once every 10 years
3

What consumes battery?

Usual suspects: screen, network

Is storage a major contributor?
4

Random writes take

20x
more energy than

sequential writes.

Storage subsystem takes

36%
Of total energy for

random IO intensive

workload.

Random reads take

8x
more energy than

sequential reads.

Measure energy

Differentially
to segregate storage

sub-system energy on a

commercial smartphone.

5

Overview

 How do we measure storage energy?

 Energy at different layers of storage stack

 File IO Operations

 SQLite Operations

 Android applications

 Implications for File System Design

 Conclusions

6

Outline

Tools to measure energy

 Software Based:

 Battery sensor: Periodically check current battery level

 Apps: Requires power models.

 Very crude measure.

 Cannot detect small consumptions.

 Hardware Based:

More fine-grained measure.

 Requires specialized hardware to get component-wise
energy.

7

Experimental setup

8

Samsung Galaxy nexus connected to

Monsoon Power Monitor

Differential Energy Analysis

 Hardware tools provide fine-grained energy
measurements, but not component-wise.

 Design experiments to measure energy
“differentially”.

 IO intensive Workload: 100 MB of random
writes of IO size 4KB.

9

IDLE STATE CPU AND
MEMORY

NETWORK STORAGE
SUBSYSTEM

10

Differential energy measurement

Screen On,

No background

Apps, No IO

Writes to

in-memory

filesystem

In-memory

writes over

network

Writes to

internal eMMC

Overall Storage Energy Consumption

 Energy consumed by storage subsystem is almost
equal to the energy consumed by screen for an IO
intensive workload.

11

37.0%

0.6%
24.5%

36.5%

Screen

CPU & Memory

Network

Storage

12

Overview

 How do we measure storage energy?

 Energy at different layers of storage stack

 File IO Operations

 SQLite Operations

 Android applications

 Implications for File System Design

 Conclusions

File IO operations

Sequential IO Workload:

 IO Size : 512KB blocks.

 Total IO : 1GB of file reads and writes.

Random IO Workload:

 IO Size : 4KB blocks.

 Total IO : 100MB of file reads and writes.

 Fsync issued after every IO request.

13

F2FS vs Ext4 : File ops

14

0

100

200

300

400

500

600

700

800

900

Seq Write Rand Write

S
to

ra
g
e
 e

n
e
rg

y
 i
n
 u

J
/K

B

Ext4

19X

0

50

100

150

200

250

300

350

400

450

500

Seq Write Rand Write

S
to

ra
g
e
 e

n
e
rg

y
 i
n
 u

J
/K

B

F2FS

12X

F2FS vs Ext4 : File ops

15

Seq Read Rand Read

Ext4

7X

Seq Read Rand Read

F2FS

8X

F2FS vs Ext4: Write Amplification

72

RANDOM WRITE (10MB)

A
C

T
U

A
L
 I

O
 A

T
 T

H
E

 B
L
O

C
K

L
A

Y
E

R
 (

IN
 M

B
)

Ext4

16

Ext4:
 In-place updates.

 Fsync forces both data and metadata
to be written on to the disk.

 Meta data includes:

 Inode table

 Journal transaction begin block

 Journal transaction end block

 list of blocks in the transaction.

F2FS vs Ext4: Write Amplification

31

RANDOM WRITE (10MB)

A
C

T
U

A
L
 I

O
 A

T
 T

H
E

 B
L
O

C
K

L
A

Y
E

R
 (

IN
 M

B
)

F2FS

17

F2FS:
 Log structured.

 Maintains NAT table for

address translation.

 Only data blocks and their

direct node blocks are written

after every fsync.

 Meta data includes – File

inodes, NAT and SIT

updates.

18

195

RANDOM READ (100MB)

A
C

T
U

A
L
 I

O
 A

T
 T

H
E

 B
L
O

C
K

L
A

Y
E

R
 (

IN
 M

B
)

Ext4

F2FS vs Ext4: Read Amplification

Ext4:
 Android uses aggressive

read prefetching.

 Blktrace reveals minimum

size of read request is 8KB.

19

272

RANDOM READ (100MB)

A
C

T
U

A
L
 I

O
 A

T
 T

H
E

 B
L
O

C
K

L
A

Y
E

R
 (

IN
 M

B
)

F2FS

F2FS vs Ext4: Read Amplification

F2FS:
 Every read constitutes of a

request to read direct node

block and the data.

 Every read request to

direct node block results in

NAT translation.

20

Overview

 How do we measure storage energy?

 Energy at different layers of storage stack

 File IO Operations

 SQLite Operations

 Android applications

 Implications for File System Design

 Conclusions

SQLite operations

Workload:

 Prepopulate 1M entries.

 15K each of SQLite Inserts, Updates and
Deletes.

 SQLite record size : 4KB.

 WAL-NORMAL

21

F2FS vs Ext4 : SQLite Operations

22

0

1

2

3

4

5

6

7

Inserts Updates Deletes

S
to

ra
g
e
 e

n
e
rg

y
 i
n
 m

J
/T

x
n

Ext4 F2FS

1.5X 1.5X

23

Overview

 How do we measure storage energy?

 Energy at different layers of storage stack

 File IO Operations

 SQLite Operations

 Android applications

 Implications for File System Design

 Conclusions

Android applications

 Applications Studied: Mail and Facebook

 Duration traced: 180 seconds

 Energy estimation:

 Percentage of random and sequential IO is
computed using blktrace.

 Sequential IO between two flushes are merged.

 IO size < 32KB after merge is tagged as random.

 Application energy consumption is estimated using
File IO energy stats.

24

F2FS vs Ext4 : Android applications

25

Percentage of Random IO at block level

0

10

20

30

40

50

60

Write Read Write Read

%
 o

f
ra

n
d
o
m

n
e
s
s

Mail Facebook

Ext4 F2FS

F2FS vs Ext4 : Android applications

26

Total energy consumed by storage for

different Android applications

42.91

14.13

20.07

8.79

MAIL FACEBOOK

E
N

E
R

G
Y

 C
O

N
S

U
M

E
D

 (
IN

 J
)

Ext4 F2FS

1.6X

2.1X

 Use sequential IO

 F2FS still performs around 20-28% of random
writes and about 12-20% of random reads.

 Sequentializing the last 20-28% of random writes in
F2FS can reduce energy consumption by half.

 Account for trade-off between sequential
writes and random reads.

 Use compression to reduce IO.

27

Implications for File System Design

 Differential analysis gives component-wise
energy measurements on commercial phones.

 Contribution of storage to energy consumption
in Android is significant - 36%!

 Huge energy benefits by sequentializing I/O.

 F2FS can be made significantly more energy-
efficient.

28

Conclusions

29

Thank you!

30

