
Web Search Using Mobile Cores:
Quantifying and Mitigating the Price of Efficiency

Vijay Janapa Reddi
Harvard University

vj@eecs.harvard.edu

Benjamin C. Lee
Stanford University

bcclee@stanford.edu

Trishul Chilimbi
Microsoft Research

trishulc@microsoft.com

Kushagra Vaid
Microsoft Corporation

kvaid@microsoft.com

ABSTRACT
The commoditization of hardware, data center economies
of scale, and Internet-scale workload growth all demand
greater power efficiency to sustain scalability. Traditional
enterprise workloads, which are typically memory and I/O
bound, have been well served by chip multiprocessors com-
prising of small, power-efficient cores. Recent advances in
mobile computing have led to modern small cores capable
of delivering even better power efficiency. While these cores
can deliver performance-per-Watt efficiency for data center
workloads, small cores impact application quality-of-service
robustness, and flexibility, as these workloads increasingly
invoke computationally intensive kernels. These challenges
constitute the price of efficiency. We quantify efficiency for
an industry-strength online web search engine in production
at both the microarchitecture- and system-level, evaluating
search on server and mobile-class architectures using Xeon
and Atom processors.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures; C.4 [Computer Systems Organiza-
tion]: Performance of Systems—Design studies, Reliability,
availability, and serviceability

General Terms
Measurement, Experimentation, Performance

1. INTRODUCTION
Internet services are experiencing a paradigm shift in which

computation and data migrates from clients to a cloud of dis-
tributed resources located in data centers. The commodi-
tization of hardware, data center economies of scale, and
Internet-scale workload growth all demand greater power
efficiency to sustain scalability. Advances in chip multi-
processors comprised of small cores provide opportunities for
power efficiency. Piranha and Niagara propose integrating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

simple cores to lower design effort and improve throughput,
respectively [1, 7, 9]. These smaller cores deliver throughput
with better power efficiency when compared to their low-
latency, high-performance counterparts. Recent advances
in mobile computing provide small cores with even greater
power efficiency. Traditional enterprise and online transac-
tion processing (OLTP) applications are amenable to execu-
tion on small cores because they are typically memory or I/O
bound. Consequently, platform and overall system design,
rather than microarchitectural design, determine whether
the application’s service requirements are met.

Emerging data center workloads increasingly invoke com-
putationally intensive and performance-critical kernels, for
which small cores may weaken service requirements and guar-
antees. Relative to the traditional sort, these workloads are
comprised of computationally intensive and performance-
critical kernels that have latency requirements as part of
their service level agreement (SLA). Microarchitecture de-
sign for small cores will increasingly determine whether ser-
vice requirements are satisfied for these emerging and more
compute-prone workloads. Although small cores are advan-
tageous for power efficiency and throughput computing, they
are less capable of handling increases in computational inten-
sity and might jeopardize application quality-of-service and
latency constraints. These challenges constitute the price of
efficiency from small cores.

We quantify the price of small-core power efficiency for
industry-strength web search, Microsoft Bing. Unlike tradi-
tional enterprise workloads, our version of web search relies
on machine learning kernels at its core, which significantly
increases computation at index serving nodes in a way that
contravenes conventional wisdom regarding small cores for
enterprise workloads. We demonstrate the computational
intensity of our search engine with respect to other work-
loads in Figure 1.1 Our search engine experiences signifi-
cantly more instruction level parallelism (ILP) and is the
only workload in Figure 1 exhibiting an un-normalized IPC
greater than one, which surpasses prior search engines that
experience an IPC similar to traditional enterprise work-
loads [2, 3]. This demand for ILP indicates a need for more
performance than is typically provided by simple, in-order
cores. Consequently, the strategy of small cores for greater
power efficiency has deep implications for our Internet-scale
workload. We explore these implications and make the fol-
lowing contributions:

1All workloads are configured as per industry-standard set-
tings[23] and are operating under typical load conditions,
running natively on a 4-way superscalar processor (Table 1).

Figure 1: The computational needs of our search
engine exceed that of traditional workloads with an
un-normalized IPC noticeably greater than one.

• Search: We evaluate an online web search engine op-
erating in an enterprise environment that uses machine
learning kernels at the index serving nodes to service
user queries. (Section 2)

• Efficiency: We compare the power efficiency of the
server-class Xeon and mobile-class Atom microarchi-
tectures for Search, relying on hardware counter data
and multimeter power measurements. Search is 5×
more efficient on Atom than on Xeon. (Section 3)

• Price of Efficiency: Search efficiency on Atom comes
at the expense of robustness and flexibility. Quality-
of-service guarantees become less robust as per query
latency increases and becomes more variable. Com-
putational intensity increases and microarchitectural
bottlenecks impact search computation. (Section 4)

• Mitigating the Price of Efficiency: We address
the price of efficiency through effective system design
strategies, greater integration and enhanced microar-
chitectures. These strategies also address the total cost
of ownership (TCO) at the data center level due to in-
efficiencies at the platform level, which translates to
lower performance per dollar.

Collectively, the results in this paper contravene conven-
tional wisdom with respect to small cores and data centers
for online web search. The microprocessor industry offers
a choice of two strategies to achieve the economies of scale
necessary for this evolving workload: (1) start with big, high
performance cores and improve efficiency or (2) start with
small, low power cores and improve performance. We com-
pare these two strategies and favor the latter for search.

2. SEARCH
Search is representative of a broad class of data center

workloads that perform distributed and expensive compu-
tation. The workload requires thousands of processors to
service queries under strict performance, flexibility and reli-
ability guarantees. A single query might require tens of bil-
lions of processor cycles and access hundreds of megabytes of
data [3]. Traditionally, parallel indexing affords substantial
improvement in performance. However, as search engines
continue to evolve and machine learning techniques become
integral, per core performance is becoming more important
again.




 

 









 

Figure 2: Overview of our specific Search instantia-
tion. In this paper, we target the darkened subset
within each index serving node (ISN).

2.1 Structure
Figure 2 outlines the structure of the search engine. Search

queries enter the system through a top-level Aggregator. If
the aggregator cannot satisfy a query from its set of fre-
quently asked queries (i.e., Cache), it distributes the query
to the Index Serving Nodes (ISNs). The ISNs operate in
a distributed manner. Examining its subset of the docu-
ment index, each node uses neural networks to identify and
to return the top N most relevant pages and their dynamic
ranks. Each ISN is responsible for ranking pages, as well as
generating descriptions of relevant pages for the user [5].

Upon receiving a query, an ISN’s Manager invokes the
Ranker on the ISN’s local subset of the index. The ranker
parses the query and invokes Streams that use query fea-
tures to identify a matching list of pages from query fea-
tures. The ranker then uses statistical inference engines to
compute a relevance score for each page in the matching list.
Using these scores, the ranker identifies the top N results
and passes these results to the aggregation layer, which in
turn decides upon the set of results to return. After aggre-
gating and sorting relevance scores, the aggregator requests
captions from the ISNs. Each caption is comprised of a title,
URL, and context snippets. Captions are generated by the
ContextGenerator based on the content distributed to each
particular ISN. Captions for the top N results across the
ISNs are returned to the user in response to the query.

2.2 Requirements
Robustness. Search performance is quantified by a com-

bination of Quality-of-Service (QoS), throughput, and la-
tency. The application defines a QoS metric by the minimum
percentage of queries handled successfully. For example, a
QoS metric of θ percent requires a minimum of θ success-
ful queries for every 100. The other 100-θ queries might
time-out due to long latencies for expensive query features
or might be dropped due to fully occupied queues. Given a
QoS target constraint, we might consider a platform’s sus-
tainable throughput, which quantifies the maximum number
of queries per second (QPS) that can arrive at a node with-
out causing the node to violate the QoS constraint. If QPS
exceeds the sustainable throughput, QoS degrades.

Query processing must also observe latency constraints.
The average response time of queries must fall within a cer-
tain number of milliseconds, with additional constraints for
the 90-th percentile of queries. Latency directly impacts rel-
evance (i.e., documents corresponding to a specific query)

by affecting the number of iterative refinements made to a
search result. Given a latency constraint, the ranker checks
for remaining time before, for example, checking the next
tier in a tiered index. Lower query processing latencies al-
low for additional refinements to improve relevance.

Flexibility and Absolute Load. The search engine
operates in a highly distributed system under a variety of
loads and activity patterns. Not only must such a system
be scalable, it must also be flexible to changes in activity.
For example, activity patterns are often periodic and corre-
lated with time of day. Moreover, even a modest spike in
complex queries may generate sudden activity spikes mea-
sured in absolute terms, as complex queries cannot be broken
down into simpler queries for redistribution across multiple
nodes. Every ISN must handle its own incoming complex
query load. Therefore, the underlying architecture must be
robust enough to tolerate these absolute spikes and, ideally,
would exhibit gradual rather than sharp QoS degradations
as load increases. Architectures that exhibit gradual rather
than sharp QoS degradations as load increases in absolute
terms would provide greater flexibility with less disruption.

Reliability and Relative Load. Hardware failures are
to be expected within large-scale data centers. To ensure
reliability and robustness in the presence of failures, ISNs
must operate with spare capacity to bear additional load
when a fraction of index serving nodes fail, since work is
then dynamically re-balanced across the remaining nodes.
Each node experiences a fractional increase of a failed node’s
sustainable throughput, an activity spike measured in rela-
tive terms. Architectures that exhibit gradual and minimal
QoS degradations as load increases in relative terms would
provide greater reliability with less disruption.

3. EFFICIENCY
Search exercises the datapath as it uses inference engines

(e.g., Neural Nets) to service queries. Therefore, the work-
load is traditionally run using high-end server processors.
But in this section, we seek to understand the trade-offs
between using high-end processors and small-core designs.
After explaining our experimental infrastructure, we com-
pare search running on Xeon versus Atom, quantifying the
microarchitectural, power and cost efficiency across both de-
signs in terms of delivered search application performance.

3.1 Experimental Setup and Methodology
Microarchitectural Extrema. Considering the spec-

trum of commodity x86 microprocessors, we observe high-
performance, server-class microprocessors at one end and
low-power, mobile-class processors at the other end. Table
1 summarizes the microarchitectures we consider.

The Xeon is representative of modern, high-performance
microarchitectures. We consider the Harpertown, a dual-
die, quad-core processor comprised of Penryn cores [8, 14].
This processor implements several power optimizations. Im-
plemented at 45nm using high-K dielectric and metal gate
transistors, the process technology reduces leakage power by
5-10× and switching power by 30 percent. Moreover, the L2
cache is organized into 1MB slices, allowing cache resizing in
1MB increments for power reduction. Dynamic voltage and
frequency scaling supports system-driven power mitigation.
Finally, we consider a particularly low-power Harpertown
part, the L5420, which operates at 2.5 GHz. The choice of

Xeon Atom

Harpertown Diamondville

Processors 1 1
Cores 4 2
Process 45nm 45nm
Frequency 2.5GHz 1.6 GHz
Pipeline Depth 14 stages 16 stages
Superscalar Width 4 inst issue 2 inst issue
Execution out-of-order in-order

Reorder Buffer 96 entries n/a
Load/Store Buffer 32/20 entries n/a

Inst TLB 128-entry, 4-way Unavailable
Data TLB 256-entry, 4-way Unavailable
L1 Inst/Data Cache 32/32KB 32/24KB
L2 Cache (per die) 12MB, 24-way 1MB, 8-way
FSB 1066MHz 533 MHz

Table 1: Microarchitectural extrema. We evaluate
search on Xeon-Harpertown [8, 14, 21] and Atom-
Diamondville [10, 14] processors that represent end-
points in the spectrum of x86 commodity processors.

a power-optimized Harpertown provides an optimistic base-
line, which favors server-class architectures.

The Atom is representative of modern, low-power mi-
croarchitectures. We consider a dual-core Diamondville [10,
14]. Each core is designed to operate in the sub-1W to 2W
range. Diamondville cores implement an in-order pipeline
with power efficient instruction decode and scheduling algo-
rithms. The Diamondville datapath is also narrower than
that of a Harpertown, issuing only two instructions per cy-
cle. Furthermore, the Atom design avoids specialized execu-
tion units and favors general-purpose logic that can provide
multiple functionality. For example, the SIMD integer mul-
tiplier and floating point divider are used to execute instruc-
tions that would normally execute on separate, dedicated
scalar equivalents [10]. Such strategies are intended to re-
duce power, but also may have implications for performance
as will be described in Section 4.

Workload Setup. While search is a distributed activity
across several nodes, in this paper we specifically target its
activity within an ISN. We use the application currently in
production and drive it with real queries from user activity.
Of the search components illustrated in Figure 2, we specif-
ically examine the darkened subset that ranks pages online
and returns the sorted results to the aggregator.

The quality of search or the relevance of pages depends
upon ISN performance. CPU activity at an ISN ranges be-
tween 60 to 70 percent, indicating ISNs are usually under
heavy load. Consequently, an ISN’s performance depends on
the capabilities of the underlying microarchitecture, which
motivates our evaluation of the leaf-nodes within search. We
neglect the aggregator, as well as the caption generators.
From hereon, we loosely refer to the term “search engine” as
the parts we are investigating.

The ISN computes page ranks for forty thousand queries
after warmup. Input queries are obtained from production
runs. The query arrival rate is a parameter within our ex-
periments. We sweep this rate to identify the maximum
QPS an architecture can sustain without violating the QoS
target. For each query, the ISN computes overall ranks for
pages that match the query for a 1 GB production index, a
subset of the global index distributed across several nodes.

The index fits in memory to eliminate page faults and
minimize disk activity. In effect, we consider the first tier
of a tiered index, which resides in memory. Subsequent
tiers require accessing disk, but the tiers are organized such

RAT Stalls
 8.5%

Resource Stalls
 36.5%

IFU Stalls
 10.6%

Instruction Retirement
 44.4%

(a)

L1 DCache
 7.4%

Front-end/Others
 51.9%

DTLB Misses
 5.6%

L2 DCache
 27.8%

Branch Misprediction
 7.4%

(b)

Loads
20.9%

Floating Point
 1.4%

Others
 52.5%

Branch
 15.6%

Stores
 9.5%

(c)

IFetch
18.9%

 Loads
 71.1%

Stores
 10.1%

(d)

Figure 3: Microarchitectural synopsis of search on Xeon. (a) Execution versus stall time. (b) Breakdown of
stall activity. (c) Instruction mix of search. (d) Sources of L2 cache accesses.

that this is extremely rare in practice. Therefore, it is the
microarchitecture that determines application performance
and not system-level configuration.

Additionally, to ensure fair comparison between Atom
and Xeon, the total number of application threads servic-
ing queries matches the number of hardware contexts avail-
able. More specifically, simultaneous multithreading (SMT)
is enabled on Atom and results are normalized to a single
Harpertown socket unless stated otherwise. System software
(application and server OS) is also configured such that our
setup is representative of a typical deployment strategy, al-
lowing core-level comparison.

Microarchitectural and Power Measurements. We
analyze the performance of the microarchitecture using de-
tails collected via VTune [13], a toolbox that provides us
an interface to hardware counters on the Xeon and Atom.
These counters provide detailed insight into microarchitec-
tural activity as various parts of the search engine execute.
To relate this microarchitectural activity to energy consump-
tion, we quantify power dissipated by the processor at the
voltage regulator module. We identify the 12V lines entering
the regulator, apply a Hall-effect clamp ammeter (Agilent
34134A), and collect power measurements at 1KHz using a
digital multimeter (Agilent 34411A).

3.2 Microarchitecture
Let Xθ be Xeon’s sustainable throughput given the search

application’s quality of service target θ. Figure 3 illustrates
microarchitectural events as search executes at Xθ queries
per second on the Xeon. As shown in Figure 3(a), 55.6 per-
cent of execution time is spent stalled for either the register
alias table (RAT), the front end (IFU), or other resources
(e.g., cache and memory). These stalls suggest the datapath
is not fully utilized with only 44.4 percent of execution time
spent retiring instructions due to structural conflicts in the
front end (fetch or decode) or long latency memory instruc-
tions blocking instruction retirement. Figure 3(b) breaks
down stall activity further.

Stalls during instruction fetch arise from branches and
instruction cache effects. As illustrated in Figure 3(c), sub-
stantial branch activity of 15.6 branches per 100 instructions
makes the branch predictor a bottleneck. Moreover, the dat-
apath sees a seven cycle penalty when the number of in-flight
speculative branches exceeds the capacity of the branch pre-
dictor (e.g., branch history table) [13]. Furthermore, the
instruction fetch often stalls for L2 cache activity with 18.9
percent of L2 caches accesses attributed to instruction cache
misses (Figure 3(d)).

Other resource stalls may be attributed to memory activ-

12

8

4

0

R
e

la
tiv

e
 t

o
 X

e
o

n
 a

t
X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p
a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n
 I
m

p
a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n
 R

a
te

 B
u
s

U
til

iz
a
tio

n

 B
u

s
B

u
rs

t
R

e
a

d
s

 D
a
ta

 B
u
s

U
til

iz
a
tio

n

 W
ri
te

b
a

ck
 B

u
s

U
til

iz
a

tio
n

 T
L

B
 M

is
s

Im
p

a
ct

 I
T

L
B

 M
is

s
R

a
te

 D
T

L
B

 M
is

s
R

a
te

 D
iv

id
e

r

 L
1

 D
C

a
ch

e
 M

is
s

Im
p

a
ct

 L
1
 D

C
a
ch

e
 M

is
s

R
a
te

 L
1
 I
C

a
ch

e
 M

is
s

R
a
te

 L
2

 C
a

ch
e

 M
is

s
R

a
te

 L
2

 E
vi

ct
io

n
 R

a
te

 C
P

I

48.2x

Figure 4: Atom with respect to Xeon.

ity. According to Figure 3(c), a total of 30.4 percent of in-
structions either load or store data, which leads to pressure
on the cache hierarchy. Consequently, Figure 3(d) shows
that loads and stores account for 81.2 percent of all cache
accesses. L2 cache activity often translates into memory re-
quests with 67.0 percent of bus activity attributed to mem-
ory transactions (not shown). Application activity on Atom
demonstrates similar behavior.

Relative to Xeon, the Atom implements a simpler and
deeper pipeline. As Figure 4 demonstrates, microarchitec-
tural effects are aggravated in the low-power Atom. This
data corresponds to Atom at Aθ, the Atom’s sustainable
throughput for quality-of-service target θ. The high fre-
quency of branches and Atom’s deeper pipeline depth leads
to a 10× increase in performance penalties from mispre-
dicted branches. Atom divide time is 48.2× greater than
that of the Xeon. These performance effects may arise from
the decision to favor generality over specialization for exe-
cution units. Specifically, “the use of specialized execution
units is minimized. For example, the SIMD integer multi-
plier and Floating Point divider are used to execute instruc-
tions that would normally require a dedicated scalar integer
multiplier and integer divider respectively.” [10]

Moreover, on a per core basis, the Atom implements a
much smaller cache hierarchy. According to Table 1, the
Atom data and L2 caches are 25 and 66 percent smaller
per core than their Xeon counterparts. This smaller cache
hierarchy translates into 1.5× and 8.0× the number of data
and L2 cache misses. Collectively, these microarchitectural
effects lead to a 3× increase in cycles per instruction.

Table 2 compares throughput for search at its quality-of-
service target θ. Let Xθ and Aθ be the sustainable through-
put of the Xeon and Atom in queries per second (QPS). At
the same θ, Xeon sustains 3.9× the throughput sustained
by an Atom (Xθ = 3.9×Aθ). On a per core basis, each of

Figure 5: Xeon consumes ∼62.5W, where as the low-
power Atom consumes ∼3.2W on average.

the four Xeon cores sustain 2.0× the throughput sustained
by each of the two Atom cores. Sustainable throughput dif-
fers from absolute CPI because some processing is wasted on
failed queries (time-outs), therefore system-level throughput
gains can be less than microarchitectural gains.

3.3 Power
Figure 5 illustrates the power time series for both Xeon

and Atom as search is running. The Xeon operates with an
idle power component of 38.5W. The substantial idle power
dissipated is particularly problematic given that the proces-
sor is stalled for 56.6 percent of its cycles. The Xeon exhibits
a dynamic power range of 38.5 to 75W with a 95 percent dif-
ference between the idle and peak power. In contrast, Atom
has a low idle power component of 1.4W with a 168 percent
difference between idle and peak power. The Atom gets a
drastic power reduction of 9.8× relative to Xeon. Atom’s
low idle power and large dynamic range is particularly at-
tractive in the pursuit of energy proportional computing [4].

3.4 Performance
On a per core basis, the Atom is 5× more efficient than

the Xeon. We compute performance and power efficiency
as sustainable QPS per watt. Table 2 compares the Xeon
and Atom over a variety of metrics. The power differentials
(19.5× per processor, 9.8× per core) dominate the perfor-
mance differentials (3.9× per processor, 1.9× per core). The
large power cost of the Xeon is not justified by relatively
modest increases in sustainable throughput.

Although this paper focuses primarily on power efficiency,
we also mention area and price efficiency for comparison.
Area efficiency is comparable between the two architectures,
indicating the Xeon area overheads from dynamic instruc-
tion scheduling and out-of-order execution produce a lin-
ear improvement in throughput for search. However, Xeon
price efficiency is 0.45× Atom price efficiency. Xeon prices
are 8.4× Atom prices, but each Xeon sustains only 3.8×
the number of queries per second. Note we consider price
seen by the data center, not cost seen by processor manu-
facturers; manufacturers may target higher profit margins
on server-class processors. Moreover, this analysis considers
only equipment prices, not total cost of ownership. Periph-
eral components (e.g., motherboard, network interface card)
will also impact the analysis. Section 5 will further assess
the sensitivity of these effects.

4. PRICE OF EFFICIENCY
To understand the role of mobile-class architectures in

data centers as workloads continue to emerge and evolve,
we must identify and understand the price of exploiting
small core efficiency. For search, we find quality-of-service

becomes less robust as small cores are less capable of absorb-
ing even modest increases in query load. Greater variance
in the per query latency distribution indicates more queries
experience higher latencies, which limit the time available to
perform additional computation and improve search result
relevance and ranking. Both quality-of-service and latency
effects depend, in part, on the shifts in computational inten-
sity and resource bottlenecks when using small cores.

4.1 Robustness
Quality-of-Service(QoS). Given a quality of service tar-

get θ, Xeon and Atom sustain a throughput Xθ and Aθ, re-
spectively. We consider QoS guarantees robust if target θ
is met despite fluctuations or temporary increases in query
load. Robust QoS guarantees are a critical application re-
quirement for search and data center applications. Robust-
ness also determines the extent to which any one node can
be utilized. If index server nodes can absorb activity spikes
with little QoS degradation, they can operate closer to peak
sustainable throughput.

For a given increase in query load, Figure 6 indicates ro-
bustness trends. The horizontal axis quantifies QPS normal-
ized to Xeon’s sustainable throughput Xθ. The vertical axis
quantifies QoS in terms of the percentage of successfully pro-
cessed queries. Xeon processes the additional queries more
robustly. Degradations in quality-of-service are modest and
gradual. Atom is unable to absorb a large number of addi-
tional queries and quickly violates its QoS target.2

Latency. Increasing query load not only degrades the
success rate in a quality-of-service metric, it also increases
the latency at which that service is delivered. The search al-
gorithm uses multiple strategies to refine search results if the
query latency has not yet exceeded a cutoff latency LC . Fig-
ure 7 illustrates latency trends with latencies normalized to
the cutoff latency LC . Using a logarithmic vertical axis, the
figure indicates super-exponential increases in mean latency
as query load increases on both Xeon and Atom. At their
respective sustainable throughputs, Atom’s latency is nearly
3× greater than that of the Xeon (0.33LC versus 0.12LC).

Relevance. QoS and latency shortcomings have a direct
impact on search query relevance, which refers to a user’s
utility from a set of search results. Search algorithms often
have multiple strategies for refining their results. However,
load and cutoff latency LC determine room for refinement.
In a tiered index, pages indexed in the first tier are always
ranked but indices in subsequent tiers may only be ranked
if LC has not been exceeded. In such scenarios, lower per
query latencies allow for multiple iterative refinements of
search results to improve page relevance. Moreover, lower
latencies provide opportunities to search algorithm designers
for exploring latency-relevance trade-offs.

Since the average latency on Atom at Aθ is higher than
on the Xeon at Xθ (see Figure 7), search on the Atom is
unable to refine pages in a manner equivalent to the Xeon.
Figure 8 shows how page relevance on the Atom compares
to the Xeon at Xθ as load increases. The vertical axis com-
pares matching pages returned by search on Xeon and Atom,
defining baseline relevance with Xeon search results. For
example, 100 percent means 100 percent of Atom queries
return search results that perfectly match those from Xeon

2We study Xeon and Atom beyond sustainable throughput
to characterize robustness. We do not assume sustainable
operation under such loads.

Per Processor Per Core

Xeon Atom ∆X/A Xeon Atom ∆X/A

Performance (QPS) 3.86Aθ Aθ 3.86× 0.96Aθ 0.5Aθ 1.93×
Power (W) 62.50 3.2 19.53× 15.63 1.60 9.77×
Power Efficiency (QPS/W, ×10−2) 6.17Aθ 31.25Aθ 0.20× 6.17Aθ 31.25Aθ 0.20×

Area (T, ×106) 820 94 8.72× n/a n/a n/a
Area (mm2) 214 50 4.28× n/a n/a n/a
Area Efficiency (QPS/mm2, ×10−2) 1.80Aθ 2.00Aθ 0.90× n/a n/a n/a

Price ($) 380 45 8.44× 95 22.50 4.22×
Price Efficiency (QPS/$, ×10−2) 1.02Aθ 2.22Aθ 0.45× 1.02Aθ 2.22Aθ 0.45×

Table 2: Search on Xeon versus Atom. Performance is quantified by sustainable throughput, which is the
maximum number of queries arriving per second (QPS) that can be serviced successfully at the target quality-
of-service θ. QPS is reported relative to Atom performance Aθ. Average power is used to compute efficiency.
Area is reported per processor. Price is reported per unit purchased in orders of one thousand units.

100

80

60

40

20

0

%
 o

f
S

u
cc

e
ss

fu
l Q

u
e
ri
e
s

2.01.51.00.5
QPS (Normalized to Xθ)

 Xθ

2Xθ

 Aθ

Figure 6: QoS on Xeon and
Atom normalized to Xθ.

0.01

0.1

1

10

100

L
a

te
n

cy
 (

 N
o

rm
a

liz
e

d
 t

o
 L

c
)

2.01.51.00.5
QPS (Normalized to Xθ)

 Xθ

 Aθ

2Xθ

Figure 7: Latency on Xeon and
Atom normalized to Xθ.

Figure 8: Bottlenecks on Atom
limit the quality of page hits.

search. At 98 percent, the vertical axis indicates 2 percent of
Atom queries produce different results relative to Xeon. A
query’s results match perfectly across architectures if the top
N results match. The magnitude of the difference is quan-
tified by δ1 < δ2 < δ3 < δ4 < N where a reduced subset of
N − δi of results match. In the worst case, none of the re-
sults match. This measure of relevance is highly conservative
since it assumes Xeon defines the best relevance and any re-
sult mismatch degrades user perceived relevance. However,
this metric facilitates the relevance analysis by quantifying
search result differences.

Even considering the case when the load is at an absolute
minimum on the Atom, approximately 1 percent of queries
produce different results on Atom. Query latency on Atom
at minimum load (e.g., 10 queries per second) is still higher
than the latency on Xeon at Xθ (see Figure 7). Conse-
quently, page refining algorithms have a third of the time
to complete their work, leading to different search results
from those on the Xeon. At Aθ about 1.5 percent of queries
produce different results and the number of differing queries
increases to 3 percent as load approaches 2Aθ.

4.2 Flexibility
A search engine frequently experiences user-generated ac-

tivity spikes measured in absolute terms. Therefore, the un-
derlying microarchitecture must be capable of adapting to
rapid and significant shifts in search activity. This is espe-
cially the case in the presence of complex queries. Complex
queries consist of multiple simpler queries that cannot be
broken down and distributed across multiple nodes; each
index serving node (ISN) must process the complex query.
Even a modest spike in complex queries causes a significant
absolute activity spike within an ISN. Therefore, nodes sen-
sitive to activity spikes must be overprovisioned by operating
below sustainable throughput to provide a safety margin. To
understand this sensitivity, we evaluate how query latency

100

80

60

40

20

0

%
 C

u
m

u
la

tiv
e

 D
is

tr
ib

u
tio

n

2.01.51.00.5
Latency (Normalized to L

c
)

 Xθ

 Xθ + λ

 Xθ + 2λ

 Xθ + 3λ

(a) Xeon

100

80

60

40

20

0

%
 C

u
m

u
la

tiv
e

 D
is

tr
ib

u
tio

n

2.01.51.00.5
Latency (Normalized to L

c
)

 Aθ

 Aθ + λ

 Aθ + 2λ

 Aθ + 3λ

(b) Atom

Figure 9: Query latency distribution. The exper-
iment allows queries to exceed LC and tracks the
frequency in order to understand how the two pro-
cessors handle sudden bursts in activity spikes.

distribution changes as load increases in the presence of dif-
ferent types of queries. We explain the behavior through
microarchitectural effects.

Cutoff Latencies. Figure 9 illustrates the latency distri-
bution with latencies normalized to the cutoff latency LC .
The experiment allows queries to exceed LC and tracks the
frequency to understand how the two processors handle sud-
den bursts in activity spikes. Processing queries at Xθ, 89.4
percent of queries are satisfied in less than 0.2LC , 98.2 per-
cent of queries are satisfied before the cutoff latency LC ,
and less than 1.0 percent of queries require more than 2LC .
Moreover, on the Xeon, these trends are modestly sensitive
to activity spikes, which we quantify using λ. For an in-
creased load of Xθ + 3λ, 82.7 and 96.4 percent of queries
are still satisfied in less than 0.2LC and LC .

Atom per query latency exhibits much greater variation
and sensitivity to activity spikes (Figure 9(b)). Processing
queries at Aθ on the Atom, only 68.2 percent of queries are
satisfied in less than 0.2LC . At 93.4 percent, the number
of queries completing before LC on the Atom is comparable
to that on the Xeon. However, nearly 3.0 percent of queries

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
tiv

e
 t
o

 X
e

o
n

 a
t
X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 I
m

p
a

ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 R
a

te

 B
u

s
U

til
iz

a
tio

n

 B
u
s

B
u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s

U
til

iz
a

tio
n

 W
ri
te

b
a
ck

 B
u
s

U
til

iz
a
tio

n

 T
L
B

 M
is

s
Im

p
a
ct

 I
T

L
B

 M
is

s
R

a
te

 D
T

L
B

 M
is

s
R

a
te

 D
iv

id
e
r

 L
1
 D

C
a
ch

e
 M

is
s

Im
p
a
ct

 L
1

 D
C

a
ch

e
 M

is
s

R
a

te

 L
1

 I
C

a
ch

e
 M

is
s

R
a

te

 L
2
 C

a
ch

e
 M

is
s

R
a
te

 L
2
 E

vi
ct

io
n
 R

a
te

 C
P

I

 Xθ + λ Xθ + 2λ Xθ + 3λ

(a) Xeon

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
tiv

e
 t

o
 A

to
m

 a
t

A
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 I
m

p
a

ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 R
a

te

 B
u

s
U

til
iz

a
tio

n

 B
u
s

B
u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s

U
til

iz
a

tio
n

 W
ri
te

b
a
ck

 B
u
s

U
til

iz
a
tio

n

 T
L
B

 M
is

s
Im

p
a
ct

 I
T

L
B

 M
is

s
R

a
te

 D
T

L
B

 M
is

s
R

a
te

 D
iv

id
e
r

 L
1
 D

C
a
ch

e
 M

is
s

Im
p
a
ct

 L
1

 D
C

a
ch

e
 M

is
s

R
a

te

 L
1

 I
C

a
ch

e
 M

is
s

R
a

te

 L
2
 C

a
ch

e
 M

is
s

R
a
te

 L
2
 E

vi
ct

io
n
 R

a
te

 C
P

I

 Aθ + λ Aθ + 2λ Aθ + 3λ 2x

(b) Atom

Figure 10: Activity beyond sustainable query load.

require more than 2LC . Thus, compared to Xeon latency
distributions, we observe a much larger spread in Atom’s
minimum and maximum per query latencies. Furthermore,
Atom latency distributions are highly sensitive to activity
spikes. For an increased load of Aθ + 3λ, only 33.0 and 77.6
percent of queries are satisfied in less than 0.2Lc and LC .

Figure 10 examines microarchitectural activity to provide
deeper insight into the flexibility of the Xeon processor and
the inflexibility of the Atom processor under load. Data is
normalized with respect to activity on each processor at its
sustainable throughput. Increases in query load minimally
impacts the Xeon because next to added bus activity we see
no other noticeable changes in Figure 10(a). However, query
load increases of λ, 2λ and 3λ QPS beyond Aθ on the Atom
degrades microarchitectural performance (CPI) by 7.5, 13.2,
and 16.5 percent, respectively. These performance degrada-
tions arise primarily from increasing contention in the cache
hierarchy. The small 1 MB, 8-way L2 cache becomes a con-
straint with L2 miss rate increasing by up to 22.2 percent
and L2 eviction rate increasing by up to 100 percent. The
increased eviction rate results in much higher bus utiliza-
tion; writebacks increase linearly with the additional query
load. As the memory subsystem becomes a bottleneck, the
pipeline is more often stalled waiting for data. The divider
utilization falls by 8 percent with an extra load of 3λ QPS.

Query Complexity. Atom processor’s susceptibility to
absolute load spikes is a function of query complexity. Query
latency on the Atom takes a significant hit at throughput
rates higher than Aθ because certain types of queries require
more computation than others. Search criteria (e.g., lan-
guage specification, conditional statements like ANDs, ORs
etc.) determine query complexity, and how long it takes

100

98

96

94

92

90

%
 o

f
S

u
cc

e
ss

fu
l Q

u
e
ri
e
s

Xθ Xθ + λ Xθ + 2λ Xθ + 3λ

QPS

 Query type A
 Query type B
 Query type C

(a) Xeon

100

98

96

94

92

90

%
 o

f
S

u
cc

e
ss

fu
l Q

u
e
ri
e
s

Aθ Aθ + λ Aθ + 2λ Aθ + 3λ

QPS

 Query type A
 Query type B
 Query type C

(b) Atom

Figure 11: QoS degradation by query complexity.
Query type A has no search constraints. Query
types B and C have increasing amounts of complex-
ity, requiring more processing capability.

to process a query. Complex queries are broken down into
simpler multiple individual queries within the ISN, so the
“effective” query load is higher for complex queries.

To demonstrate how query complexity affects processor
behavior and sustainable throughput, we isolate queries with
different search criteria from the pool of mixed queries we
use for all other evaluation and label them as query types A,
B and C in Figure 11. Query type A has no complex search
criteria, and is therefore fast to process. Query types B
and C impose search criteria. Query type C contains many
more constraints than type B, and thus requires even more
processing.

Atom is able to sustain QoS equivalent to that of the Xeon
for query type A even under high activity spikes (Aθ+3λ QPS)
because of query simplicity. But the processor is unable to
stay competitive for query types B and C as load increases
beyond Aθ. At Aθ+3λ QPS the percentage of successful
queries is only 90 percent when a stream of type C queries
arrive back to back. These queries take longer to process,
and consequently search queues begin to fill up and new
incoming queries are dropped until search completes some
pending queries or exceeds cutoff latencies . In contrast,
Figure 11(a) shows Xeon does not suffer from this problem.
Regardless of query complexity, Xeon is able to absorb ac-
tivity spikes smoothly.

4.3 Reliability
Hardware or software-based failures are often threats in a

data center. Therefore, we must understand how a homoge-
neous deployment of servers comprising of only Atom pro-
cessors performs when load is re-balanced to accommodate
failures. Load redistribution due to node failures leads to
fractional or relative increases of sustainable throughput for
a given processor. For instance, a processor will experience
a relative load of 1.2θ when a hypothetical rack consisting of
five systems experiences one system failure. Since the same
absolute load is more evenly distributed across many more
Atom ISNs, as compared to a data center full of Xeons, we
find that on a per-node basis Atom achieves higher sustain-
able fail-over throughput compared to a Xeon.

Atom is more reliable for deploying search. To compare
how QoS degrades due to fractional load increases across
Atom and Xeon, we present the QoS data of each system
normalized to its sustainable throughput in Figure 12. At
loads slightly beyond sustainable throughput θ (1.0 QPS on
the normalized axis), the Xeon latency trend line increases
more sharply than that of the Atom. Atom QoS degrades to
95 percent at 2Aθwhereas Xeon QoS degrades to 64.5 per-

Figure 12: Compar-
ing QoS normalized to
each system’s sustain-
able throughput.

Figure 13: Comparing
latency normalized to
each system’s sustain-
able throughput.

cent at 2Xθ . QoS degrades more gradually because the same
fractional increase in load (e.g., 1.2×) on Atom corresponds
to a smaller increase in the absolute number of queries on
Xeon; Xθis larger than Aθ.

Xeon is unable to handle load increases robustly because
of latency violations. Compare the latency on Xeon versus
Atom with respect to each machine’s sustainable through-
put in Figure 13. Latency increases more gradually on the
Atom than on the Xeon. Query latencies exceed LC on the
Xeon beyond 1.5Xθ . This means that even though the pro-
cessor eventually locates pages corresponding to a query, the
results are invalid because the aggregator terminates after
LC , assuming the ISN cannot produce the required pages.
By comparison, latency on the Atom is still tolerable at
0.5LC at Aθ, and thus its results are still valid.

Xeon is unable to scale to higher loads because the mi-
croarchitecture is saturated beyond 1.5Xθ . Figure 14 shows
microarchitectural effects across the Xeon and Atom proces-
sors for relative load increases of 1.2×, 1.4×, 1.6×, 1.8×, and
2× beyond sustainable throughput. On Xeon, the proces-
sor’s microarchitectural event activity plateaus from 1.6Xθ

onwards. Branch misprediction rates, bus utilization, TLB
activity, cache activity all reach maximum levels. Therefore,
the CPI increase is capped at ∼1.11x. While the Xeon sys-
tem saturates at 1.6Xθ , Atom has more room for additional
fail-over load, as indicated by increasing additional microar-
chitectural activity and CPI for the same relative loads.

Overall, these findings indicate that while Xeon is ca-
pable of sustaining higher throughput, it must run signif-
icantly under peak capacity to handle fail-overs, thus low-
ering throughput-per-watt further on top of already high
power costs. As fail-over load per Atom server is smaller,
and as its load is more distributed than in a data center
comprising of fewer but higher capacity Xeons, Atom-based
search is more reliable and energy-efficient. However, there
are platform and system-level effects, in addition to flexibil-
ity sensitivity that impact any transition to Atoms.

5. MITIGATING THE PRICE OF
EFFICIENCY

Strategies are necessary to mitigate the price of efficiency
in using small cores for our web search. In this section, we
propose holistic system-level strategies, as well as microar-
chitectural enhancements to individual cores to enhance ro-
bustness, flexibility and reliability guarantees.

5.1 Over-provisioning and Under-utilization
To improve QoS despite activity spikes, we might over-

provision and underutilize Atom’s. If we find an Atom node

1.6

1.4

1.2

1.0

0.8

0.6

R
e
la

tiv
e
 t
o
 X

e
o
n
 a

t
X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 I
m

p
a

ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 R
a

te

 B
u

s
U

til
iz

a
tio

n

 B
u

s
B

u
rs

t
R

e
a

d
s

 D
a

ta
 B

u
s

U
til

iz
a

tio
n

 W
ri
te

b
a

ck
 B

u
s

U
til

iz
a

tio
n

 T
L
B

 M
is

s
Im

p
a
ct

 I
T

L
B

 M
is

s
R

a
te

 D
T

L
B

 M
is

s
R

a
te

 D
iv

id
e

r

 L
1
 D

C
a
ch

e
 M

is
s

Im
p
a
ct

 L
1

 D
C

a
ch

e
 M

is
s

R
a

te

 L
1

 I
C

a
ch

e
 M

is
s

R
a

te

 L
2
 C

a
ch

e
 M

is
s

R
a
te

 L
2
 E

vi
ct

io
n
 R

a
te

 C
P

I

 1.2Xθ 1.4Xθ 1.6Xθ 1.8Xθ 2.0Xθ 2x

(a) Xeon

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
tiv

e
 t

o
 A

to
m

 a
t

A
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 I
m

p
a

ct

 B
ra

n
ch

 M
is

p
re

d
ic

tio
n

 R
a

te

 B
u

s
U

til
iz

a
tio

n

 B
u

s
B

u
rs

t
R

e
a

d
s

 D
a

ta
 B

u
s

U
til

iz
a

tio
n

 W
ri
te

b
a

ck
 B

u
s

U
til

iz
a

tio
n

 T
L
B

 M
is

s
Im

p
a
ct

 I
T

L
B

 M
is

s
R

a
te

 D
T

L
B

 M
is

s
R

a
te

 D
iv

id
e

r

 L
1
 D

C
a
ch

e
 M

is
s

Im
p
a
ct

 L
1

 D
C

a
ch

e
 M

is
s

R
a

te

 L
1

 I
C

a
ch

e
 M

is
s

R
a

te

 L
2
 C

a
ch

e
 M

is
s

R
a
te

 L
2
 E

vi
ct

io
n
 R

a
te

 C
P

I

 1.2Aθ 1.4Aθ 1.6Aθ 1.8Aθ 2.0Aθ 2x

(b) Atom

Figure 14: Microarchitectural activity during load
redistribution because of fail-overs.

cannot tolerate a λ increase in QPS in a robust manner, we
simply utilize the node at (1−λ/Aθ) percent. While this re-
duces throughput, the power difference between Atom and
Xeon processors still favors mobile processors. Overprovi-
sioning, however, incurs significant power overheads and has
implications for the total cost of ownership (TCO). We break
down TCO into server costs, their average power consump-
tion, and the associated infrastructure for cooling and power
distribution to provide insight into the system-level costs of
Xeons and Atoms. We also assess the sensitivity of Atom’s
efficiency advantages to system-level costs.

Platform Overheads. Although the Atom core itself
typically dissipates anywhere between 1.5 to 4.5W when run-
ning search, peripheral components on the motherboard con-
tribute another 20 to 30W to platform power. To be success-
ful, multiprocessor integration is necessary to help reduce
these overheads. Through system engineering, Atom pro-
cessors can deliver better platform-level performance-per-
watt, since multiprocessor integration will amortize periph-
eral penalties over a larger number of processors. Based
on our peripheral component analysis in Table 3, Atom-
Diamondvilles exhibit only 0.4× the platform-level cost and
power efficiency of the Xeon. Although the Atom processor
is itself much more power-efficient, system engineering and
optimization is required to reduce the overheads of periph-
eral components, such as the motherboard, network inter-
face card, memory, and storage.

To reduce platform overheads, an amortization strategy is
needed to integrate more Atom cores into a single processor

Xeon Atom

Harpertown Diamondville Hypothetical
4-core, 2-socket 2-core, 1-socket 8-core, 2-socket

Cost ($) Power (W) Cost ($) Power (W) Cost ($) Power (W)

Processor 760 125 45 3.2 760 25.6
Motherboard 200 30 80 30 200 30
Network Interface 0 5 0 5 0 5
Memory (4GB) 150 8 150 8 150 8
Storage (HDD) 100 10 100 10 100 10

Total Server Cost 1210 178 375 56.2 1210 78.6

Normalized Efficiency
1.0 1.0 0.4 0.4 1.0 2.3

QPS/$ QPS/W QPS/$ QPS/W QPS/$ QPS/W

Table 3: Peripheral component costs. Xeon motherboard cost and power is quoted for the Intel S5000PAL
[12] and Atom is quoted for the Intel D945GCLF2 [6]. Memory data is reported from Micron power specifi-
cations [16]. Storage data is reported from Seagate data sheets [19]. Processor and motherboard cost of the
hypothetical Atom is based on the Xeon-Harpertown. Its power corresponds to the Atom-Diamondville.

die. We compute the cost of building a two socket system
consisting of Atom-Diamondville processors by evaluating
the number of Atom cores that fit in the area budget of a
Xeon processor. Four dual-core Atom-Diamondville proces-
sors fit into the area of a single socket Xeon-Harpertown pro-
cessor (50 sq-mm into 214 sq-mm). This hypothetical sce-
nario is based on industry trends towards multiple in-order
x86 CPU cores [20]. We assume processor and motherboard
costs for the multiprocessor-based Atom are equivalent to
the Xeon-Harpertown platform. As manufacturing costs are
driven by die area and not by the number of cores for a given
die size, we assume the same processor cost. Similarly, be-
cause of socket compatibility, we assume motherboard cost
is the same. System memory and storage costs are indepen-
dent of processor specifics, and therefore equivalent across
all three platforms.

To test the benefits of multiprocessor integration, we com-
pare the costs of a two-socket Xeon-Harpertown platform,
a single-socket Atom-Diamondville platform (representative
of current experimental systems), and a dual-socket Atom-
Hypothetical platform (representative of projected integra-
tion). By integrating up to eight Diamondville cores into a
single chip and building a system with two sockets, amor-
tization once again highlights Atom efficiency. As per our
computed cost in Table 3, an integrated low-power multi-
processors would be competitive with a cost and power ef-
ficiency advantage of 1.03× and 2.3× over the Xeon. In
summary, our analysis prompts us towards better system in-
tegration to enable successful overprovisioning, while achiev-
ing much better performance-per-watt for approximately the
same performance-per-dollar.

Efficiency Sensitivity. Depending upon application ro-
bustness, flexibility and reliability characteristics on a plat-
form, a certain degree of overprovisioning is necessary. How-
ever, overprovisioning degrades efficiency by reducing the
operational load on the processor. Therefore, while Table 3
reports efficiency differences at maximum sustainable load
on Xeon and Atoms, there are cost and power efficiency
trade-offs that require careful consideration while underuti-
lizing and overprovisioning processors.

We present overprovisioning analysis of search in Figure 15.
At peak throughput utilization, or 0 percent overprovision-
ing, the integrated Atom-Hypothetical is 1.0× as cost effi-
cient and 2.3× as power efficient as the Xeon-Harpertown
(see Figure 15(a) and Figure 15(b), respectively). However,
when considering flexibility requirements, Harpertown effi-
ciency improves. For example, if search requires a tolerance

(a) QPS-per-Dollar (b) QPS-per-Watt

Figure 15: Efficiency sensitivity to overprovisioning
when processors are underutilized for robustness,
flexibility and reliability service requirements.

of λ QPS against activity spikes, the Harpertown requires
only 7.4 percent overprovisioning, whereas every core within
the hypothetical Atom requires a 28.6 percent margin. Con-
sequently, cost and power efficiency of Harpertown with re-
spect to the hypothetical Atom improves by 25 percent and
12 percent to 1.25× and 0.55×, respectively. Based on the
sensitivity analysis in Figure 15, we invite readers to identify
target utilization levels that best fit production-level robust-
ness, flexibility and reliability requirements.

Capital and Operational Costs. To study the costs of
managing Xeons versus Atoms at the scale of an entire data
center, we quantify TCO in terms of aggregate sustainable
throughput-per-TCO dollar. We assume search is running
on either the Xeon or Atom processors. We evaluate the
Atom-Diamondville and Atom-Hypothetical.

We use a publicly available cost model to estimate data
center capital and operational costs [11]. The model as-
sumes $200M facility costs based on 15MW of critical power
with a data center power usage efficiency (PUE) of 1.7. The
model amortizes power distribution and cooling infrastruc-
ture costs over fifteen years and the purchase cost of servers
over three years. The total cost of operating and manag-
ing the data center is presented on a monthly basis. The
model categorizes the TCO into the following: power (elec-
tricity bill for running all servers), servers (purchase cost),
cooling and power distribution (data center infrastructure
power cost) and others (miscellaneous costs). To maintain
our focus on platform overheads and power efficiency only,
we constrain our TCO analysis by omitting discussion about
network, software licensing, and personnel costs, assuming
they are uniform across all deployments.

Figure 16 proportionally illustrates TCO costs associated
with using Atom processors instead of Xeon-Harpertowns.

In going from the Xeon-Harpertowns (Figure 16(a)) to the
Atom-Diamondvilles (Figure 16(b)), we suffer a 56 percent
loss in performance-per-dollar spent managing the data cen-
ter. Despite spending the same amount of money purchasing
servers (51.4 percent on the Xeons versus 51.1 percent on
the Atom-Diamondvilles), we get lower aggregate through-
put from the Atom-Diamondvilles.

The loss in efficiency is mainly because of power inefficien-
cies at the system-level, which limit the number of Atom
systems per data center. For a fixed critical power bud-
get of 15MW, the data center houses 84,269 Xeons, which
is far fewer than the 267,857 Atom-Diamondvilles possible
within that same power envelope. But the Xeons generate
59 percent more throughput than the Atom-Diamondvilles.
To match that throughput, the data center requires 650,000
Atom-Diamondvilles, far exceeding the data center’s critical
power budget by a factor of 3×.

With better system integration, however, an Atom-based
data center can achieve approximately 1.5× the throughput-
per-TCO dollar of Xeons. Figure 16(c) illustrates better
throughput-per-dollar improvement through sheer increase
in pie size with respect to the Xeons. Notice that this is
a significant improvement at the data center-level in con-
trast to the system-level where the difference between Xeon-
Harpertown and Atom-Hypothetical is negligible (see Ta-
ble 3). The larger advantage at the data center-level arises
from issues like power and cooling distribution. For instance,
a multiprocessor-based Atom consumes approximately 3×
less power than Xeons, and therefore its cooling require-
ments are lower, which benefits data center density.

System integration achieves better value per dollar spent
managing the data center. Consider the distribution changes
between the slices corresponding to Figure 16(a) and Fig-
ure 16(c). In the hypothetical Atom, server purchase cost is
a significant portion of the monthly TCO, increasing from
51.4 percent for Xeons to 70.5 percent for Atoms. Despite
this increase, using Atoms is opportune for two reasons.
First, aggregate throughput using multiprocessor-based Atoms
increases by over 2.3×. Second, considering the same critical
power envelope of the data center, we are able to accommo-
date many more servers that are delivering higher aggregate
throughput. By better integration, we void the need to ex-
pand or build newer data centers with higher power bud-
gets, since we are capable of exploiting existing infrastruc-
ture more effectively. Moreover, compared to the purchase
cost of additional servers, the overall operational and man-
agement costs of Atoms increase by only 60 percent relative
to the Xeons. These trends, combined with lower expendi-
tures for power and cooling infrastructure, indicate invest-
ment value will improve by transitioning to small cores.

5.2 Microarchitectural Enhancements
While overprovisioning addresses robustness QoS concerns

at the system level, achieving lower latency per query is still
essential on the Atom, especially for flexibility requirements
in the presence of complex query load. Otherwise, the qual-
ity of search results will deteriorate as explained in Figure 8.
To effectively achieve lower latency, we require microarchi-
tectural enhancements to the Atom core. In Section 3, we
found the Atom experiences particular stress on the divider,
branch predictor, and cache hierarchy. Enhancing the Atom
core based on those findings implies designing small cores us-
ing unconventional strategies in which, for example, a light-

 Manager
 42.4%

Ranker
 33.3%

NeuralNet
 6.1%

 Streams
 18.2%

(a)

3.0

2.0

1.0

0.0

C
P

I
(N

o
rm

a
lie

d
 t

o
 X

e
o

n
)

Manager

NeuralNet

Ranker

Streams

(b)

Figure 17: Search execution activity. (a) Execution
time distribution across search phases. (b) Cycles-
per-instruction (CPI) normalized to Xeon across the
different phases of search computation on Atom.

weight datapath is paired with a disproportionately large
cache hierarchy, at least for applications like search. These
subtle modifications are likely to be more power efficient
than transitioning to an out-of-order datapath.

To understand Atom bottlenecks and their root causes in
the design, we must breakdown and analyze the different
parts of search in isolation. Figure 17(a) illustrates that ex-
ecution time is fairly distributed across all phases of search
computation. This distribution gathered on a Xeon is iden-
tical to search on Atom. Additionally, Figure 17(b) suggests
the most important functions exist throughout the phases of
computation; all four major components of the search engine
experience significant microarchitectural latency increases
between 1.5× and 2.8× relative to Xeon performance. Atom
performance degradation is broadly distributed and cannot
be attributed to any one function or phase of computation.

Bottlenecks are limited to a few functions within each
phase of search computation. We observe a significant over-
lap within the top 20 functions across both Xeon and Atom,
indicating function importance depends more on the appli-
cation and less on the architecture. Given the 20 most im-
portant functions and our knowledge of computation phases,
we identify a representative function from each phase (Man-
ager, NeuralNet, Ranker, and Streams). Figure 18 illus-
trates the microarchitectural events that affect the perfor-
mance of those four representative functions. The events
illustrate a broad range of performance limitations when
adopting the small Atom cores. Just as no single function
or single phase of computation accounts for Atom’s perfor-
mance limitations, no single microarchitectural event can be
identified as the performance constraint.

Each function representing a different phase of search ex-
ercises different parts of the microarchitecture. Atom re-
sources are constrained and particular stress is exerted on
the divider, branch predictor, and cache hierarchy. The neu-
ral network stresses the divider and L2 cache. This function
exhibits a 64× increase in division time, which seems to
arise from a design decision regarding SIMD versus scalar
dividers; scalar division is performed in a SIMD execution
unit [10]. Atom’s small 1MB, 8-way L2 cache leads to a
14× increase in L2 cache misses. The net effect is a 4.8×
increase in CPI. In contrast, other parts of the ranker stress
the branch predictor and L1 data cache. The performance
impact of branch misprediction increases by 142× from a
very low Xeon baseline. Such penalties may arise from
the ranker’s algorithmic components, which apply different
strategies depending on the query and cutoff latencies. The

(a) Xeon (Harpertown) (b) Atom (Diamondville) (c) Atom (Hypothetical)

Figure 16: Total Cost of Operation (TCO) dollar. Each chart illustrates the breakdown of capital and
operational expenses associated with sustainable throughput per monthly TCO dollar. With Xeon-based
systems (a) as the baseline, pie charts (b) and (c) proportionally illustrate the return value per dollar spent
managing the data center using either Atom-Diamondvilles, or our proposed integrated Atoms.

Figure 18: Identifying bottlenecks across phases of
search using a representative functions.

impact of L1 data cache misses increases by 79× from a very
low Xeon baseline. The net effect is a 2.9× increase in CPI.

Also stressing the branch predictor, streams manipulate
an iterator data structure containing indices that match
words within the query. Finding a particular element within
the iterator requires non-trivial control flow, which exercises
the branch predictor with a 49× penalty relative to Xeon.
Therefore, CPI increases by 2.8×. Lastly, the manager co-
ordinates the movement of index files to and from memory.
The smaller L2 cache limits opportunities to exploit locality
and produces a 14× increase in misses. The smaller cache
also increases memory subsystem activity by 20 to 22×, thus
causing a 4.6× increase in CPI. Overall, although we ob-
serve comparable performance degradations between 2.8×
and 4.8× in representative functions across the four major
phases of computation in search, the microarchitectural bot-
tlenecks differ significantly.

Despite the near-term shortcomings, the ideal efficient mi-
croprocessor seems closer to the mobile-class end of the mi-
croarchitectural spectrum. For instance, reflecting back on
the microarchitectural effects shown for activity spikes in
Figure 10, we observe that the Xeon is significantly over-
provisioned since activity spikes do not have any noticeable
effect on the branch predictor, divider or the cache hierar-
chy. In migrating to simpler cores, some of that logic or area
overhead can be redirected towards our proposal for (tradi-
tionally) disproportional structures like large caches and bus
bandwidth for mobile cores to reduce latency.

5.3 Towards Heterogeneous Cores or
Accelerated Multiprocessors

Looking further beyond microarchitectural enhancements,
heterogeneous multiprocessors might provide accelerators to
mitigate computational bottlenecks. Prior efforts have been
made to combine large and small cores into a single chip
multiprocessor (Section 6). However, when considering task-
level division (Manager, NeuralNet, Ranker, Streams) across
big and small cores, our analysis indicates that such a solu-
tion is inefficient for our version of web search.

Search has no single function or phase of computation
that can be carved out to execute efficiently on a large core,
such as the Xeon. Consider the four phases of computation
(Manager, NeuralNet, Ranker, Streams) and their potential
performance gains on Xeon (4.8×, 4.6×, 2.9×, 2.8×) from
Figure 18. Furthermore, pessimistically assume the Atom
operates at its measured peak (4.3W) and optimistically as-
sume Xeon operates at its measured idle (38.5W). Thus, we
derive the minimum power increase of 16.3× when perform-
ing computation on Xeon versus Atom; the power increase
will always be larger in practice. Even in this optimistic
scenario, the power differential of 16.3× dominates the per-
formance differential of 2.8-4.8×.

Speeding up the Manager, NeuralNet, Ranker, and Streams
with a Xeon core in an heterogeneous multiprocessor would
lead to 0.29×, 0.17×, 0.18×, and 0.29× the Atom efficiency,
indicating the difficulty of efficient acceleration with hetero-
geneous multiprocessors comprised of general-purpose archi-
tectures. While it may be possible to extract parallelism at
a granularity finer than computational phases, doing so re-
quires significant re-engineering of our production web search,
which is a complicated and costly task. It might also be
feasible to direct complex queries to Xeon instead of Atom,
since Xeon can handle ISN-level internal absolute load spikes
more gracefully than Atom (see Section 4.2). However, the
cost to efficiency is high.

In the future, more efficient acceleration may arise from
application-specific accelerators targeting computational ker-
nels (e.g., neural network). Such accelerators may incur low
power costs, while recovering performance lost by low-power,
mobile-class architectures.

6. RELATED WORK
The landscape of data center workloads is changing. Ran-

ganathan and Jouppi discuss the changing workload mix and

usage patterns, motivating the need for integrated analysis
of microarchitectural efficiency and application service-level
agreements in their survey of enterprise information tech-
nology trends [17]. We complement their prior work by ex-
amining the role of power efficiency from small cores with
in-depth microarchitectural analysis relating to application
robustness, flexibility, and reliability constraints.

Power efficient data center design is an active area of re-
search. Barroso et al. make the case for energy propor-
tional computing in which data center components utilize
energy proportional to the amount of computation [3]. Ran-
ganathan et al. propose power management schemes across
an ensemble of systems to mitigate costs associated with
power and heat [18]. Efficient microarchitectures are inte-
gral components of such efforts and we further our under-
standing of microarchitectural effects in this work.

Piranha and Niagara make the case for small cores to im-
prove design efficiency and throughput for memory and I/O
bound workloads, such as transaction processing [1, 7, 9].
In contrast, we quantify limitations of small cores, specifi-
cally mobile processors, for more computationally intensive
data center workloads, such as online web search. Lim et al.
take a system view of warehouse-computing environments
and propose unified systems, which transition from high-end
server-class processors to mobile and embedded processors
[15]. Similarly, Vasudevan et al., propose using fast arrays
of wimpy nodes (FAWN) to achieve energy efficiencies in
data intensive computing [22]. Both efforts emphasize low-
power embedded processors for performance (queries per
second) and power efficiency, using system power measured
at the electrical socket. In contrast, we take a microarchitec-
tural view of the differences between server- and mobile-class
processors and measure, in addition to system power, core
power by tracking current activity at the voltage regulator.

Making the case for chip multiprocessors, Barroso quan-
tifies the economic price of high-performance, high-power
platforms as compared to smaller cores [2]. While small
cores reduce the economic price, they increase the applica-
tion’s perceived price of efficiency as we quantify in terms
of quality-of-service robustness, flexibility, and reliability.
As emerging data center workloads exercise the data path
more extensively, the application perceived price of efficiency
raises qualifications and caveats in the case for small cores in
data centers. Once these limitations are understood, micro-
processor and system architects can better navigate the in-
herent trade-offs between performance and power efficiency.

7. CONCLUSION
Emerging data center applications exercise the proces-

sor more significantly than traditional enterprise and on-
line transaction processing (OLTP) applications. Thus, we
deeply examine the role of small cores, specifically mobile
processors, for an Internet-scale workload: web search. In
particular, we study the challenges with respect to robust-
ness flexibility and reliability of search. The price of effi-
ciency has implications on system design, implementation
and deployment strategies. For example, in the future, re-
ducing platform power overheads associated with peripheral
components is essential. In the longer term, microarchitec-
tural enhancements, heterogeneous multiprocessors, or ac-
celerators customized to mitigate bottlenecks may be instru-
mental in reducing the price of small core power efficiency.

8. ACKNOWLEDGMENTS
We are extremely grateful to several people for helping us

with this research undertaking, including the reviewers. We
would like to specifically thank Preet Bawa, William Casper-
son, Utkarsh Jain, Paul England, Mark Shaw, CJ Williams,
Tanj Bennett, David Brooks, Qiang Wu, Dan Connors and
Michael D. Smith. We are also grateful to the National
Science Foundation under Grant #0937060 to the Comput-
ing Research Association for the CIFellows Project. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the view of the National Science Founda-
tion or the Computing Research Association.

9. REFERENCES
[1] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,

S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese.
Piranha: A scalable architecture based on single-chip
multiprocessing. In ISCA’00.

[2] L. A. Barroso. The price of performance: An economic case for
chip multiprocessing. Queue, ACM, 2005.

[3] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet:
The Google cluster architecture. Micro, IEEE, 2003.

[4] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, IEEE, 2007.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In WWW7, 1998.

[6] I. Corporation. Technical product specification. Intel Desktop
Board D945GCLF2, 2008.

[7] J. Davis, J. Laudon, and K. Olukotun. Maximizing CMP
throughput with mediocre cores. In PACT’05.

[8] V. George, S. Jahagirdar, C. Tong, K. Smits, S. Damaraju,
S. Siers, V. Naydenov, T. Khondker, S. Sarkar, and P. Singh.
Penryn: 45-nm next generation intel core 2 processor. In
ASSCC’07, 2007.

[9] L. Geppert. Sun’s big splash: Niagara multiprocessor chip.
IEEE Spectrum’05.

[10] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna,
F. Merchant, B. Patel, M. Taufique, and H. Samarchi. A
sub-1W to 2W low-power IA processor for mobile internet
devices and ultra-mobile pcs in 45nm hi-K metal gate CMOS.
In ISSCC’08.

[11] J. Hamilton. Cost of power in large-scale data centers. In
http://perspectives.mvdirona.com.

[12] Intel Corporation. Thermal/mechanical design guide. Intel
5000 Series Chipset Memory Controller Hub (MCH), 2006.

[13] Intel Corporation. 45nm Intel Core 2 Duo Processor: BAClears.
Intel VTune Performance Analyzer 9.1 Help, 2008.

[14] Intel Corporation. Volume 1 basic architecture. Intel 64 and
IA-32 Architectures: Software Developers Manual, 2009.

[15] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and
S. Reinhardt. Understanding and designing new server
architectures for emerging warehouse-computing environments.
In ISCA’08.

[16] Micron. Technical note TN-47-04: Calculating memory system
power for DDR2. In www.micron.com, 2006.

[17] P. Ranganathan and N. Jouppi. Enterprise IT trends and
implications for architecture research. In HPCA-11, 2005.

[18] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade servers. In
ISCA’06.

[19] Seagate. Barracuda 7200.12 data sheet. In www.seagate.com,
2009.

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: a many-core x86 architecture for visual computing.
ACM Trans. Graph., 2008.

[21] R. Swinburne. Intel Core i7 - Nehalem architecture dive. In
www.bit-tech.net, 2008.

[22] V. Vasudevan, J. Franklin, D. Anderson, A. Phanishayee,
L. Tan, M. Kaminsky, and I. Morau. FAWNdamentally
power-efficient clusters. In HotOS-XII, 2009.

[23] VMware. Vmmark benchmark. In
www.vmware.com/products/vmmark, 2009.

