
Barrier-Aware Warp Scheduling for Throughput Processors

Yuxi Liu

§†‡
, Zhibin Yu

†
, Lieven Eeckhout

‡
, Vijay Janapa Reddi

¶
,

Yingwei Luo

§
, Xiaolin Wang

§
, Zhenlin Wang

⇤
, Chengzhong Xu

†k

§
Peking University

†
Shenzhen Institute of Advanced Technology, CAS

‡
Ghent University

¶
University of Texas at Austin

⇤
Michigan Tech University

k
Wayne State University

ABSTRACT
Parallel GPGPU applications rely on barrier synchronization to align
thread block activity. Few prior work has studied and character-
ized barrier synchronization within a thread block and its impact
on performance. In this paper, we find that barriers cause substan-
tial stall cycles in barrier-intensive GPGPU applications although
GPGPUs employ lightweight hardware-support barriers. To help
investigate the reasons, we define the execution between two adja-
cent barriers of a thread block as a warp-phase. We find that the
execution progress within a warp-phase varies dramatically across
warps, which we call warp-phase-divergence. While warp-phase-
divergence may result from execution time disparity among warps
due to differences in application code or input, and/or shared re-
source contention, we also pinpoint that warp-phase-divergence may
result from warp scheduling.

To mitigate barrier induced stall cycle inefficiency, we propose
barrier-aware warp scheduling (BAWS). It combines two techniques
to improve the performance of barrier-intensive GPGPU applica-
tions. The first technique, most-waiting-first (MWF), assigns a
higher scheduling priority to the warps of a thread block that has a
larger number of warps waiting at a barrier. The second technique,
critical-fetch-first (CFF), fetches instructions from the warp to be
issued by MWF in the next cycle. To evaluate the efficiency of
BAWS, we consider 13 barrier-intensive GPGPU applications, and
we report that BAWS speeds up performance by 17% and 9% on
average (and up to 35% and 30%) over loosely-round-robin (LRR)
and greedy-then-oldest (GTO) warp scheduling, respectively. We
compare BAWS against recent concurrent work SAWS, finding that
BAWS outperforms SAWS by 7% on average and up to 27%. For
non-barrier-intensive workloads, we demonstrate that BAWS is per-
formance-neutral compared to GTO and SAWS, while improving
performance by 5.7% on average (and up to 22%) compared to
LRR. BAWS’ hardware cost is limited to 6 bytes per streaming
multiprocessor (SM).

1Corresponding author: Zhibin Yu (zb.yu@siat.ac.cn).
2Most of the work was done at the Shenzhen Institute of Advanced
Technology, CAS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’16, May 29-June 02, 2016, Istanbul, Turkey
c� 2016 ACM. ISBN 978-1-4503-4361-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926267

SP MS FWT MM STN OCTP BT PVC PVR SS MG HISTOSRAD2 AVG

0%

10%

20%

30%

40%

50%

60%

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

G
T
O

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

L
R
R

P
er
ce
nt
ag

e
of

T
ot
al

E
xe
cu

ti
on

T
im

e Stalled on Exit Point
Stalled on Barriers

Figure 1: Fraction of time that a warp is stalled on barriers for
our set of barrier-intensive GPGPU applications; computed as
the average across all warps.

1. INTRODUCTION
GPGPU programming models have emerged as an important com-

putational paradigm, allowing programmers to leverage hundreds
of thousands of threads to achieve massive computational power.
Programming models such as CUDA [1], ATI Stream Technol-
ogy [2], and OpenCL [3] make it easy to leverage the graphics
hardware to perform general-purpose parallel computing, so-called
GPGPU computing. As developers increasingly utilize the hard-
ware for a variety of different applications, all aspects of GPU hard-
ware execution efficiency are being stressed to the limits.

In this paper, we focus on the efficiency of barrier synchroniza-
tion. GPGPU applications often need synchronization to guarantee
correct execution. Therefore, GPGPUs provide lightweight hardware-
support barriers to implement synchronization between warps within
a thread block (TB) via shared memory in the streaming multipro-
cessor (SM). Barriers partition TB execution into multiple phases,
which we refer to as a warp-phase. GPGPUs schedule a new TB
to execute only after all warps of the previous TB on the same
SM have finished their execution, adding an internal barrier at the
end point of each TB [31]. Previous studies have observed that
the execution of warps within a TB could finish at very different
times [19, 31], called warp-level-divergence. A very recent, con-
current work called SAWS [21] addresses the synchronization issue
between multiple warp schedulers but not between warps within
warp-phases. We focus on execution time disparity within warp-
phases, at a finer granularity, that we hereby call warp-phase-diver-
gence.

We discover that warp-phase-divergence leads to significant per-
formance degradation in barrier-intensive applications. As our sim-
ulation results in Figure 1 show, the fraction of the time stalled by
a warp as a result of barriers (including the exit points of TBs) can
range up to 61% with an average of 30% and 37% for the Loosely-

Round-Robin (LRR) [1] and Greedy-then-Oldest (GTO) [26] warp
scheduling policies, respectively.

No prior work, to the best of our knowledge, has comprehen-
sively characterized and studied how barrier synchronization at the
warp-phase level affects performance. We therefore analyze warp-
phase-divergence and we find there are several sources of the prob-
lem: application code, input data, shared resource contention, and
warp scheduling policy. Application code and input data may cause
warps to execute along different paths, which may result in exe-
cution time disparity. Shared resource contention may also lead
to execution time disparity, even though warps are executing the
same code. A much less well understood source of warp-phase-
divergence is the warp scheduling policy, which may lead to dra-
matically different execution rates as warp scheduling may priori-
tize some warps over others.

Unfortunately, commonly used and previously proposed warp
scheduling policies, such as prefetch-aware [14] and memory-aware
scheduling [12, 13, 23, 26], do not take barrier behavior into ac-
count. As a result, the warp scheduler does not schedule the slow-
est warp in a warp-phase to execute with the highest priority, which
may lead to dramatic execution disparity between warps in a TB
and cause substantial stall cycles during the barrier of that warp-
phase. In addition, existing warp schedulers focus only on choos-
ing warps in a better way at the issue stage of a GPGPU SIMD
pipeline, but leave the warp selection at the instruction fetch stage
as is in a round-robin fashion. However, with barriers, the instruc-
tion fetch unit may fetch an instruction for a warp that is waiting at
a barrier while an instruction needed by another critical warp is not
fetched, further exacerbating the stalls.

To address the barrier-induced stall cycle inefficiency at warp-
phase granularity, we propose barrier-aware warp scheduling (BAWS).
This new policy is a hybrid approach that combines two online
techniques. The key idea of our first technique, called most-waiting-
first (MWF), is based on the following insight: by scheduling the
warp in a TB that has the largest number of other warps waiting for
it at a barrier to execute first, we can reduce the number of stall cy-
cles before that barrier. Our second technique, called critical-fetch-
first (CFF), builds on top of MWF and fetches the instruction for
the warp that is the most likely to be issued by MWF in the next cy-
cle. CFF eliminates the idle cycles caused by the warp scheduling
mismatch between the fetch and issue stages in a GPGPU pipeline,
specifically in the context of barriers.

In summary, the contributions of this paper are as follows:

• We show that barriers cause significant performance degra-
dation in barrier-intensive GPGPU workloads, and we per-
form an in-depth and comprehensive characterization of GPGPU
barrier execution.

• We mitigate barrier stall cycle inefficiency by introducing
two new warp scheduling algorithms, named MWF for the
issue stage and CFF for the fetch stage of a GPGPU SIMD
pipeline. MWF (most-waiting-first) chooses a warp that has
the largest number of other warps waiting for it to execute
first. CFF (critical-fetch-first) first fetches the instruction for
a warp that is the most likely to be issued by MWF in the
next cycle.

• We combine MWF and CFF to form the barrier-aware warp
scheduling (BAWS) policy and evaluate it by using 13 barrier-
intensive GPGPU benchmarks. The results show that BAWS
(MWF+CFF) improves performance for the experimented bench-
marks by 17% and 9% on average (and up to 35% and 30%)
over LRR [1] and GTO [26], respectively. BAWS outper-

at the synchronization barrier. If warps have same priority, we
highlight the warp with smallest warp id for to the benefit from
warps’ interleaved execution. Second, we propose a critical
fetch first approach to fetch more critical warp’s instruction
into I-Buffer, thus overlapping the gap between fetch stage’s
arbiter and Issue Stage’s warp scheduler. For the offline policy,
we want to identical warps that for some code-dependent
benchmarks on compiler stage. Thus CWs are prioritized
from the starting time.

Using BAS, our online policies achieve 14% performance
improvement. And offline achieve up to 42% IPC improve-
ment.

This paper make the following contributions:
• We first characterize the stalled latency caused by synchro-

nization barriers within a block in synchronization-intensive
GPGPU programs, identify three causes of the fine-grained
warp-level divergence.

• We propose a novel online/offline scheduling policy: on
issue stage warp is prioritized based on the number of warps
waiting for it; on fetch stage warp instruction that has the
highest priority would to fetched into I-Buffer. Offline
policy tries to identify critical warps from the beginning.

• We implement and evaluate the scheduling policy and ex-
plains why the policy is useful to alleviate the stall.
The rest of the paper is organized as follows. Section

2 gives a brief introduction to GPU micro-architecture and
synchronization-intensive benchmarks we used. Characteri-
zation of synchronization-intensive programs is revealed on
Section 3. Section 4 describes our scheduling policy and exper-
imental results and analyses are shown in Section 5. Related
works are discussed in Section 6 and Section 7 concludes the
paper.

2. Background

This section we give a brief description of the GPGPU archi-
tecture we used, baseline warp scheduling policies used on
GPGPU-sim simulator, and synchronization-intensive bench-
marks we used to characterize synchronization problems.

2.1. Baseline Architecture

We use GPGPU-sim (version 3.2.2) [1] to profile programs’
synchronizing characterization. GPGPU-sim is a detailed sim-
ulation model of a GPU architecture such as NVIDIA’s Fermi
and GT200 architectures. NVIDIA Fermi GTX480 is our
baseline GPU configuration and it’s architecture is shown in
Figure 1. Our detailed configuration parameters are described
in Table 1. Further information could be found in [32, 1]. The
back-end pipeline GPGPU-sim models contains three type:
SP, SFU and LD/ST. SFU units executes transcendental in-
structions and SP units executes all types of ALU instructions
except transcendentals.

Streaming Multiprocessor (SM)

A
rbiter

L1
I-Cache fetch

W0PC

W1PC

W2PC

...

WN�1PC I-Buffer

decode

v W0Inst. r
v W1Inst. r
: : :
v WN�1Inst. r

Scoreboard

Register File

Issue Unit

Warp
Scheduler
Warp Pool

W0

W1
...

WN�1

issue

SP

SFU

LD/ST

Shared

L1-D

L1-C

L1-T

Figure 1: Baseline GPU architecture modeled.

Architecture NVIDIA Fermi GTX480
Number of SMs 15

Warp size 32
SIMD width 32

Max. of Warps per SM 48
Max. of Blocks per SM 8
Max. of threads per SM 1536

Shared memory 48KB
Registers per SM 32768
L1 Data Cache 16KB per SM (4-way, 32-sets)
L1 Inst Cache 2KB per SM (4-way, 4-sets)

L2 Cache 768KB in total (8-way, 64-sets)
Number of SP units 2

Number of SFU units 1

Table 1: GPGPU-Sim Configuration

2.2. Warp Scheduling on fetch and issue stage

GPGPU-sim uses separate policy on Fetch and Issue Unit.
By default round-robin (RR) policy is used on fetch stage
to load instructions into I-buffer, and Loosely Round-Robin
(LRR) scheduling policy is used on issue stage. Besides GTO
(Greedy Then Oldest) policy is the supplementary policy for
characterization and comparison. Both LRR and GTO are
provided in GPGPU-sim, and GTO scheduling policy has
better results than LRR [28].

The reason why GTO performs better than LRR has been
studied at [28, 20]. [28] reveals that prioritizing older warps
with higher intra-warp locality can reduce memory request
costs from improving L1D-Cache efficiency. [20] exhibits that
GTO policy gives more priority to older warps by allowing
them finish earlier. Then new TBs would be launched on SM.
There is another important reason is when warps execution
at different pace, they would like to utilize different pipeline
units concurrently. This could alleviate the competition for the
same functional units.

Figure 2 gives an explanation why GTO suffers less from
structural hazard than LRR. With a round-robin warp sched-
uler, every warp will likely issue similar instructions contend-
ing for the same function unit (resource conflict), which will
cause significant structural hazard latency. While GTO always

2

Figure 2: Microarchitecture of an SM.

forms SAWS [21] by 7% on average and up to 27%. More-
over, for non-barrier-intensive workloads, we demonstrate
that BAWS is performance-neutral compared to GTO and
SAWS, while improving performance by 5.7% on average
(and up to 22%) compared to LRR. Hardware required for
implementing BAWS is limited to 6 bytes per SM.

The paper is organized as follows. Section 2 describes the back-
ground about the SM microarchitecture and two warp scheduling
algorithms: LRR and GTO. Section 3 characterizes the barrier be-
havior in GPGPU workloads. Section 4 describes our barrier-aware
warp scheduling (BAWS) policy. Section 5 depicts our experimen-
tal setup. Section 6 provides the evaluation results and analysis.
Section 7 describes related work, and Section 8 concludes the pa-
per.

2. BACKGROUND
GPGPU hardware employs a three-level hierarchical architec-

ture: a streaming processor (SP) which logically executes a warp;
a streaming multiprocessor (SM) consisting of many SPs, which
physically executes warps in parallel; and a GPGPU processor con-
taining a number of SMs, which runs a grid of TBs. We describe
the SM microarchitecture in detail because warp scheduling occurs
at the individual SM level. We subsequently provide an overview
of two existing and most widely used warp scheduling algorithms:
loosely-round-robin (LRR) and greedy-then-oldest (GTO).

2.1 SM Microarchitecture
The microarchitecture of a single GPGPU core is composed of

a scalar front-end (fetch, decode, issue) and a SIMD back-end, as
illustrated in Figure 2. Following NVIDIA’s use of terminology, a
SIMD back-end consists of many SIMD lanes known as Stream-
ing Processor (SP), Special Function Unit (SFU), and Load/Store
unit (LD/ST). A GPGPU core named as Streaming Multi-processor
(SM) by NVIDIA typically has 32 SPs that share a single scalar
front-end. Since we focus on the warp scheduling policy at the
front-end, we focus on more details of the fetch unit, and simplify
the illustration of the back-end structure in Figure 2.

There are 6 important hardware structures in the front-end of a
GPGPU SIMD pipeline: the instruction cache (I-Cache), instruc-
tion buffer (I-Buffer), fetch, branch, decode, and issue unit. The
fetch unit fetches instructions from the I-Cache according to pro-
gram counters (PC). The I-Buffer serves as a temporary instruction
station after an instruction is decoded but before it is issued to exe-
cute. Each warp has a fixed number of slots (e.g., 2) in the I-Buffer.
Each I-Buffer slot contains a v-bit indicating whether an instruc-
tion is present and an r-bit indicating that it is ready for execution.
Inside the issue unit, there is a warp scheduler selecting warps to

execute according to a certain warp scheduling algorithm. Based
on this microarchitecture, GPGPUs employ the Single Instruction
Multiple Thread (SIMT) execution model in which multiple threads
are grouped together to form a warp or wavefront executing in a
lock-step manner.

2.2 Scheduling for the Fetch and Issue Stage
At the fetch stage, a warp is eligible for instruction fetching if it

does not have any valid instructions within its I-Buffer slots. Typi-
cally, eligible warps are scheduled to fetch instructions from the I-
Cache in a round-robin manner. At the issue stage, the warp sched-
uler selects a warp with a ready instruction in the I-Buffer according
to a certain scheduling algorithm to issue. Once an instruction has
been issued, its corresponding v-bit is altered to invalid. Then the
fetch unit is signaled that it may fetch the next instruction for this
warp.

The commonly used warp scheduling algorithm for the issue
stage is loosely-round-robin (LRR) [1]. The LRR warp schedul-
ing algorithm treats warps equally and issues them in a round-robin
manner. If a warp cannot be issued, the next warp in round-robin
order is to be issued. Although LRR considers fairness between
warps, it does not take warp-specific features such as long memory
latency into account. To address this issue, a lot of memory-aware
warp scheduling algorithms have been proposed [12, 13, 14, 23,
26].

Amongst the various algorithms, the greedy-then-oldest (GTO)
warp scheduling algorithm [26] generally outperforms the other
ones for most GPGPU benchmarks. We provide a brief descrip-
tion about GTO because we compare against it in this paper. GTO
runs a warp until it stalls, and then picks the oldest ready warp. The
age of a warp is determined by the time it is assigned to the SM.
However, GPGPUs assign warps to an SM by the granularity of a
thread block (TB) and hence all warps in a TB have the same age.
In such a case, the warps are prioritized by warp-id: the smaller
warp-id gets the higher priority.

Typically, LRR suffers more from structural hazards than GTO.
In each cycle, LRR selects a new warp to execute in a round-
robin fashion. Since GPGPUs are based on the SIMT computing
paradigm and a warp consists of a fixed number of threads, it is
highly possible that the current warp executes the same instruction
as that of the previous warp. In addition, most GPGPU computing
operations such as ADD take several cycles to complete. As such,
adjacent warps contend severely for the same compute resources,
such as the SP and SFU units, and warps with a larger id have to
wait. In contrast, GTO lets an SM greedily execute the instruc-
tions in a single warp. As such, GPGPU performance benefits from
two aspects: (1) better instruction and data locality of threads and
increased cache hit rate; and (2) less resource contention between
warps.

3. BARRIER CHARACTERIZATION
The goal in this paper is to mitigate barrier induced stall cycle

inefficiency. Before introducing our barrier-aware warp scheduling
policy in the next section, we now first define terminology and char-
acterize barrier behavior with a specific focus on barrier imbalance
due to warp scheduling.

In a barrier-intensive GPGPU application, the execution lifetime
of a warp can be divided into multiple phases, called warp-phases.
For example, Figure 3 illustrates the execution of the 8 warps in
TB0 running on SM0 for the BT (B+ Tree) benchmark. The life-
time of the 8 warps is divided into 5 warp-phases by 4 explicit
barriers and 1 implicit one that corresponds to the exit point for
TB0.

1 2 3 4 5(exit point)

0
1
2
3
4
5
6
7

Temporal resource
wasted on
barriers

Temporal re-
source wasted
on exit point

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Synchronization barriers encountered

W
ar

p
ID

Figure 3: Warp-phases for TB0 on SM0 for benchmark BT(B+
Tree).

The execution progress of the warps before a barrier may be dra-
matically different (as is the case for barriers 1, 3, 4, and 5), but it
could also be (approximately) the same (barrier 2). Xiang et al. [31]
and Lee et al. [19] observe similar execution disparity before the
exit point of a TB (barrier 5) and call it warp-level-divergence. In
Figure 3, we observe that divergence also happens within a finer-
grained warp-phase, and we thus refer to this new observation as
warp-phase-divergence.

There are a number of sources of warp-phase-divergence. One
source is code-dependent disparity: different threads execute differ-
ent code paths (i.e., the code being executed depends on the thread-
id), which may lead to execution time disparity among warps. An-
other source is input-dependent disparity: different threads, although
executing the same code path, may also lead to execution time
disparity among warps as they work on different input data (i.e.,
branch divergence triggered by data values). Yet another source
of execution time disparity among warps is resource contention in
shared resources such as cache and main memory. While these
sources of warp-phase-divergence are quite intuitive, we focus here
on an additional source of warp-phase-divergence induced by the
warp scheduling algorithm itself, which is much less well under-
stood.

3.1 Warp Scheduling Disparity
Warp scheduling may induce warp-phase-divergence by prior-

itizing some warps over others at the warp-phase level. For ex-
ample, GTO always runs a single warp until it stalls because of
its greedy nature; GTO then prioritizes the warp with the smallest
warp-id over other warps. Figure 4 (left) shows the execution of
the first three TBs scheduled by GTO for the FWT benchmark as
an example. Each TB is executing 16 warps. According to GTO,
the warps in TB0 are scheduled to execute first since they have the
oldest age (highest priority). For the warps in the same TB which
have the same priority, GTO schedules the warp with the small-
est warp-id to execute first upon a stall. As a result, the warps in
TB0 execute faster than those in TB1 and much faster than those
in TB2. In particular, in TB2, warp-47 is the slowest warp, upon
which warp-32 (which arrived at the barrier first) has been wait-
ing for approximately 3,800 cycles (see warp-phase 1 in TB2). In
addition, there are many stall cycles in other warp-phases such as
warp-phases 3 and 5 in TB1, and warp-phase 2 in TB2. Although
the number of stall cycles in these warp-phases is smaller than for
warp-phase 1 in TB2, it still accumulates to a significant number of
stall cycles.

It is interesting to compare the execution behavior under GTO,
see Figure 4 (left), against the execution behavior under LRR, see
Figure 4 (right), again for the first three TBs for FWT. Clearly,
LRR achieves a much more balanced execution compared to GTO,

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

0

8

16

24

32

40

47

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

TB0

TB1

TB2

Cycle

W
ar
p
ID

2,000 4,000 6,000 8,000 10,000 12,000 14,000

0

8

16

24

32

40

47

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

TB0

TB1

TB2

Cycle

W
ar
p
ID

Figure 4: Execution of TB0, 1 and 2 on SM0 for FWT under GTO (left) and LRR (right); there are 16 warps per TB; the numbers
represent warp-phase ids.

SP MS FWT MM STN OCTP BT PVC PVR SS MG HISTOSRAD2
0%

10%

20%

30%

40%

50%

60%

R
T
R
U

LRR
GTO

Figure 5: RTRU under LRR and GTO.

as LRR selects warps in a round-robin fashion. In other words,
GTO leads to increased warp execution disparity. Nevertheless,
GTO outperforms LRR: TBs 1 and 2 finish much earlier under
GTO than under LRR, which enables other TBs to execute ear-
lier (not shown in the Figure). The reason why GTO outperforms
LRR is because it reduces the number of structural hazards, as we
will quantify later in this paper. The reduction in structural hazards
outpaces the increase in warp execution disparity, which ultimately
leads GTO to outperform LRR.

3.2 RTRU Characterization
To systematically quantify the number of stall cycles due to warp

scheduling disparity, we use the ratio of temporal resource under-
utilization (RTRU) metric defined by Xiang et al. [31]. RTRU was
originally proposed for quantifying execution disparity at TB exit
points. We adopt this definition to quantify disparity at the warp-
phase level as follows:

RT RU =
Â
i
(maxT �Ti)

N ·maxT
, (1)

with maxT the longest execution time of all warps, Ti the execu-
tion time of warp i, and N the number of warps. As such, RTRU
indicates the execution imbalance of warps within a warp phase.
Smaller is better: a small RTRU indicates less imbalance, whereas
a high RTRU indicates high imbalance.

Figure 5 quantifies RTRU for all of our barrier-intensive bench-
marks under LRR and GTO. It is remarkable that the execution
imbalance among warps in a warp phase is substantial for these
barrier-intensive benchmarks. For several benchmarks we report

2,000 4,000 6,000

0

8

16

24

32

40

47

1 2 3 4 5

TB0

TB1

TB2

TB3

TB4

TB5

Cycle

W
ar
p
ID

Figure 6: Warp-phases for TBs 0 through 5 for the BT bench-
mark.

RTRU values in the 20% to 50% range, and up to 60%. It is also
interesting to note that the imbalance is typically larger under GTO
than under LRR, most notably for FWT, MM, STN and PVR.

The data implies that warp scheduling may exacerbate the warp-
phase-divergence problem inherent to a workload. Note though,
again, that GTO typically outperforms LRR by reducing the num-
ber of structural hazards, as we will quantify later in this paper. The
goal hence is to improve performance beyond GTO by reducing
warp execution disparity while not introducing structural hazards,
as LRR does.

3.3 Critical Warps
Before presenting barrier-aware scheduling (BAWS), we first want

to illustrate the need for an online mechanism. Warp-phase-divergence
leads to substantial execution time disparity at small time scales, as
argued before. Some warps may reach the barrier before others do,
turning the lagging warps to be critical warps, i.e., the thread block
is waiting for the critical warp(s) to also reach the barrier before
proceeding to the next warp-phase. Critical warp(s) may vary over
time. This is illustrated in Figure 6 for the BT benchmark: the crit-
ical warp in TB0 varies from warp 0 (in phase 1), warp 2 (in phase
3), warp 0 again (in phase 4), to warp 3 (in phase 5). This illustrates

ti
m
e

w0 w1 w2 w3

TB 0

Barrier

w4 w5 w6 w7

TB 1

Barrier

w8 w9 w10 w11

TB 2

Barrier

Figure 7: Overview of Most-Waiting-First (MWF) warp
scheduling at the issue stage. We assume that there are 3 TBs
running on a single SM concurrently and each TB contains 4
warps.

that we need an online mechanism to dynamically identify critical
warps to accelerate.

4. BARRIER-AWARE WARP SCHEDULING
Barrier-aware warp scheduling (BAWS) consists of two warp

scheduling algorithms for the issue and fetch stage, respectively.
The warp scheduling algorithm for the issue stage is called most-
waiting-first (MWF); the one for the fetch stage is named critical-
fetch-first (CFF).

4.1 Most-Waiting-First Warp Scheduling
The insight behind MWF is to schedule warps in a TB that have

the largest number of other warps waiting for it at a barrier to ex-
ecute first. In doing so, we improve performance by reducing the
number of stall cycles before barriers.

4.1.1 Mechanism
MWF is an online technique that assigns priorities to warps at

the moment when there is at least one warp that is at a barrier.
MWF assigns the highest priority to the warps in a TB that has the
largest number of warps waiting at a barrier. These warps are called
critical warps. Warps in the same TB have the same priority. If two
or more TBs have the same number of barrier-waiting warps, MWF
assigns the highest priority to the warps in the TB with the smallest
TB-id, similar to what GTO does for warps.

We consider two variants to MWF with respect to scheduling
warps (with the same priority) within a TB. The MWF(LRR) variant
employs LRR within a TB, and starts from the warp next (in round
robin order) to the one which was issued in the last cycle in the TB.
The second MWF(GTO) variant employs GTO, and starts from the
warp issued in the last cycle, and if that one is stalled, it selects the
oldest warp in the TB (i.e., with the smallest warp-id) to go next.
We will evaluate both variants of MWF in the evaluation section.

Figure 7 shows how MWF scheduling works. Six warps from
three TBs have arrived at their respective barriers, waiting for the
other six warps. The number of stalled warps because of barriers
for TB0, TB1, and TB2 are 1, 2, and 3, respectively. MWF assigns
the highest priority 3 to the warps in TB2, a lower priority 2 to those
in TB1, and the lowest priority 1 to those in TB0. For the TBs (TB0
and TB1) that have more than one warp that are still running, MWF
employs either (i) LRR to schedule these warps starting from the
warp next (in round robin order) to the one which was issued in

index = TB-id priority
0 1
1 2
2 3

Table 1: The warp priority table (WPT).

the last cycle — the MWF(LRR) variant — or (ii) GTO to schedule
these warps from the one issued in the last cycle and then oldest —
the MWF(GTO) variant.

For example, consider MWF(LRR) and assume the warp issued
in the last cycle is w7 in TB1 and it reaches the barrier in the current
cycle, MWF would schedule w4 to execute because it is the next
warp to w7 in round-robin order. For TB0, suppose the warp lastly
issued is w0, MWF would schedule w1 to execute. As a result, the
scheduling orders of the 6 running warps of the three TBs in the
current cycle are w8,w4,w6,w1,w3 and w0. For the warps in two
or more TBs which have the same priority, suppose there is another
TB (TB3, not shown in Figure 7) that also has two warps waiting
at a barrier, then warps in TB3 have the same priority as those in
TB1. In this case, MWF assigns higher priority to the warps in TB1
because its id is the smallest between TB1 and TB3.

Note that MWF naturally handles multiple warp schedulers per
SM if we maintain one shared list of TB priorities. TBs with the
highest priority will be prioritized by the respective warp sched-
ulers.

4.1.2 Hardware Support
Hardware support for synchronization is available in modern GPG-

PUs [21]. A global synchronization control unit (SCU) keeps track
of the barrier status for all warps within each TB and all TBs within
an SM. The unit keeps track whether a warp is waiting on a barrier,
and raises a signal once a barrier is cleared. BAWS requires a small
addition to the SCU. We propose the warp priority table (WPT)
to maintain the warp priorities on an SM. The WPT has as many
rows as there are TBs, with each entry in the table containing the
TB’s priority, or the number of warps in the TB that have arrived at
the barrier, see Table 1. A TB’s priority is a counter that is incre-
mented when one of its warps reaches the barrier; and is reset when
all warps have reached the barrier. In terms of hardware cost, the
WPT needs ‘#TBs per SM’ entries, with each entry being a counter
to represent ‘max. #warps per TB’. Assuming 8 TBs per SM and
max. 48 warps per TB (6-bit priority counters), this leads to a total
WPT hardware cost of 48 bits (6 bytes) per SM.

4.2 Critical-Fetch-First Warp Scheduling
As mentioned before, the fetch unit of an SM typically fetches

instructions from the I-Cache in a round-robin manner. The instruc-
tions fetched are then stored in the I-Buffer, as shown in Figure 2.
When the warp scheduler in the issue unit selects a warp to issue, it
first checks the I-Buffer to see whether the next instruction for that
warp has been fetched. The implicit assumption here is that the
warp scheduling algorithm used in the fetch stage orchestrates well
with the scheduler in the issue stage. However, the warp schedul-
ing algorithm in the fetch stage usually does not match well with
the scheduler in the issue stage, which leads to delayed execution
of critical warps in barrier-intensive applications.

To address this issue, we propose critical-fetch-first (CFF) warp
scheduling for the fetch stage. The instruction of the warp that
will be issued in the next cycle is defined as the critical instruction
which should be fetched. CFF therefore makes the arbiter (see Fig-
ure 2) in the fetch unit select the warp selected by MWF and fetches
its instruction to its I-Buffer slots. As such, the CFF can match the

Benchmark
#TBs
per
SM

#warps
per
TB

Scalar Product (SP) [24] 3 16
Merge Sort (MS) [24] 6 8

Fast Walsh Transform (FWT) [24] 3 16
Matrix Multiply (MM) [24] 6 8

Stencil (STN) [29] 2 16
Octree Partitioning (OCTP) [5] 4 8

B+ tree (BT) [6] 5 8
Page View Count (PVC) [11] 6 8
Page View Rank (PVR) [11] 6 8
Similarity Score (SS) [11] 6 8

MRI Cartesian Gridding (MG) [30] 3 16
Histogram (HISTO) [30] 3 16

Speckle Reducing
Anisotropic Diffusion (SRAD2) [6] 6 8

Table 2: The barrier-intensive GPGPU benchmarks used in
this study, including their characteristics (number of TBs per
SM, and number of warps per TB).

pace of MWF for the issue stage, reducing fetch stall cycles.
While we propose CFF to work in concert with MWF, CFF by it-

self could also be employed in conjunction with other warp schedul-
ing policies. In particular, for GTO, CFF will fetch an instruction
from the warp that was currently selected at the issue stage, or if
that one is stalled, it fetches an instruction from the oldest warp
(smallest warp-id).

5. EXPERIMENTAL SETUP
We use GPGPU-sim v3.2.2 [4] for all our experiments. GPGPU-

sim is a cycle-level performance simulator that models a general-
purpose GPU microarchitecture. The simulator is configured to
simulate NVIDIA’s Fermi GTX480. It has 15 SMs, each with a
warp size of 32 threads with a SIMD width of 32. With 32,768
registers per SM, each SM can support 1,536 threads. Each SM
also has a 16 KB D-Cache and 2 KB I-Cache. It has 2 SP units
and 1 SFU unit. There are two schedulers per SM, an even and odd
scheduler that concurrently execute even and odd warps. The two
schedulers operate independently from each other.

We consider 13 barrier-intensive GPGPU applications from three
GPGPU benchmark suites: CUDA SDK [24], Rodinia [6], and
Parboil [30]. We also employ some barrier-intensives benchmarks
used in recent papers including [11, 29]. We analyze all work-
loads in these benchmark suites, and label a GPGPU workload to
be barrier-intensive when barriers cause significant performance
degradation. More precisely, we define a workload as a barrier-
intensive benchmark when the fraction of stall cycles of a warp due
to barriers exceeds 15% of the total execution time. The bench-
marks are listed in Table 2. The second and third columns show the
number of TBs concurrently running on an SM and the number of
warps per TB, respectively.

6. EVALUATION
We now evaluate barrier-aware warp scheduling (including its

variants), and compare its performance against previously proposed
warp scheduling policies. We analyze where the performance im-
provement comes from by quantifying the stall latency distribu-
tion breakdown. We finally evaluate how BAWS affects the perfor-
mance of non-barrier-intensive GPGPU benchmarks.

6.1 Performance Evaluation
In BAWS, MWF is the primary warp scheduling algorithm and

CFF is the assistant one. We therefore evaluate them together and
we use LRR as our baseline warp scheduling algorithm. We define
speedup as follows:

speedup =
IPCws

IPCLRR
, (2)

with IPCws the IPC of warp scheduling algorithm ws. In this work,
we consider the following scheduling algorithm ws:

1. TLS: Two-Level Scheduling [8];

2. GTO: Greedy-Then-Oldest [26];

3. MWF(LRR): Most-Waiting-First with LRR within a TB; and

4. MWF(GTO): Most-Waiting-First with GTO within a TB.

We consider all of these warp scheduling algorithms in two vari-
ants, with and without CFF, leading to eight scheduling policies in
total.

Figure 8 quantifies the speedup of these eight warp scheduling
algorithms over the baseline LRR policy. There are a number of
interesting observations and conclusions to be made from these re-
sults.

BAWS outperforms LRR and GTO by a significant margin.
We report that BAWS outperforms LRR by a significant margin:
MWF (LRR and GTO variants) improve performance by 9.5% and
9.8% on average. MWF+CFF does even better, improving per-
formance by 16.2% for the LRR variant and 16.9% for the GTO
variant. This is significantly better than GTO, which improves per-
formance by merely 8.4% over LRR; MWF+CFF improves upon
GTO by 7.8% on average for the LRR variant and 8.5% for the
GTO variant.

GTO may cause performance anomalies, BAWS does not. It
is worth noting that BAWS never degrades performance over LRR,
whereas GTO does, see SRAD2. BAWS achieves 30% higher per-
formance than GTO for SRAD2. The reason is that the critical
warp for this benchmark is the last warp of the last TB. As GTO
schedules warps with smaller ids first in a greedy manner, the last
warp from the last TB has to stall the longest time, severely de-
grading performance. BAWS on the other hand is able to identify
this critical warp as soon as one warp in the last TB reaches the bar-
rier; it then assigns a higher priority to that critical warp, improving
overall performance.

CFF improves performance significantly for MWF. It is inter-
esting to note that CFF and MWF work well in concert. Whereas
CFF only slightly improves performance for TLS and GTO (by
1.7% on average), CFF has a much bigger impact on performance
for MWF, improving performance by 6.7% for the LRR variant and
7.1% for the GTO variant. The intuition is that MWF identifies the
critical warp at each barrier, and prioritizes this critical warp for is-
suing. However, if the fetch scheduler was unable to keep up with
the issue scheduler, and there are no instructions in the I-Buffer
ready to be issued for the critical warp, then no forward progress
can be made for the critical warp at the issue stage.

MWF requires CFF support to be effective. MWF (both the
LRR and GTO variants) only slightly outperforms GTO (by 1.1%
to 1.4% on average) without CFF support. MWF significantly im-
proves performance over GTO for half the benchmarks, while being
performance-neutral for a couple. Surprisingly, there are a num-
ber of benchmarks for which MWF severely degrades performance

-20%

-10%

0%

10%

20%

30%

40%

SP MS FWT MM STN OCTP BT PVC PVR SS MG HISTO SRAD2 AVG

sp
ee

du
p

 (
%

)
TLS GTO MWF(LRR) MWF(GTO) TLS+CFF GTO+CFF MWF(LRR)+CFF MWF(GTO)+CFF

Figure 8: Speedup (percentage performance improvement) over the baseline warp scheduling algorithm LRR.

0%

5%

10%

15%

20%

25%

30%

35%

40%

SP M
S

FW
T

M
M

ST
N

O
C

TP B
T

PV
C

PV
R SS

M
G

H
IS

TO

SR
A

D
2

A
V

G

sp
ee

du
p

(%
)

MWF+LRR MWF+FEF MWF+CFF

Figure 9: Performance of the CFF, FEF and LRR fetch policies,
assuming the MWF issue scheduler, over baseline LRR warp
scheduling.

compared to GTO. This is most notably the case for the STN and
HISTO benchmarks, and the OCTP and PVC benchmarks to a
lesser extent. While MWF is able to accurately identify the critical
warps at barriers, it suffers from the fetch stage not being able to
keep up with the issue stage, as previously discussed. By engaging
CFF to overcome the mismatch between the fetch and issue stages,
we observe that BAWS improves performance over GTO for all
benchmarks by a significant margin, by 7.8% to 8.5% on average.

TLS is performance-neutral, in contrast to BAWS. Traditional
two-level scheduling (TLS) policies implement two levels of schedul-
ing to better hide long-latency instructions. BAWS implements two
levels of scheduling with the top-level scheduler at the TB-level
(MWF) and the second-level one within a TB (LRR/GTO). TLS de-
grades performance for a number of barrier-intensive benchmarks
by 5% to 15%, and is performance-neutral on average compared
to LRR. BAWS on the other hand, improves performance for all
benchmarks, demonstrating that two levels of scheduling are best
implemented at the TB-level (first level) and within a TB (second
level) to balance execution in the presence of barriers.

6.2 Fetch policy: CFF vs. LRR
One of the conclusions from the previous section is that CFF is

critical for MWF to be effective. In other words, in spite of the
fact that MWF is able to accurately identify the critical warp in the
context of barrier synchronization, the fact that the I-Buffer lacks

instructions for the critical warp hinders performance. Hence, it
is important to orchestrate the fetch and issue schedulers, i.e., the
fetch scheduler should prioritize fetching instructions for the criti-
cal warp rather than the next warp in the I-Buffer (in a round-robin
fashion). MWF accurately identifies the critical warp, and executes
critical-warp instructions from the I-Buffer. It is important that
the fetch scheduler continues fetching critical-warp instructions in
subsequent cycles so that the I-Buffer is continuously filled with
critical-warp instructions, so that the issue scheduler in its turn can
continue issuing instructions from the critical warp in subsequent
cycles.

To further analyze this critical interplay between the fetch and
issue policies, and to highlight the importance of orchestrating the
fetch and issue schedulers on critical warps, we now consider and
compare against a fetch policy that selects the warp to fetch in-
structions from that has the fewest entries in the I-Buffer. We call
this fetch policy fewest-entries-first (FEF). In contrast to CFF, FEF
is critical-warp unaware. We compare FEF against the LRR and
CFF fetch policies while considering the MWF issue scheduler,
see Figure 9. CFF outperforms the other fetch policies by a sig-
nificant margin. Although the FEF fetch policy outperforms the
LRR fetch policy on average, CFF provides a significant improve-
ment over FEF, i.e., MWF+CFF improves performance by 17%
on average over the baseline LRR issue policy, compared to 11%
for MWF+FEF. This emphasizes that it is important to orchestrate
fetch and issue for critical warps at barriers, and have the fetch
scheduler select instructions from the critical warp in the context
of barrier synchronization.

6.3 Latency Breakdown Analysis
To gain more insight as to why BAWS outperforms prior warp

scheduling algorithms, we breakdown the stall cycle latency of our
proposed BAWS and compare it with LRR and GTO. We identify
stall cycles for control, data, structural, barrier, exit and fetch haz-
ards. A control hazard occurs upon a taken branch or function call
for a particular warp, and there no other warps to help hide the
branch resolution latency. A data hazard occurs when a warp has to
wait on a real data dependence to be resolved (e.g., a dependence
on an older load miss). A structural hazard occurs when a decoded
instruction cannot proceed execution due to the unavailability of a
register file bank or functional unit. Barrier and exit hazards are a
result of barrier synchronization (both explicit and implicit at the
end of a TB), as extensively discussed in the paper. A fetch hazard
is due to an empty I-Buffer entry as a result of a mismatch between
the warp scheduling algorithms at the fetch and issue stages or due

Figure 10: Latency breakdown for barrier-intensive benchmarks executed with warp scheduling algorithm LRR, GTO, MWF, and
MWF(LRR) + CFF.

to an I-cache miss.
Figure 10 shows the stall cycle latency breakdown for LRR,

GTO, MWF(LRR), and MWF(LRR)+CFF; the bars are normalized
to the stall cycle breakdown for LRR. This graph reveals that most
of the benefits of BAWS come from reducing the number of stall
cycles due to barrier and structural hazards. Compared to LRR,
MWF reduces barrier stall cycles for all benchmarks except for
STN. The reason for this exception is that STN employs global
synchronization across TBs which is not a built-in mechanism in
GPGPUs, and which BAWS does not consider. (This is left for
future work.) Combining MWF with CFF further reduces the num-
ber of stall cycles due to barriers. This is a result of removing the
warp scheduling mismatch between the fetch and issue stages via
CFF. Overall, BAWS (MWF+CFF) reduces more barrier hazards
than GTO for all benchmarks.

Next to reducing barrier hazards, BAWS also reduces the num-
ber of stall cycles due to structural hazards. As mentioned before,
warps severely contend for compute resources under LRR. In con-
trast, BAWS (MWF+CFF) assigns higher priority to critical warps
than non-critical warps and allows the critical warps to make faster
progress, thereby reducing compute resource contention. Note that
GTO reduces stall cycles due to structural hazards even more than
BAWS. This is because GTO greedily executes one warp as far as
possible, while BAWS does not. The reduction in the number of
stall cycles due to barriers however outweighs the increase in stall
cycles due to structural hazards, yielding a net performance im-
provement for BAWS over GTO.

We also note that CFF reduces the number of fetch hazards com-
pared to the LRR fetch policy. In other words, CFF typically re-
duces the number of times the warp scheduler may pick a warp that
does not have any instructions in the I-Buffer, see for example MS,
OCTP, SS and HISTO. The reason, as mentioned in the previous
section, is that it is important to orchestrate the fetch and issue poli-
cies so that the fetch scheduler selects critical-warp instructions for
the issue scheduler to execute in subsequent cycles.

Finally, BAWS also reduces the number of stall cycles due to
data hazards for some benchmarks, see for example PVC, PVR
and SS. Because BAWS prioritizes critical warps, and because the
warps within a TB have the same priority, BAWS will schedule
critical warps within a TB to run together. In case warps within
the same thread block share data, i.e., there is inter-warp/intra-TB
data locality, BAWS will benefit from improved data locality. GTO
benefits from data locality in a very similar way, in contrast to LRR.

In summary, besides considering the barrier behavior, BAWS
(MWF+CFF) combines the advantages of LRR and GTO, by re-
ducing barrier hazards of GTO and structural/data hazards of LRR,

while not reducing the structural/data hazards of LRR as much as
GTO does.

6.4 Comparison Against Wider I-Buffer
CFF is conceived to bridge the mismatch between the fetch and

issue stages. One may argue that widening the I-Buffer which sits
between the fetch and issue stages may solve the exact the same
problem. We argue that CFF incurs far less hardware overhead
than widening the I-Buffer. Doubling the I-Buffer size incurs twice
the storage cost in hardware; CFF on the other hand does not incur
additional hardware storage cost for orchestrating the fetch and is-
sue stages, once MWF is implemented. In addition, increasing the
I-Buffer size is not as effective as CFF at widening this mismatch
between fetch and issue. We conduct an experiment to evaluate the
impact of I-Buffer size on performance. We double the I-Buffer
size from 2 (default) to 4 instructions per warp, and we observe an
average performance improvement of 0.3%, and 1.4% at most for
one benchmark (MG). CFF in contrast improves performance by
1.7% on average for GTO, and 6.7 to 7.1% for MWF. We conclude
that orchestrating the fetch and issue scheduling policies through
CFF is both effective and efficient.

6.5 Non-Barrier-Intensive Workloads
Thus far, we focused exclusively on the evaluation for barrier-

intensive workloads. However, a good barrier-aware warp schedul-
ing policy should not hurt the performance of non-barrier-intensive
workloads significantly, and if possible, it should even improve per-
formance.

BAWS has minimal impact on the performance of non-barrier-
intensive benchmarks because it assigns the warp scheduling pri-
orities according to on-line detection of barriers in TBs. Thus, if
there are no barriers in a kernel, BAWS degenerates into a combi-
nation of LRR or GTO (for the warps within a TB) and GTO (for
selecting warps in the TB with the smallest TB-id between TBs).
If a kernel has barriers but the performance degradation caused by
the barriers themselves is small, BAWS can reduce the structural
hazards significantly but improvements on the barrier hazard itself
are small.

We select 14 non-barrier-intensive GPGPU benchmarks from the
Rodinia benchmark suite to evaluate the impact of BAWS on non-
barrier-intensive workloads, see Figure 11. BAWS (MWF+CFF)
does not hurt the performance of non-barrier-intensive GPGPU ker-
nels significantly. On the contrary, BAWS improves performance
by 5.7% on average over LRR. For some benchmarks, we even ob-
serve a significant performance improvement, up to 22% for lud
and 18% for hotspot. For lud, this is because it has a lot of mem-
ory accesses with good spatial locality and BAWS can leverage this

-5%

0%

5%

10%

15%

20%

25%

ba
ck

pr
op

dw
t2

d

he
ar

tw
al

l

hy
br

id
so

rt

la
va

m
d

lu
d

m
yo

cy
te nw

pa
th

fin
de

r

cf
d

bf
s

ga
us

sia
n

ho
tsp

ot

pa
rti

cl
ef

ilt
er

A
V

G

sp
ee

du
p

 (
%

)
GTO MWF(GTO)+CFF

Figure 11: Performance of GTO and MWF(GTO)+CFF
for non-barrier-intensive GPGPU benchmarks, normalized to
LRR.

locality well; for hotspot, this is because BAWS reduces structural
hazards.

Although BAWS cannot improve performance much over GTO,
we still observe some improvement, see for example lud, back-
prop and particlefilter. This is because these benchmarks do ex-
hibit some barrier intensity, although less than the 15% threshold
we used to classify benchmarks as barrier-intensive, i.e., barrier
intensity equals 14%, 7% and 5% for lud, backprop and particle-
filter, respectively. We observe a performance degradation of 2.6%
for heartwall, but BAWS’ performance is on par with GTO. BAWS
performs worse than GTO for dwt2d because GTO always selects
the first warp to execute first (which coincidentally turns our to be
most critical warp). BAWS detects the critical warp when at least
one warp has arrived at a barrier, which occurs later in the execu-
tion, yielding a small performance degradation compared to GTO.

6.6 Comparison against SAWS
Very recently published and concurrent work, called SAWS [21],

also addresses GPGPU synchronization, but it focuses on the syn-
chronization between warp schedulers, and does not target barriers
within warp-phases. We conduct an experiment to compare the per-
formance of SAWS and BAWS (i.e., MWF(GTO)+CFF) using the
barrier-intensive benchmarks, see Figure 12. SAWS does improve
performance over GTO for a number of benchmarks, but there are
a couple benchmarks for which SAWS degrades performance, see
STN and HISTO. In contrast, BAWS outperforms GTO and SAWS
for all benchmarks, with an average improvement of 7% compared
to SAWS and up to 27% for STN and 18% for SRAD2. Although
changing the fetch policy for SAWS from LRR to CFF improves
performance somewhat on average, it results in significantly less
performance than BAWS.

The reason why BAWS outperforms SAWS is as follows. SAWS
uses ‘first-hit-time’ on a barrier from a certain thread block to de-
termine the priority between different thread blocks. As such, the
thread block that hits a barrier first gets higher priority. However,
that thread block may not be the one that is most critical. To make
this clear, we employ an example as shown in Figure 13. At time t0,
warps in TB0 have the highest priority, for both SAWS and BAWS.
At time t1, TB1 will get the highest priority for BAWS because
TB1 has two warps waiting at the barrier. In contrast, for SAWS,
TB0 will still be considered the most critical TB because it hit its
respective barrier first (namely at t0). At time t2, TB2 becomes
the most critical TB under BAWS (because there are three warps
waiting at the barrier in TB2), while TB0 remains the most criti-

w0 w2w1 w3 w8 w10w9 w11w4 w6w5 w7

tim
e

t0

t1

t2

barrier

barrier

barrier

TB0 TB1 TB2

w8 w4 w6 w0 w1 w3

w0 w1 w3 w4 w6 w8

BAWS

SAWS

w8 w4 w6 w0

w1 w3

w0 w4 w6 w8

w1 w3

BAWS

SAWS

SC0

SC1

SC0

SC1

(a) An example of warps scheduled by BAWS

(b) One scheduler (c) Two schedulers

-15%
-10%

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

SP M
S

FW
T

M
M

ST
N

O
C

TP B
T

PV
C

PV
R SS

M
G

H
IS

TO

SR
A

D
2

A
V

G

sp
ee

du
p

(%
)

SAWS SAWS+CFF BAWS

Figure 12: Relative performance for BAWS, SAWS and
SAWS+CFF over GTO for the barrier-intensive benchmarks.

w0 w2w1 w3 w8 w10w9 w11w4 w6w5 w7

tim
e

t0

t1

t2

barrier

barrier

barrier

TB0 TB1 TB2

w8 w4 w6 w0 w1 w3

w0 w1 w3 w4 w6 w8

BAWS

SAWS

w8 w4 w6 w0

w1 w3

w0 w4 w6 w8

w1 w3

BAWS

SAWS

SC0

SC1

SC0

SC1

(b) One scheduler (c) Two schedulers

Figure 13: Warp scheduling: BAWS versus SAWS.

cal TB under SAWS. (Note though that although a particular TB
has the highest priority, this does not imply that warps from other
TBs cannot make forward progress. These lower-priority warps
may execute if higher-priority warps stall because of other stall rea-
sons.) This exact scenario happens for SRAD2: the last warp in the
last TB is the critical warp, however SAWS does not prioritize that
warp in contrast to BAWS, which explains the 18% performance
improvement of BAWS over SAWS. Another advantage of BAWS
is that it balances the execution of a barrier across TBs. STN is
a benchmark that has a global barrier as a synchronization point
across TBs. BAWS better balances the execution across TBs to-
wards this barrier, which explains the 27% performance benefit of
BAWS over SAWS.

We further conduct experiments to evaluate the effect of BAWS
and SAWS on the non-barrier-intenisve benchmarks, see Figure 14.
SAWS and BAWS are performance-neutral compared to GTO for
all the non-barrier-intensive benchmarks, with lud being the most
notable outlier. (Note that the fraction of stall cycles caused by
barriers equals 14.8%, slightly below our cut-off at 15% to be con-
sidered barrier-intensive.) The reason why both SAWS and BAWS
significantly improve performance over GTO is that lud contains a
lot of memory accesses which exhibits good spatial locality within
a TB. BAWS and SAWS can better leverage this intra-TB locality
than GTO which can only exploit intra-warp locality. This explains
the performance benefit of 17% and 18% for SAWS and BAWS
over GTO, respectively.

7. RELATED WORK
In this section, we first describe related work on warp schedul-

ing policies. We subsequently compare against prior studies on
GPGPU synchronization.

-3%
0%
3%
5%
8%

10%
13%
15%
18%
20%

ba
ck

pr
op

dw
t2

d

he
ar

tw
al

l

hy
br

id
so

rt

la
va

m
d

lu
d

m
yo

cy
te

nw

pa
th

fin
de

r

cf
d

bf
s

ga
us

si
an

ho
ts

po
t

pa
rti

cl
ef

ilt
er

A
V

G

sp
ee

du
p

(%
)

SAWS SAWS+CFF BAWS

Figure 14: Relative performance for BAWS, SAWS and
SAWS+CFF over GTO for the non-barrier-intensive bench-
marks.

7.1 Warp Scheduling
Most studies on warp scheduling focus on reducing the perfor-

mance loss caused by long latencies to memory. Jog et al. [14]
propose a prefetch-aware warp scheduling policy. Gebhart et al. [8]
propose a two-level thread scheduler to hide both local memory and
global memory latencies. To reduce the performance degradation
caused by long-latency operations and conditional branch instruc-
tions, Narasiman et at. [23] propose a two-level warp scheduling
algorithm and a large warp microarchitecture. Rogers et al. [26]
study the cache behavior of GPGPU workloads and they propose a
set of cache-aware warp scheduling policies such as GTRR, GTO,
and CCWS, which are effective for cache-sensitive GPGPU work-
loads. Several other memory-related warp scheduling algorithms
have been proposed, see for example [12, 13, 16, 20, 22, 28]. Con-
current work by Park et al. [25] maximizes memory-level paral-
lelism for GPUs and also coordinates warp and fetch scheduling,
as we propose in the context of barriers with CFF.

A second flavor of warp scheduling algorithms focus on how to
improve the resource utilization of GPGPUs, as due to branch di-
vergence, the SIMD lanes are often underutilized. Fung et al. [22]
propose a hardware approach to regroup threads into new warps
on the fly following the occurrence of diverging branch outcomes.
Rogers et al. [27] propose a divergence-aware warp scheduler to
improve the performance and energy of divergent applications. Re-
cently, Lee et al. [17] propose a TB scheduler as well as a combined
TB-plus-warp scheduler to improve overall resource utilization.

Some prior work addresses warp-level-divergence. Xiang et al. [31]
propose to allocate and release resources at the warp level rather
than at the TB level. As a result, the number of active warps is in-
creased while not increasing the size of the critical resources. Lee
et al. [19] also observe significant execution disparity for warps
within a TB. They define the slowest warp in a TB as the critical
warp and they propose a criticality-aware warp scheduling (CAWS)
policy driven by application program hints to improve the perfor-
mance of GPGPU applications. These works address execution
disparity at the exit points of a thread block, which we find to be
a minor contributor to the total time stalled on barriers in barrier-
intensive workloads, see Figure 1. BAWS, in contrast, tackles ex-
ecution disparity at the warp-phase level. Follow-on work by Lee
et al. [18] proposes CAWA which predicts warp criticality based
on dynamic instruction count and the number of stall cycles, to ac-

count for warp imbalance and shared resource contention. CAWA
steers scheduling and cache partitioning by warp criticality. CAWA
does not take barrier synchronization into account as we do in BAWS.

Very recent and concurrent work by Liu et al. [21], called SAWS,
optimizes synchronization performance between warp schedulers,
but does not target barriers within warp-phases. Furthermore, SAWS
prioritizes the first TB hitting a barrier, which may not be the most
critical TB. BAWS on the other hand optimizes synchronization
performance within warp-phases while optimizing the most criti-
cal TB, yielding a substantial performance benefit over SAWS as
demonstrated in the previous section.

In summary, the above warp scheduling polices improve the per-
formance of GPGPU applications from different aspects, such as
long memory latency, branch divergence, and thread block exit
points. However, none of these characterize and address barrier
behavior within a thread block. In contrast, our work comprehen-
sively characterizes the barrier behavior of barrier-intensive GPGPU
applications, and proposes a barrier-aware warp scheduling (BAWS)
policy to reduce fine-grained barrier-induced warp execution dis-
parities.

7.2 GPGPU Synchronization
GPGPUs provide hardware supported synchronization within a

TB but not between TBs. Whereas this paper focuses on synchro-
nization within a TB, prior work addressed synchronization issues
between TBs. Xiao and Feng propose three techniques — sim-
ple synchronization, tree-based synchronization, and lock-free syn-
chronization — to achieve fast synchronization between TBs [7,
32]. Yilmazer et al. [33] propose a hardware-based blocking syn-
chronization mechanism that uses hierarchical queuing for scala-
bility and efficiency for synchronization-intensive GPGPU applica-
tions. To optimize thread-level parallelism for GPGPUs, Kayiran et
al. [15] propose a dynamic TB scheduling mechanism. They model
the synchronization between TBs by using atomic instructions, but
they do not come up with an approach to improve synchroniza-
tion performance. For the heterogeneous architectures consisting
of GPGPUs and CPUs, Guo et al. [9, 10] propose a code genera-
tor with three features of which one is an instance-level instruction
scheduler for synchronization relaxation. All of these GPGPU syn-
chronization studies focus beyond a TB, while our work studies
synchronization behavior within a TB.

8. CONCLUSION
In this paper, we observe that barrier-intensive GPGPU applica-

tions can be stalled significantly on barriers. In general, these stall
cycles are caused by execution divergence of warps in a warp-phase
in a TB, and we define such divergence as warp-phase-divergence.
We identify a number of causes of warp-phase-divergence: ap-
plication code, input data, shared resource contention, and warp
scheduling algorithms.

To mitigate barrier induced stall cycle inefficiency, we propose
barrier-aware warp scheduling (BAWS), a novel warp scheduling
policy that combines two different techniques: most-waiting-first
(MWF) warp scheduling for the issue stage, and critical-fetch-first
(CFF) warp scheduling for the fetch stage. MWF assigns a higher
scheduling priority to warps of a thread block that has a larger num-
ber of warps waiting at a barrier. CFF orchestrates the fetch and is-
sue schedulers, and fetches instructions from the warp to be issued
by MWF in the next cycle. We evaluate BAWS (MWF+CFF) and
compare it against LRR and GTO for a set of 13 barrier-intensive
benchmarks. The experimental results show that BAWS speeds
up the barrier-intensive benchmarks over LRR by 17% on aver-
age (and up to 35%), and by 9% on average (and up to 30%)

over GTO. BAWS outperforms SAWS by 7% on average and up
to 27%. Moreover, for non-barrier-intensive workloads, we report
that BAWS is performance-neutral compared to GTO and SAWS,
while improving performance by 4% on average (and up to 17%)
over LRR. Hardware cost for BAWS is as small as 6 bytes per SM.

Acknowledgements
We thank the reviewers for their thoughtful comments and sugges-
tions. This work is supported by the China 973 Program under No.
2015CB352400, the major scientific and technological project of
Guangdong province (2014B010115003), Shenzhen Peacock In-
novation project (KQCX20140521115045448), outstanding tech-
nical talent program of CAS; NSFC under Grant No. 61232008,
61272158, 61328201, U1401258, and 61472008; the 863 Program
of China under Grant No. 2012AA010905 and 2015AA015305.
Lieven Eeckhout is partly supported by a Chinese Academy of Sci-
ences (CAS) visiting professorship for senior international scien-
tists, and through the European Research Council under the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement No. 259295.

9. REFERENCES
[1] CUDA programming guide, version 3.0. NVIDIA

CORPORATION, 2010.
[2] ATI stream technology. Advanced Micro Devices,Inc.

http://www.amd.com/stream., 2011.
[3] OpenCL. Khronos Group. http://www.khronos.org/opencl.,

2012.
[4] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry

Wong, and Tor M Aamodt. Analyzing CUDA workloads
using a detailed GPU simulator. In Proceedings of the
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 163–174, 2009.

[5] Daniel Cederman and Philippas Tsigas. On dynamic load
balancing on graphics processors. In Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware, pages 57–64, 2008.

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous computing.
In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC), pages 44–54, 2009.

[7] Wu-Chun Feng and Shucai Xiao. To GPU synchronize or not
GPU synchronize? In Proceedings of the International
Symposium on Circuits and Systems (ISCAS), pages
3801–3804, 2010.

[8] Mark Gebhart, Daniel R Johnson, David Tarjan, Stephen W
Keckler, William J Dally, Erik Lindholm, and Kevin
Skadron. Energy-efficient mechanisms for managing thread
context in throughput processors. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
pages 235–246, 2011.

[9] Ziyu Guo, Bo Wu, and Xipeng Shen. One stone two birds:
Synchronization relaxation and redundancy removal in
GPU-CPU translation. In Proceedings of the International
Conference on Supercomputing (ICS), pages 25–36, 2012.

[10] Ziyu Guo, Eddy Zheng Zhang, and Xipeng Shen. Correctly
treating synchronizations in compiling fine-grained
SPMD-threaded programs for CPU. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 310–319, 2011.

[11] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K
Govindaraju, and Tuyong Wang. Mars: A MapReduce
framework on graphics processors. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 260–269, 2008.

[12] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. MRPB:
Memory request prioritization for massively parallel
processors. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages
272–283, 2014.

[13] Adwait Jog, Onur Kayiran, Nachiappan
Chidambaram Nachiappan, Asit K Mishra, Mahmut T
Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R Das.
OWL: Cooperative thread array aware scheduling techniques
for improving GPGPU performance. In Proceedings of the
International Symposium on Computer Architecture (ISCA),
pages 395–406, 2013.

[14] Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T
Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R Das.
Orchestrated scheduling and prefetching for GPGPUs. In
Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 332–343, 2013.

[15] Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and
Chita Ranjan Das. Neither more nor less: Optimizing
thread-level parallelism for GPGPUs. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 157–166, 2013.

[16] Nagesh B Lakshminarayana and Hyesoon Kim. Effect of
instruction fetch and memory scheduling on GPU
performance. In Workshop on Language, Compiler, and
Architecture Support for GPGPU, 2010.

[17] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim,
Woong Seo, Yeongon Cho, and Soojung Ryu. Improving
GPGPU resource utilization through alternative thread block
scheduling. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages
260–271, 2014.

[18] Shin-Ying Lee, Akhil Arunkumar, and Carole-Jean Wu.
CAWA: Coordinated warp scheduling and cache priorization
for critical warp acceleration of GPGPU workloads. In
Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 515–527, 2015.

[19] Shin-Ying Lee and Carole-Jean Wu. CAWS:
Criticality-aware warp scheduling for GPGPU workloads. In
Proceedings of the International Conference on Parallel
Architectures and Compilation (PACT), pages 175–186,
2014.

[20] Dong Li, Minsoo Rhu, Daniel R Johnson, Mike O’Connor,
Mattan Erez, Doug Burger, Donald S Fussell, and Stephen W
Keckler. Priority-based cache allocation in throughput
processors. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages
1–12, 2015.

[21] Jiwei Liu, Jun Yang, and Rami Melhem. SAWS:
Synchronization aware GPGPU warp scheduling for multiple
independent warp schedulers. In Proceedings of the
International Symposium on Microarchitecture (MICRO),
pages 383–394, 2015.

[22] Jiayuan Meng, David Tarjan, and Kevin Skadron. Dynamic
warp subdivision for integrated branch and memory
divergence tolerance. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages
235–246, 2010.

[23] Veynu Narasiman, Michael Shebanow, Chang Joo Lee,
Rustam Miftakhutdinov, Onur Mutlu, and Yale N Patt.
Improving GPU performance via large warps and two-level
warp scheduling. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 308–317,
2011.

[24] CUDA Nvidia. CUDA SDK code samples.
[25] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. ELF:

Maximizing memory-level parallelism for gpus with
coordinated warp and fetch scheduling. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, page article 8, 2015.

[26] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt.
Cache-conscious wavefront scheduling. In Proceedings of
the IEEE International Symposium on Microarchitecture
(MICRO), pages 72–83, 2012.

[27] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt.
Divergence-aware warp scheduling. In Proceedings of the
International Symposium on Microarchitecture (MICRO),
pages 99–110, 2013.

[28] Ankit Sethia, D Anoushe Jamshidi, and Scott Mahlke.
Mascar: Speeding up GPU warps by reducing memory
pitstops. In Proceedings of the International Symposium on
High Performance Computer Architecture (HPCA), pages
174–185, 2015.

[29] Inderpreet Singh, Arrvindh Shriraman, Wilson Fung, Mike
O’Connor, and Tor Aamodt. Cache coherence for GPU
architectures. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages
578–590, 2013.

[30] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady
Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and
Wen-mei W Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing. Technical
Report IMPACT-12-01, Center for Reliable and
High-Performance Computing, University of Illinois at
Urbana-Champaign (UIUC), 2012.

[31] Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level
divergence in GPUs: Characterization, impact, and
mitigation. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA), pages
284–295, 2014.

[32] Shucai Xiao and Wu-Chun Feng. Inter-block GPU
communication via fast barrier synchronization. In
Proceedings of the International Symposium on Parallel and
Distributed Processing (IPDPS), pages 1–12, 2010.

[33] Ayse Yilmazer and David Kaeli. HQL: A scalable
synchronization mechanism for GPUs. In Proceedings of the
International Symposium on Parallel and Distributed
Processing (IPDPS), pages 475–486, 2013.

