
Locality Lost: Unlocking the Performance of Event-driven Servers*

Daniel Richins Yuhao Zhu Matthew Halpern Vijay Janapa Reddi

The University of Texas at Austin, Department of Electrical and Computer Engineering
{drichins, yzhu, matthalp}@utexas.edu, vj@ece.utexas.edu

1. Introduction
Server-side Web applications are in the midst of a software
evolution. Application developers are turning away from the
established thread-per-request model, where each request gets
a dedicated thread on the server, and toward event-driven pro-
gramming platforms, which promise improved scalability and
CPU utilization [1]. In response, we perform a microarchitec-
tural analysis of these applications in current server processors
and identify several serious performance bottlenecks and opti-
mization opportunities for future processor designs.

The event-driven model is illustrated in Fig. 1. Incom-
ing requests require periods of computation to prepare their
responses, interspersed with periods of inactivity while long-
latency I/O events are waiting to complete. The event-driven
model hides these idle periods by placing all the periods of
computation—events—into an event queue, where they are
processed, one at a time, by a single thread. The processing of
events is done by event callback functions, labeled A through
E in the figure. In the event queue, the callback functions from
different requests can be interleaved. We make the following
important observations about event-driven programming:
• Event-driven programming has limited code locality.

Event-driven programming relies on flat functions that are
used repeatedly. This programming pattern leads to large
instruction reuse distances and severely limits and handicaps
available intra-event (i.e., within an event) code reuse but

*The original article appears under the title “Microarchitectural Implica-
tions of Event-driven Server-side Web Applications,” published in the 48th
International Symposium on Microarchitecture, Dec. 2015.

I/O

I/O

I/O

I/O

C

A

B

C

D

E

Time

Req 1 Req 2 Req 3

I/O
A

B

A

C

A

C

D

E

B

B

Ev
en

t
Q

u
eu

e

Figure 1: The responses to incoming requests can logically be di-
vided into computational pieces, separated by idle periods, where
long-latency I/O events are waiting to complete. The event-driven
programming model overcomes these idle periods by placing the pro-
cessing of all events—their event callback functions—into a single-
threaded event queue. Node.js on the server-side and Android on
the client-side are prevalent examples of event-driven programming.

exposes ample inter-event (i.e., across events) code reuse.
• Limited code locality leads to front-end bottlenecks. The

instruction cache, branch predictor, and instruction TLB
are extremely inefficient in delivering instructions, limiting
performance, as compared to SPEC CPU 2006 applications
that are also single-threaded and widely used to stress the
CPU’s capabilities and drive microarchitecture innovations.

• Microarchitectural optimizations can regain the lost
code locality. By utilizing two innovative hardware de-
signs, a cache insertion policy and an instruction prefetcher,
tailored specifically to extract different sources of locality,
the I-cache performance can be satisfactorily improved.

On servers, the event-driven programming paradigm is per-
haps best exemplified by Node.js [2], which we use as our
experimental platform. Node.js has achieved rapid adoption
in industry, and companies relying on warehouse-scale com-
puting capability (such as PayPal [3] and LinkedIn [4]) for
its scalability and responsiveness [1]. We introduce and use
for study the first Node.js workload suite, consisting of di-
verse and representative open-source applications (Etherpad
Lite, Let’s Chat, Lighter, Mud, Todo, and Word Finder), which
are available at https://github.com/nodebenchmark. Our
insights can have immediate and practical real-world impact.

2. Lost Locality
The event-driven Node.js applications violate one of the most
fundamental assumptions in CPU design: code locality. In
this section, we describe in greater detail how the unique
properties of Node.js applications combine to limit locality
(Sec. 2.1). We then show the measurable impact of this low
locality on processor performance (Sec. 2.2). And finally, we
show that the event-driven program characteristics preclude
simple structure scaling as a viable solution (Sec. 2.3).

2.1. Intra-event Locality
Where conventional single-threaded applications, such as
those in SPEC CPU 2006 [5], tend to be centered around
limited tight, hot loops that dominate execution time, the ap-
plications of Node.js exhibit two striking deviations from this
tendency: (1) event callback functions have extremely large
code footprints, and (2) those same functions tend to be rela-
tively flat. These properties combine to ill effect in Node.js.

Callback Footprints Fig. 2a shows the large code foot-
prints of the event callback functions. Of note is the fact that
most footprints are larger than the I-cache. This extremely
large footprint likely arises, at least in part, from programming
in JavaScript with all its virtual machine overhead.

Code Reuse Event callback functions also exhibit rela-
tively little code reuse. Fig. 2b shows, as an example, the
instruction reuse counts for Etherpad Lite. Within callback

https://github.com/nodebenchmark

213

215

217

219

221

Ev
en

t F
oo

tp
rin

t (
By

te
s)

100806040200
Events (%)

L1 Cache Size 32 KB

 Word Finder
 Todo
 Mud
 Etherpad
 Let's Chat
 Lighter

(a) Most event callback functions
have instruction footprints larger
than the I-cache itself.

100

80

60

40

20

0

In
st

ru
ct

io
ns

 (%
)

32 64 96 128
160
192
224
256
> 256

of reuses

 Intra-event
 Inter-event

(b) The intra-event instruction
reuse is limited. Only in inter-
event reuse is it significant.

Figure 2: The code reuse distance combined with code foot-
print size destroys most locality.

functions (intra-event; shown in red), very few instructions are
used more than 32 times. This limited intra-event code reuse is
a consequence of the event-driven programming model. To en-
sure responsiveness in the single-threaded event queue process-
ing, programmers understand they must avoid time-consuming
and computationally-intensive loops, instead writing flat code.

Making matters worse, however, is that this intra-event code
reuse is diffuse and hard to utilize. Because it is not found
in hot loops, it must instead be spread across the entire event
callback function, which limits the locality even further.

Working Set Size The ultimate measure of locality is the
working set size. We compare the working set sizes in Node.js
with SPEC CPU 2006 applications, since both are single-
threaded applications. Node.js applications are orders of mag-
nitude larger than those of SPEC applications. Capturing the
entire working set requires an I-cache of size 512 KB, orders
of magnitude larger than SPEC (Fig. 7 in the original paper).

2.2. Performance Implications
The limited locality and large working set size manifest them-
selves in the CPU pipeline structures’ performance. The front-
end suffers from particularly low efficiency. We demonstrate
the effect on the I-cache, I-TLB, and branch predictor.

The I-cache and I-TLB both show miss rates that are in line
with those usually seen in the D-cache and D-TLB. Fig. 3
shows the misses per kilo-instruction (MPKI) of each struc-
ture across a range of sizes. The default sizes are 32 KB
and 64 entries, respectively. At those sizes, Node.js manages
61.2 MPKI and 2.29 MPKI compared to SPEC’s 14.4 MPKI
and 0.03 MPKI for the cache and TLB, respectively. The
differences are orders of magnitude off—4.25x and 76.3x!

On the branch predictor side, the Node.js applications are
predicted far worse than the SPEC applications. Using a 4 K-
prediction tournament predictor, Node.js manages an average
misprediction rate of 8.7% compared to SPEC’s 3.6%.

2.3. Structure Scaling
The obvious reaction to address the severe problem—simply
increase the sizes of these three structures—is an untenable
solution. The unique characteristics of event-driven programs
make simple scaling an ineffective approach (see Sec. 2.1).

To reach the I-cache and I-TLB rates of typical SPEC per-

120

90

60

30

0

I-C
ac

he
 M

PK
I

16 64 256 1024
I-Cache size (KB)

 Word Finder Todo
 Mud Etherpad
 Let's Chat Lighter

SPEC CPU 2006
Avg @ 32 KB

(a) I-cache MPKI remains much
higher in Node.js than SPEC until
the cache is increased to 512 KB.

20

15

10

5

0

IT
LB

-M
PK

I

16 64 256
I-TLB size

 Word Finder Todo
 Mud Etherpad
 Let's Chat Lighter

SPEC CPU
2006 Avg @ 64

(b) I-TLB MPKI can be reduced
to SPEC levels only with 256 TLB
entries.

Figure 3: Simply scaling the sizes of the I-cache and I-TLB would be
too expensive a solution.

formance, Node.js would require structures of 512 KB and
256 entries, respectively (see Fig. 3). Accurate branch predic-
tion using existing common predictors would require similarly
overblown structures. Even given an unlimited hardware bud-
get, the increased latency of accessing each structure would
likely outweigh the benefits gained from higher hit rates.

3. Capturing Code Reuse
Though event-driven programs have less easily-utilized local-
ity than other programs, it is still possible to exploit some
of that and regain performance; furthermore, Fig. 2b shows
that there is ample code reuse across event callback functions
(inter-event; shown in blue). We show one approach to capital-
izing on these two different kinds of reuse on the I-cache. Our
insight is to combine two existing techniques intelligently: a
cache insertion policy to capture intra-event code reuse and an
instruction prefetcher to capture inter-event code reuse.

Cache Insertion Policy We analyze the instruction stream
and observe similarities to streaming data. We use the LRU
Insertion Policy (LIP) [6] to capture intra-event code reuse,
preserving the reused instructions from the otherwise flat event
callback functions. LIP was invented to handle streaming data
workloads. Instead of newly fetched lines being inserted into
the most-recently used (MRU) position of the cache, they are
inserted in the least-recently used (LRU) position. Only once
a line in the LRU position has a subsequent hit is it promoted
to the MRU position. This prevents streaming data (or, in our
case, streaming instructions) from polluting the cache.

Prefetching For inter-event code reuse, we rely on the
Temporal Instruction Fetch Streaming (TIFS) prefetcher [7].
It is built on the observation that many I-cache miss sequences
are repeatable. It operates by recording every access to the I-
cache that results in a miss. When subsequent cache misses are
found to have been recorded, it begins prefetching lines in the
same sequence as the misses previously recorded, which suits
our observation of ample code reuse across callback functions.

Evaluation Combining LIP and TIFS reduces I-cache
MPKI by 88%. LIP improves the average I-cache miss rate for
Node.js applications from 61.2 MPKI to 18.2 MPKI, a 70%
improvement. The TIFS prefetcher provides an additional
60% reduction, bringing the miss rate down to 7.22 MPKI.

4. Long-term Impact
Software evolution necessitates architecture innovation. New
programming paradigms give rise to new architectural bottle-
necks that obstruct otherwise efficient program execution. In
order to sustain these software innovations, it is important to
understand their execution and optimize future architectures.

Our paper identifies an emerging programming paradigm—
server-side event-driven programming—and takes the first im-
portant steps in analyzing its execution on modern hardware
to identify performance bottlenecks. Though other researchers
have operated with the understanding that there are instruction
fetch and branch prediction bottlenecks in client-side event-
driven applications [8,9], this is the first paper to quantitatively
measure the bottlenecks on server-side event-driven applica-
tions and, more importantly, to identify their root causes in the
context of the event-driven programming model.

4.1. Wide-ranging Applicability
While our work focuses on a particular use case—server-side
event-driven programs—it is applicable to a wider range of
programs. Event-driven programming, though not a new con-
cept, is showing up in new application domains: it is present in
nearly all GUI programming, as program actions are triggered
by user interaction; it partially drives the Android operating
system [10]; and, perhaps most importantly, event-driven pro-
gramming is inherent to Web browsers themselves [11] and, by
extension, to any Web-based mobile application. Hence, with
both server and client running event-driven software, much of
our interaction with today’s technology is event-driven.

The key observation of this work is that instruction locality
is lost within event-driven applications. The flip side of this
observation is that inter-event code reuse is plentiful. This
is inherent to the event-driven programming paradigm, i.e.,
developers tend to write flat and short-running event callbacks.
We believe this to be true of any event-driven program. Con-
sequently, we expect that I-cache hit rates will be suboptimal
and branch mispredict rates will be uncomfortably high in
many, if not all, event-driven applications.

4.2. Catalyst for Cross-layer Research
The primary message from this paper—combining large call-
back instruction footprints with the flat event callback func-
tions of event-driven programming leads to extremely low
locality—has important implications for processor architec-
ture, compiler, and software researchers and designers.

Architecture Architects must continue to improve microar-
chitectural efficiency. The unique and yet widely used event-
driven programming paradigm is fundamentally different from
traditional workloads and so merits dedicated research into
code reuse patterns, branch prediction opportunities, and spe-
cialized hardware to match these programs’ needs.

For example, though the combination of LIP and TIFS was
shown to provide an 88% reduction in I-cache MPKI, the
MPKIs of some Node.js applications are still higher than some
CPU 2006 applications. LIP and TIFS do not leverage event-
specific knowledge. Our results indicate that specializing front-
end structures based on a deeper understanding of event-level
characteristics can be a promising new research direction.

Runtime The locality issue is also rife with opportunity for
event-driven runtime research. Because of the inter-event code
reuse, event-level scheduling shows promise as a software
technique to improve efficiency. Reordering callbacks in the
event queue to group event callbacks of the same type (which
will have similar instruction streams) may reduce the reuse
distance in the presence of large per-event footprints.

In addition, the large event callback function footprints of
Node.js applications may prove, in part, to be the result of
JavaScript compilation techniques that are well optimized for
Web browsers but suboptimal for event-driven servers. As
Node.js grows in popularity, JavaScript and other language
designers will have to consider the impact their decisions may
have on event-driven execution (e.g., instruction footprint).
Reducing the footprint may prove to be a greater performance
boon than whatever optimizations exist in the larger footprints.

Software Our locality findings also have critical impli-
cations for application developers. They will not only have
to make sure that event callback functions execute quickly
but also that they have small instruction footprints. We will
have to educate developers and introduce programming con-
ventions that reduce instruction footprints, such as splitting
a flat callback into multiple smaller callbacks and chaining
them through asynchronous calls. Smaller event callbacks
combined with the event-level reordering and scheduling tech-
niques discussed above will likely reduce instruction reuse
distance and therefore improve instruction delivery efficiency.

4.3. Citation from 2026
In their landmark paper on event-driven server-side Web ap-
plications, the authors pioneered the work on recovering code
locality in event-driven applications. Since then, numerous
studies have proposed hardware and software techniques to
capture and improve locality. From the original paper, an entire
body of research was spawned and event-driven programming
has become pervasive due to its flexibility and performance.

References
[1] M. Welsh, S. D. Gribble, E. A. Brewer, and D. Culler, “A design

framework for highly concurrent systems,” in TR UCB/CSD-00-1108,
2000.

[2] Joyent, Inc., “Node.js.” https://nodejs.org/.
[3] “Node.js at paypal.” https://www.paypal-engineering.com/

2013/11/22/node-js-at-paypal/.
[4] “Exclusive: How linkedin used node.js and html5 to build a better,

faster app.” https://www.paypal-engineering.com/2013/11/22/
node-js-at-paypal/.

[5] Standard Performance Evaluation Corporation, “SPEC CPU 2006.”
https://www.spec.org/cpu2006/.

[6] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. Emer, “Adaptive
insertion policies for high performance caching,” in Proc. of ISCA,
2007.

[7] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in Proc. of MICRO, 2008.

[8] G. Chadha, S. Mahlke, and S. Narayanasamy, “Accelerating asyn-
chronous programs through event sneak peek,” in Proc. of ISCA, 2015.

[9] G. Chadha, S. Mahlke, and S. Narayanasamy, “Efetch: optimizing
instruction fetch for event-driven webapplications,” in Proc. of PACT,
2014.

[10] E. L. Mañas, “Event-driven programming for Android (part
I).” https://medium.com/google-developer-experts/
event-driven-programming-for-android-part-i-f5ea4a3c4eab,
January 2015.

[11] E. Swenson-Healey, “The JavaScript Event Loop: Ex-
plained.” http://blog.carbonfive.com/2013/10/27/
the-javascript-event-loop-explained/, October 2013.

https://nodejs.org/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.spec.org/cpu2006/
https://medium.com/google-developer-experts/event-driven-programming-for-android-part-i-f5ea4a3c4eab
https://medium.com/google-developer-experts/event-driven-programming-for-android-part-i-f5ea4a3c4eab
http://blog.carbonfive.com/2013/10/27/the-javascript-event-loop-explained/
http://blog.carbonfive.com/2013/10/27/the-javascript-event-loop-explained/

	Introduction
	Lost Locality
	Intra-event Locality
	Performance Implications
	Structure Scaling

	Capturing Code Reuse
	Long-term Impact
	Wide-ranging Applicability
	Catalyst for Cross-layer Research
	Citation from 2026

