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Abstract—In contrast to traditional computing systems, such
as desktops and servers, that are programmed to perform
“compute-bound” and “run-to-completion” tasks, mobile applica-
tions are designed for user interactivity. Factoring user interactiv-
ity into computer system design and evaluation is important, yet
possesses many challenges. In particular, systematically studying
interactive mobile applications across the diverse set of mobile
devices available today is difficult due to the mobile device
fragmentation problem. At the time of writing, there are 18,796
distinct Android mobile devices on the market and will only
continue to increase in the future. Differences in screen sizes,
resolutions and operating systems impose different interactivity
requirements, making it difficult to uniformly study these systems.

We present Mosaic, a cross-platform, timing-accurate record
and replay tool for Android-based mobile devices. Mosaic over-
comes device fragmentation through a novel virtual screen
abstraction. User interactions are translated from a physical
device into a platform-agnostic intermediate representation before
translation to a target system. The intermediate representation is
human-readable, which allows Mosaic users to modify previously
recorded traces or even synthesize their own user interactive
sessions from scratch. We demonstrate that Mosaic allows user
interaction traces to be recorded on emulators, smartphones,
tablets, and development boards and replayed on other devices.
Using Mosaic we were able to replay 45 different Google Play
applications across multiple devices, and also show that we can
perform cross-platform performance comparisons between two
different processors under identical user interactions.

I. INTRODUCTION
Unlike traditional “run-to-completion” workloads found in

desktops and servers, interactive mobile applications terminate
at the discretion of the end-user. User interaction serves
as the primary input source for mobile applications, where
computational activity is generated in response to the timing,
type and location of user input. Together, the sequence of
user interactions that occur throughout an application use
case form an input set for that application. Different user
interaction sequences invoke different application behaviors
just as the corresponding input sets from traditional computer
benchmarking workloads (e.g. SPEC) do during execution.

The impact of user interaction on mobile application be-
havior requires that developers and researchers evaluate mobile
systems under realistic usage scenarios. Interactive mobile
applications are designed to directly interact with the end-user
through a touchscreen display. Different applications require
the user to interact with the application in different ways.
For example, first-person shooter games use finger tapping
to fire ammunition and navigation services provide “pinch-to-
zoom” in order to investigate interesting geographical features.
Whether it be taps, pinches, flicks or swipes, each application

has its own set of requirements for how user interactions must
be performed to provide the intended end-user functionality.

From a program analysis and computer architecture per-
spective, studying mobile applications requires repeatable user
interactivity. That is, the type, timing and location of user
interactions must be repeatable across different runs of the ap-
plication. Techniques that use live human inputs are susceptible
to run-to-run variation and do not easily scale. There is a need
to be able to accurately reproduce the same execution behavior
across several runs of the same application. Interactive mobile
applications are time-sensitive and can show measurement
variation across users and even individual uses, even when
the same functionalities are exercised. To address these issues,
several user input replay techniques have emerged; either from
a recorded or scripted user interaction sequence.

A key challenge in preserving the type, timing and location
of input events across platforms is the mobile device frag-
mentation problem. Mobile device ecosystems, most notably
Android, embrace design freedom that encourages hardware
and software diversity across device offerings. At the time
of writing, Android has over 18792 distinct device configu-
rations [1]; each with different screen sizes, operating system
versions and other hardware and software differences. As we
demonstrate, although existing replay tools work out-of-the
box for recording and replaying activity on a single device,
they do not provide cross-platform portability. User actions
from one devices cannot be replayed on other devices.

Cross-platform user input record and replay enables robust
application testing and quantitative performance comparisons
amongst different mobile devices. While the challenges An-
droid fragmentation imposes on application development are
well-known, the same underlying principles also hinder the
ability to effectively study mobile device performance, specif-
ically from a user interaction perspective. To evaluate two
systems under the same interactive mobile application usage
scenario, they require the same interaction sequences that
interact with the same user interface (UI) elements under the
same timing constraints. However, this is not easy due to the
fragmentation issue. In the simplest case, in order to evaluate
an identical application found within a smartphone and tablet,
screen dimensions require interactions at different coordinates,
preventing user inputs from being portable between the two
devices. Cross-platform replay is not just a display-level is-
sue. We demonstrate it also requires system-level cooperation
between the touchscreen, kernel and application framework.

To overcome these issues, we present Mosaic, a cross-
platform user input record and replay tool for Android-based
systems. Mosaic virtualizes user interactions in a way that
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Fig. 1: Android touchscreen input architecture overview.

allows application use cases to replayed across a variety of
mobile devices, each with different hardware and software
attributes pertaining to fragmentation. In the spirit of the art
form from which it derives its name, Mosaic provides the
capabilities to cohesively study mobile devices spread across
the fragmented Android ecosystem. It does this by mapping a
set of touchscreen events from a particular device into a set of
virtualized user interactions that can be retargeted and injected
into another device. The approach is general enough that it can
be used to readily augment existing popular record and replay
tools that currently do not support cross-platform portability.

We evaluated Mosaic across a wide range of applications
and devices. Our evaluation included several off-the-shelf
smartphones, tablets, development platforms and emulators.
We were able to successfully run over 45 applications that were
downloaded from Google Play across various combinations
of hardware and software emulation platforms. All of this
was achieved transparently without requiring any source code
changes and with almost negligible system overhead.

The rest of the paper is organized as follows. In Sec. II,
we introduce the mobile device fragmentation problem. Sec. III
presents the design and implementation of Mosaic. Mosaic’s
cross-platform portability is evaluated in Sec. IV. We demon-
strate how Mosaic can be used to conduct a microarchitecture-
level performance analysis between an ARM Cortex-A7 and
Cortex-A15 processors and discuss over potential use cases in
Sec. V. We compare Mosaic with prior work in Sec. VI and
conclude the paper in Sec. VII.

II. THE FRAGMENTATION PROBLEM
The Android mobile device ecosystem suffers from a

fragmentation issue. To date, Android has over 18792 unique
devices on the market [1]. Device manufacturers have the
freedom to create mobile devices in any way they wish, leading
to both hardware and software diversity, deemed fragmenta-
tion. Hardware fragmentation refers to the different displays,
processing resources and other components that operate under
the operating system version. The most visible example are
mobile device form factors (e.g. smartphones, tablets and wear-
ables) that physically look different but run the same Android

TABLE I: Linux Touchscreen Input Events of Interest.

Event Description
ABS_MT_SLOT Finger Identifier
ABS_MT_TRACKING_ID Event ID
BTN_TOUCH Screen Press/Release
ABS_MT_POSITION_X Finger X-Position
ABS_MT_POSITION_Y Finger Y-Position
ABS_MT_TOUCH_MAJOR Finger Touch Major-axis Length
ABS_MT_TOUCH_MINOR Finger Touch Minor-axis Length
ABS_MT_WIDTH_MAJOR Finger Width Major-axis Length
ABS_MT_WIDTH_MINOR Finger Width Minor-axis Length
ABS_MT_ORIENTATION Finger Orientation
ABS_MT_TOOL_TYPE Touch Tool Type
ABS_MT_PRESSURE Touch Pressure
ABS_MT_DISTANCE Touch Distance
SYN_MT_REPORT End of Multitouch Event Packet
SYN_REPORT End of Event Packet

version. In contrast, software fragmentation relates to software
variations across the same device model. For example, different
operating system versions and carrier-specific modifications.

The rest of this section describes user interactivity in An-
droid and the corresponding fragmentation issues that concern
it. Both hardware and software fragmentation impose chal-
lenges to providing accurate, cross-platform user interaction
record and replay. Not only do these restrictions stem from
differences between device display and touchscreen attributes
but also due to kernel- and application framework-level dif-
ferences. Several other sources of fragmentation exist (e.g.
sensors), but we consider them to be beyond the scope of this
work since they not directly deal with touch-related inputs.

A. Android Touch Input Architecture
A high-level overview of how Android bridges user inter-

activity to the underlying application code in shown in Fig. 1.
The user interacts with application user interface (UI) elements
located at various display coordinates. These interactions can
range from finger presses, taps and swipes depending on the
application functionally the user wishes to invoke. In addition,
the user may also exercise multi-finger gestures, such as
a pinching or rotation, where multiple fingers concurrently
execute these primitives. All the while, the touchscreen tracks
finger state atop the display throughout the interaction.

The touchscreen reports user interaction state updates di-
rectly to Android’s Linux kernel through events, such as those
shown in Table I. These events are a subset of the Linux input
protocol, mostly from the (multi-)touch specification. Due to
space constraints, we only show the events we observed at
least once while investigating 26 physical devices, which we
will discuss in detail later in the section. The kernel processes
touchscreen interactions as event packets sent through the
/dev/input/event interface. Each event packet begins
with a header that consists of an ABS_MT_TRACKING_ID
event, which is preceded by a ABS_MT_SLOT event to
uniquely identify a finger when multiple fingers are interacting
with the screen. The packet body consists of finger interaction
metadata, such as the interaction coordinates and the pressure
applied. Each packet ends with a SYN_REPORT.

Fig. 2 illustrates an example of a finger press event
packet sequence on a tablet. When the finger begins to push
down on the touchscreen, the driver creates a new touch-
screen event packet by sending ABS_MT_TRACKING_ID
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with a unique identifier to the kernel. A BTN_KEY DOWN
event is included because this is the first event packet sent
while the finger is touching down on the touchscreen. The
finger’s current position at (1152, 486) is expressed with
ABS_MT_POSITION_X 1152 and ABS_MT_POSITION_Y
486. Fingers make contact with the screen in the form
of ellipses. The major (i.e. longest) and minor (i.e. short-
est) axes of the ellipse is presented to the system through
ABS_MT_TOUCH_MAJOR 16 and ABS_MT_TOUCH_MINOR
8, respectively. ABS_MT_PRESSURE corresponds to how hard
the finger is pressed against the screen. Finally, the packet
sequence ends with a SYN_REPORT to signal the system to
process the event packet information.

The Android application framework awaits and converts
the Linux touchscreen driver events into application-level
interactions. The Android EventHub service monitors the
touchscreen for new events (via /dev/input/event) and
streams them into a module that determines when enough
information is available for the current application’s window
manager to begin processing a set of user interactions.

The window manager uses the touchscreen event infor-
mation to identify which application UI element the user is
interacting with and then dispatches its corresponding event
handler. For example, if the window manager identifies that a
button has been pressed, it will call the button’s event handler.
In Android, this is the OnTouchListener handler.

B. Android Hardware Fragmentation
Several hardware aspects, mostly pertaining to screen-

related components, restrict user touchscreen interactions from
being cross-platform. We present and elaborate on the issues
that we identified and addressed while developing Mosaic.

Screen Size and Orientation — Mobile devices with various
form factors (e.g. smartphones and tablets) have to support
the same set of applications. Form factors are distinguishably
different in screen size (e.g. inches, etc) and default orien-
tations (e.g. portrait or landscape). Smartphones have small
portrait screens between 2.5” and 5.5” whereas tablets have
larger landscape screens at least 9”. In between these two
extremes are phablets that have 6”-wide screens and much
smaller tablets in the 7” to 8” range used in the portrait mode.

Mobile device manufacturers have, and continue to, em-
brace hardware diversity. To convey the degree of screen-
level fragmentation amongst off-the-shelf mobile devices, we
data mine gsmarena.com [2] for mobile device screen
parameters. Across the 1670 different Android-based mobile
devices that we found, Fig. 3b shows that their screen sizes are
diverse, ranging from the 2.55 inch Sony Ericsson Xperia X10
Mini smartphone to the 13 inch Toshiba Excite 13 tablet. An
outstanding majority of the mobile devices in our data set are
smartphones that are typically used in portrait mode. However,
the distribution of screen sizes are uniformly distributed since
the screen size linearly increases as more smartphones are
included in the zero to about twelve hundred. The rest of the
mobile devices correspond to tablets that are split between the
default portrait and landscape modes.

Screen size and orientation fragmentation complicate cross-
platform record and replay because they rely on form-factor
specific Cartesian coordinate systems. Mobile display coor-
dinate systems originate in the top-left corner of the display
in its default orientation. For many applications, devices with

ABS_MT_TOUCH_MAJOR

ABS_MT_TOUCH_MINOR

( ABS_MT_POSITION_X, ABS_MT_POSITION_Y)
 ABS_MT_TRACKING_ID  1
 BTN_KEY DOWN
 ABS_MT_POSITION_X  1152
 ABS_MT_POSITION_Y  486 
 ABS_MT_TOUCH_MAJOR  16
 ABS_MT_TOUCH_MINOR  8
 ABS_MT_PRESSURE 7
 SYN_REPORT

Event Packet

Fig. 2: Example finger press and the event sequence that it generates.

different form factors must have the same display orientation
to exercise the same behavior. Fig. 3a shows an example for
Angry Birds on a tablet and smartphone. The tablet remains in
its default landscape orientation, while the smartphone has to
be rotated away from its default portrait orientation to play
the game. While the two devices share the same physical
screen orientation, their coordinate systems are no longer in
sync with one another. The smartphone’s origin has moved
from the top-left to the bottom-left corner. Mapping user
interaction coordinates between the two devices cannot just
simply be scaled to work. Pulling back the slingshot on the
Qualcomm MDP tablet requires a simultaneous decrease and
increase in x and y touchscreen coordinate whereas the rotated
Samsung Galaxy S5 origin requires a simultaneous decrease
in both the x and y touchscreen coordinates instead.

Screen Resolution — While the most visible form of
Android fragmentation is screen size, due to diverse consumer
demands Android devices are also available in different screen
resolutions. Over time, mobile device display technology has
improved to provide higher resolution screens. Fig. 3c provides
a snapshot of the different of mobile display resolutions on the
market based on our mined mobile device display information.
Each marker corresponds to a resolution configuration where
the x-and y-axes correspond to the pixel widths for the
horizontal and vertical dimensions of the display in the mobile
device’s default orientation. For example, the Qualcomm MDP
Tablet and the Samsung Galaxy S5 smartphone in Fig. 3a
would be at points (1920, 1200) and (1080, 1920), respec-
tively. The clustered points in the bottom left quadrant of the
figure correspond to smartphone display resolutions and the
more sparse points in the top left and bottom right quadrants
correspond to portrait and landscape tablets, respectively.

Mobile device screen coordinate systems are typically
thought of in terms of display pixels. So regardless of how
the applications are programmed, UI element shapes and their
positioning is ultimately finalized on to the display in the form
of pixel occupancy. The same application on two different
systems may differ in the number of pixels to place and fill
for each of its different UI elements. Applications that follow
popular design patterns that embrace relative positioning and
sizing, such as grid-, fluid- and responsive-based methodolo-
gies, will scale the same across devices, but their UI elements
will be located at different pixel points on the screen.

The challenge with deterministically replaying user inter-
actions recorded on one device onto another device with a
different resolution is that application UI elements can some-
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Fig. 3: Understanding mobile device fragmentation, involving screen sizes, coordinates, orientations, quantization, and resolution.

times be pixel-dependent. Simply recording the user interaction
locations for one device and mapping those points to another
device with a different resolution will not work because the
UI elements will be different on the target UI. For example,
Pinterest, the visual discovery tool will display more content
on tablets than smartphones. We find that application UIs tend
to cluster by form factor. As long as devices mapped to one
another share (or emulate) similar form factor resolutions, user
interactions can be mapped between one another.

Touchscreen Quantization — While the UI is expressed in
terms of pixels, user interaction is captured through touch-
screen events. Therefore, porting user interactions across de-
vices relies on correctly mapping touchscreen coordinates be-
tween the different devices. Naively mapping user interactions
at the pixel level does not guarantee portability.

User touchscreen events are generated by converting user
finger positions into discrete values that can be processed
by the system. The process is known quantization, and the
mobile device’s touchscreen technology determines the quality
and impact of the quantization. In some cases, the screen’s
quantization matches the screen resolution perfectly, but that
is not always the case. Because quantization is not always
coupled with resolution, without a clear connection from
one device to another, fragmentation at the quantization level
posses a major obstacle for cross-platform portability.

Mobile devices do not always have the same touchscreen
quantization as resolution. While the Qualcomm MDP tablet
and Samsung Galaxy S5 smartphone in Fig. 3a each have
quantizations that match their screen resolutions, several of
the devices we studied do not. For example, one of the devices
has a 1920x180 resolution, but had a 4095x4095 quantization,
which is beyond any resolution found in a mobile device today.

C. Android Software Fragmentation
Software fragmentation also impedes cross-platform user

interaction record and replay capabilities. Device manufac-
turers update devices with new drivers and operating system
versions that can affect how touchscreen events are handled by
the device and also whether or not other device buttons, such
as menu buttons, are virtualized on the device.

Touchscreen Driver — The touchscreen driver communi-
cates the touchscreen’s state to the operating system. Different
touchscreen models communicate state in different ways. In
addition, the range of information that a touchscreen driver
can potentially, but is not guaranteed to, produce forces the
operating system to focus on a subset of possible touchscreen
states to identify user interactions. Some touchscreens contain
hardware support for the multitouch protocol while others
depend on the driver to track the activities of different fingers.
The way the operating system interprets these events can

change over time which impacts cross-platform portability.
Touchscreen driver activity varies across Android devices.

We performed a one finger swipe interaction across 26
physical Android devices. While performing the interaction
on each phone, we collect touchscreen driver events through
the Android getevent utility. We extract the first event
packet corresponding to finger’s initial contact with the screen
and present the results in Fig. 4. Each row corresponds
to a phone’s touchscreen event packet and each column
corresponds to a Linux touchscreen event. A dark blue
tile indicates that that column’s event was present in
the device corresponding to that row. For example, the
second device’s event packet contains the BTN_TOUCH,
ABS_MT_TOUCH_MINOR, ABS_MT_POSITION_X,
ABS_MT_POSITION_Y, ABS_MT_TRACKING_ID, and
SYN_REPORT events. The diversity amongst event packet
contents limits portability across different devices.

Application Framework Version — Key decisions about
Android’s software architecture can change throughout oper-
ating system versions. These continuously evolving changes
can even restrict recording touchscreen user interactions on
one system and later replaying them on a similar device with
a different Android version. For example, some systems are
sensitive to whether the BTN_TOUCH event is present. Looking
at the application framework source code between different
Android versions, we find that different versions can expect
different events from the touchscreen driver. Others have also
reported similar experiences [3]. Additionally, vendors have
access to the Android source code, which allows them to make
modifications specific to the components they use.

Virtual Soft Keys — Many Android mobile device man-
ufacturers choose to virtualize standard Android buttons on
the device display instead of providing a physical button. For
example, Fig. 3a shows that the MDP tablet uses virtual keys
while the Samsung Galaxy S5 has hardware keys that are
separate from the display. Virtualized keys use screen real
estate to provide soft menus, which would have otherwise been
available for the application to use. It implies that some of the
quantization points for the touchscreen map correspond to the
virtual keys, and as such record and replay needs to take this
into account to ensure cross-platform portability.

III. MOSAIC DESIGN
We present the design and implementation of Mosaic, a

cross-platform user input record and replay tool for Android.
To overcome the fragmentation issues discussed in the previous
section, Mosaic provides portability through virtualization.
User inputs are captures on a host device which is then
virtualized into a platform-agnostic intermediate representation
which can then be retargeted for specific mobile devices.
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Fig. 4: Measured touchscreen driver fragmentation for finger press.

A. Formalizing Touchscreen Interactions
Mosaic abstracts touchscreen-specific input events into a

set of user interactions on a virtualized touchscreen. To per-
form this conversion systematically we develop a formalization
for touchscreen input events. Interactive mobile applications
rely on user input (i.e. interactions) to drive program be-
havior. More formally, we denote this set of interactions
as {I1, I2, ..., IN}, where an arbitrary Ij corresponds to an
individual interaction primitive – to be defined later.

While the touchscreen driver propagates user input infor-
mation as individual events, we make the observation that the
touchscreen implicitly packetizes these events into user interac-
tion primitives. The Linux /dev/input/event/ interface
terminates a sequence of events with a SYN_REPORT event
delimits different user inputs. Therefore, we define any arbi-
trary interaction primitive Ij as a set of events {e1, e2, ..., eN},
where EN is the only SYN_REPORT event in the set. There-
fore, Mosaic relies on SYN_REPORT to identify interaction
primitives throughout the sequential touchscreen event stream.

We identify three user interaction primitives that serve
as Mosaic’s platform-agnostic user interaction intermediate
representation. The primitives consist of a finger press, release
or movement. A finger initiates an interactions sequence when
it first makes begins to press the touchscreen. Conversely,
once the finger ceases to contact the touchscreen a release
has occurred, terminating the finger’s interaction sequence. In
between the press and release, the finger may move across the
touchscreen depending on the behavior (e.g. a swipe or pinch).

Our selection rationale for the primitives can be
explained by the event packet diversity within Fig. 4.
Across all the devices, a few key events are consistently
hot: ABS_MT_POSITION_X, ABS_MT_POSITION_Y,

ABS_MT_TRACKING_ID, and SYN_REPORT. Intuitively,
these four events suggest that there is some minimal amount
of state that is encapsulated within a finger press. The
ABS_MT_TRACKING_ID event indicates a new finger
interaction session and SYN_REPORT delimits each finger
interaction packet within that session. Finger presses happen
at specific touchscreen locations which are tracked using
ABS_MT_POSITION_X and ABS_MT_POSITION_Y. We
make similar observations for other user interactions and thus
deem that several user interactions can be succinctly and
portably captured in the form of a few interaction primitives.

B. Calibration and Training
Different interactions consist of different touchscreen

events on different platforms. In order to classify a particular
device’s touchscreen interaction set, {I1, I2, ..., IN}, into the
platform independent primitives (i.e., presses, releases and
moves), Mosaic requires a device calibration phase. Mosaic
prompts the user to execute a sequence of known, well-defined
user interaction sequence to extract relevant device parameters
required for virtualization and translation.

Mosaic prompts the user to perform a known user interac-
tion in a controlled manner to identify events that are unique to
presses and releases. In our implementation, the user performs
a single finger swipe with the device in its default orientation
(e.g. portrait for smartphones and landscape for large tablets).
This results in a set of user interactions, {I1, I2, ..., IN} where:

Press = I1 (1)

Release = IN (2)

Move = ∪N−1
j=2 Ij (3)

which are used to isolate:

UniquePress = Press−Release−Move (4)

UniqueRelease = Release− Press−Move (5)

In addition, Mosaic uses the Android dumpsys utility to
probe the device for its default orientation, display resolution
and touchscreen quantization information, which will be used
throughout the remainder of the record and replay framework.

We demonstrate the calibration phases as part of the end-to-
end translation example in Fig. 5, shown in the “Calibration”
column. Before recording the interactive trace for a slingshot
pull within the Angry Birds gaming application, the source and
target devices are calibrated. The Samsung Galaxy S5 (source)
and Asus Nexus N7 (target) have different raw event streams
that express the same interaction primitives.

The single-swipe calibration for the Samsung Galaxy S5
(source) results in 17 touchscreen events belonging to five
distinct interactions, separated by each SYN_REPORT. The
first seven events correspond to the Press and the last
three events correspond to Release, leaving the middle
seven events as Move. Applying equations (4) and (5)
produces UniquePress = {ABS_MT_TRACKING_ID
BEGIN, BTN_TOUCH DOWN} and UniqueRelease =
{ABS_MT_TRACKING_ID_END, BTN_TOUCH UP}, which
are propagated to the virtualization stage. The same processes
is performed for the Asus Nexus N7 (target) for translation.
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Fig. 5: An example showing the different phases of Mosaic’s execution. Calibration allows Mosaic to extract key device specific parameters to
enable cross-platform portability. It is an application independent phase that needs to be done only once per device under test. From thereon,
users can record any application interactivity. Recording is transparent to the user. The virtualization and translation phases are behind the
scenes’ Mosaic phases that transform the platform specific trace into a platform independent trace that be replayed on any other device.

C. Recording
Mosaic records a user input event stream by filtering the

output of the Android getevent utility. getevent dumps
a human-readable form of the event structs being streamed
to Linux /dev/input/event/ interface. Each event is
a pentuple consisting of (timestamp, input device,
type, code, value). Mosaic ignores the input devices
that do not correspond to the touchscreen. The result is
a file that contains a sequential stream of touchscreen in-
put events timestamp type code value appended to
device metadata related to the state of the mobile device
throughout the recording. The “Record” column in Fig. 5
shows a simplified version of the touchscreen user input trace
for the Angry Birds slingshot pull on the S5.

D. Virtualization
To provide portability amongst various target devices, Mo-

saic converts the user touchscreen input events from the source
device into primitive interactions (i.e., press, move or release)
on a virtual display. The primitive interactions are stored
as a platform-agnostic representation that also can be used
as a domain-specific language for scripting user interactions,
similar to Orangutan [4] with the following syntax:

time finger <N> <interaction> [[x] [y]]

Where N is a particular finger (Android supports up to
five) that can interact with the screen through one of the
three primitive user interactions. The x and y arguments
are expressed as normalized distances (percentages) from the
origin (e.g., top-left corner) of the virtual display. Mosaic
classifies a recorded interaction Ij as follows (an α of 3

4
worked well for us):
• Press: if |UniquePress ∩ Ij | > α|UniquePress|
• Release: if |UniqueRelease∩Ij | > α|UniqueRelease|
• Move: otherwise

Interactions parameters (i.e., coordinates) are mapped to a
virtual screen that shares the same orientation as when the ap-
plication usage scenario was recorded. Depending on whether
or not the application was used in its default orientation, the
coordinate mapping from the source device may have to be
transposed to align the target device’s origin with the virtual
screen’s orientation. In addition, the interaction coordinates are
normalized to their maximum values.

We demonstrate how the Angry Birds usage scenario
is virtualized within the “Virtualization” column of Fig. 5.
The UniquePress and UniqueRelease identified during
the “Calibration” phase are used to identify the four inter-
actions within the recorded S5 touchscreen trace. Similarly,
the device parameters found during the calibration and record
phase are used to identify if the device had been rotated
and compensate the interaction parameters accordingly. In this
case, the Samsung Galaxy S5 has a portrait default orientation
whereas Angry Birds is meant to be used in a landscape
oriented devices. Mosaic detects that the device was rotated
in compliance with Angry Birds user interface requirements.

As a result, the two move interactions correspond to
different axis in the recorded trace than in the virtualized user
interaction trace. The first move was recorded as a movement
along the y-axis since the device was rotated, but was vir-
tualized to be a move across the x-axis on the virtualized
landscape display. Any interactions that involve coordinates
are normalized to their maximum values to be expressed as a
percentage of the virtual display.

E. Translate
Translation is the inverse of the virtualization phase. It

maps the virtualized interaction trace into a stream of touch-
screen events for the target device. Mosaic interprets each
virtualized interaction into a packet of touchscreen events that
correspond to the events that were observed in the target’s
calibration phase. Mosaic detects whether or not the target

6



TABLE II: Evaluation devices that exhibit fragmentation from one another.

Device (Key) Form Factor Screen Size Default Orientation App Resolution Total Resolution Quantization Soft Menu OS Version

Samsung Galaxy S3 (SGS3) Smartphone 4.8” Portrait 720x1280 720x1280 720x1280 No 4.1.2

Samsung Galaxy S4 (SGS4) Smartphone 5” Portrait 1080x1920 1080x1920 1079x1919 No 4.2.2

Samsung Galaxy S5 (SGS5) Phablet 5.1” Portrait 1080x1920 1080x1920 1079x1919 No 4.4

Asus Nexus 7 (AN7) Vertical Tablet 7” Portrait 1920x1104 1200x1920 1343x2239 Yes 4.4

Qualcomm MDP (QMDP) Horizontal Tablet 10” Landscape 1920x1032 1920x1080 1920x1080 Yes 4.2.2

SVTronics OMAP5 EVM (SO5-DEV) [5] Dev. Board 24” Landscape 1280x672 1280x720 1280x720 Yes 4.2.2

Olimex A20-OLinuXino-MICRO (A20-DEV) [6] Dev. Board 24” Landscape 1280x564 1280x720 1280x564 Yes 4.2.2

Asus Nexus 7 – Emulator (AN7-EMU) Emulator 7” Portrait 1920x1104 1200x1920 1343x2239 Yes 4.4

Google Nexus 10 – Emulator (N10-EMU) Emulator 10.55” Landscape 2560x1600 2560x1600 2560x1504 No 4.4.2

device screen will have to be rotated, transposing the interac-
tion coordinates if necessary. The normalized coordinate values
from the virtualized interaction trace are then scaled by the
maximum value for each event on the target device.

The “Translation” column of Fig. 5 shows the steps that are
involved for translating the virtualized interaction trace to the
Asus Nexus N7. The parameters taken from the device during
the calibration phase are used to create templates for the set of
touchscreen events that correspond to each interaction. Each
press roughly maps to the Press events and to Release events
for a release. A move event maps to updating an x and/or y
coordinate with a SYN_REPORT appended to it.

F. Replay
Mosaic relies on a client-side component to inject user

interactions into the target device. In its current form, Mosaic
utilizes an in-house, optimized version of the replay unit from
the RERAN [18] framework, which is essentially a write queue
for /dev/input/event/ that preserves timing by sleeping
between writes. Mosaic generates the touchscreen event input
sequence for the target platform and passes it to the RERAN
replay utility, which writes the events to the touchscreen’s
/dev/input/event/ file.

G. Limitations
As with any tool, Mosaic has limitations. Mosaic’s guaran-

teed functionality relies on three basic assumptions about the
applications and platforms on which it can record and replay.

First, an application usage scenario can only be replayed
accurately if the application itself delivers repeatable behav-
ior. Application UIs that are either time-variant or random
may require different user inputs the original recording. For
example, recording a user completing the daily New York
Times crossword puzzle has a lifespan of one day, since there
will be a different puzzle displayed the following day. Many
other puzzle-based games such as Sudoku or multi-player first-
person shooter games exhibit randomness as well.

Second, Mosaic maps interaction coordinates between plat-
forms using a series of transposes, scalings and normalizations,
which relies on the target UI elements positioning to scale
linearly with screen dimensions in a given orientation. While
many applications abide by this, some application rescale,
rearrange and even omit UI elements based on the screen
resolution. For example, some manufacturers deviate from
the default Android touchscreen keyboard for their devices to
add additional keys. Since Android allows users to download

customized keyboards, a solution would be to download the
same scalable keyboard across the devices under study.

Third, in order for an application to be replayed correctly
across platforms, the target platform’s performance must be
fast enough to make the UI components available in time for
the replayed user interactions. As an application is interacted
with, UI elements may appear or views may change, and these
must be completed in time to exercise the same functionality
across different mobile devices. In general, with the exception
of old smartphone devices that are extremely slow, Mosaic is
able to provide robust cross-platform portability on this issue.

IV. EVALUATION
Mosaic provides cross-platform portability for user interac-

tions across a range of devices, operating system environments,
user record and replay inputs. Mosaic works across a range of
different device that have different screen sizes, resolutions,
features etc. We test Mosaic on eight different platforms,
including off-the-shelf smartphones and tablets, development
boards and emulators. We tested over 50 applications found on
the Google Play application marketplace, using different users
and use-case scenarios. Under the previously stated application
assumptions, Mosaic provides robust replay functionalities. As
with any tool, it has shortcomings that could be overcame
with more effort. Nonetheless, Mosaic and its source code will
be made freely available online to be used and extended as
developers and researchers see fit.

A. Experimental Setup
To effectively evaluate Mosaic’s cross-platform record and

replay capabilities, we selected a diverse set of Android mobile
devices that reflect the fragmented Android ecosystem. These
devices are shown in Table II. The selected devices exhibit
significant hardware- and software-diversity from another. The
device screen sizes range from 4.8” to 10.55”, falling into all
four mainstream mobile device form factor categories: smart-
phones, phablets and vertical and horizontal tablets. Similarly,
screen resolution and touchscreen quantization are also broad.

Our selected mobile devices also exhibit different software
characteristics that can impact record and replay. The latest
three Android operating systems, at the time of writing, are
present across our device set. The tablets also posses soft,
virtual keys, such as menu and back buttons, that occupy a
portion of the screen and touchscreen.

We also consider emulators and development boards for
our evaluation because systems have emerged that incorporate

7



TABLE III: Mosaic on Angry Birds running on fully featured off-the-shelf mobile devices.

(a) Mosaic features fully enabled.

Replay

R
ec

or
d

SGS3 SGS4 SGS5 AN7 QMDP

SGS3 3 3 3 3 3

SGS4 3 3 3 3 3

SGS5 3 3 3 3 3

AN7 3 3 3 3 3

QMDP 3 3 3 3 3

(b) Mosaic without coordinate remapping.

Replay

R
ec

or
d

SGS3 SGS4 SGS5 AN7 QMDP

SGS3 3 5 5 5 5

SGS4 5 3 3 5 5

SGS5 5 3 3 5 5

AN7 5 5 5 3 5

QMDP 5 5 5 5 3

(c) Mosaic without touchscreen event remapping.

Replay

R
ec

or
d

SGS3 SGS4 SGS5 AN7 QMDP

SGS3 3 5 5 3 5

SGS4 3 3 5 3 3

SGS5 3 3 3 3 3

AN7 3 5 5 3 5

QMDP 3 3 3 3 3

architectural simulators into the mainstream Android Open
Source Project (AOSP) simulator [17]. Similarly, development
boards are increasingly being used in computer architecture
research due to the ease of instrumentation, and also because
more information is publicly available about them. We use the
emulation software to represent the Asus Nexus 7 tablet and
Google Nexus 10 tablet. We also evaluate these devices in their
native hardware form.

B. Coordinate and Interaction Mapping Sensitivity Analysis
We use the popular Angry Birds application and use

it to demonstrate the important aspects about Mosaic. In
particular, to reinforce our claim that fragmentation between
both touchscreen coordinates and touchscreen event packets
affects record and replay, we conduct a sensitivity analysis
on the application. Table IIIa shows the results for recording
and replaying Angry Birds across all our smartphone devices.
The first row denotes the device on which the interaction was
originally recorded on and the first column indicates the device
on which the trace was replayed on with Mosaic. A (green)
cell with a “3” indicates a successful replay and a (red) cell
with a “5” is a failure. All interaction recordings and replays
across the entire device set are successful. We now reduce
the Mosaic functionality to see how cross-platform record and
replay is affected with coordinate and event remapping.

Touchscreen Coordinate Remapping — Remapping user
interaction points across devices is important for Mosaic’s
ability to perform cross-platform record and replay. Table IIIb,
arranged in a similar fashion as Table IIIa, shows how suc-
cessful Mosaic is without mapping coordinates between the
same devices; retaining the original device’s unvirtualized
coordinates instead. The diagonal “Y” shows that devices
only replay an application with themselves without coordinate
remapping. The exception to this is SGS4 and SGS5 because
they share the same resolution and touchscreen quantization.

Touchscreen Events Remapping — Touchscreen driver dif-
ferences between devices also affect cross-platform record and
replay. Table IIIc shows the results of using Mosaic with-
out remapping the target device’s touchscreen event packets
discovered in the calibration phase. The SGS5 and QMDP
touchscreen packets provide the most information which other
devices can salvage. Contrapositively, the SGS3 and AN7
do not require a lot of touchscreen state to identify a user
interaction, allowing many device inputs to map to them.

C. Application Record and Replay
Mosaic allows many popular Android applications to be

recorded and replayed across a variety of mobile devices.
We downloaded over 50 free applications from Google Play
and report the applications we are able to record and replay

across two of the mobile devices in Table IV. The applications
include a wide distribution of applications such as games,
social networking, news, readers, image editing and utilities.

We are able to replay 45 of the downloaded applications.
Applications that were not replayable across platforms were
mainly due to the limitations/assumptions outlined in Sec. III.
For example, applications such as Candy Crush and Fruit
Ninja, generate dynamic content that prevents the same user
inputs from driving the same application behavior. We explored
several cross-platform combinations of record and replay using
real users. For instance, we took traces from SGS3 and ran it
on the AN7, and vice versa.

To avoid user-specific bias, we had different users exercise
different applications. For instance, two individuals might have
different finger swipes, touches, etc. Thus, we tested Mosaic
against user-specific gesture behavior. We had five users use
the applications to exercise Mosaic with different human
behavioral patterns, which leads to different event packet types.

We also took traces on development boards and emulators
and ran them on real hardware, and vice versa. However, we
faced some additional technical obstacles – some of which we
resolved and some which are still open problems. The SO5 and
A20 development boards do not have touchscreens so we had
to extend Mosaic to add support for the mouse input protocol.
We were able to successfully record traces on the AN7-EMU
and N10-EMU emulators and replay them on mobile devices,
but were not able always able to do the converse. The emulator
system clocks use the host system’s clock instead of emulating
system time which affects the playback accuracy. For similar
reasons, the emulator is not able to process drags interactions.
We feel that this problem can be solved either by modifying
the virtual interaction trace to align with events in the emulator
or for the emulator expose a separate system clock that can be
used for injecting user interactions.

D. Replay Overhead Analysis
There are two sources of potential overhead. The first

is during recording. We did not observe any “jank” [7] in
user interactions during our recording. The second source of
overhead stems from replaying the recorded trace. We measure
the replay overhead for ten of the applications shown in Ta-
ble IV, denoted with an asterisk. The overhead is always less
than 0.2% except for Flashlight, which is 0.645%. The
overhead is more because of the cold start penalties. Flashlight
runs for a very short time, and therefore the program startup
overhead cannot be sufficiently amortized. Nevertheless, it is
negligible and does not affect user experience during replay.

There is a small amount of replay memory overhead. The
replay mechanism relies on a pre-existing event injection tool
(replay.c from RERAN), which pre-allocates memory for
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TABLE IV: List of 45 popular applications from Google Play that we were able to successful replay across devices.

Adobe Reader* Angry Birds* Big Fish Casino Bingo Fever - World Trip Bingo - Secret Cities
Bubble Bee Bubble Blaze Bubble Witch Saga 2 Chase Chrome*
Clash of Lords 2 Clean Master Coin Dozer Destiny DH 2014
Diamond Digger Saga Dolphin Browser Five Nights at Freddys Flashlight* Flipagram
Google Play Newsstand Hill Climb Racing* iHeartRadio Instagram Jump Ninja
Legend of Master Online Messenger Minion Rush MonsterWarlord News & Weather
Firefox Photo Grid Piano Tiles Slotomania Slots Fever
Slots - House Of Fun Solitaire Spider-Man Steel Avengers Temple Run 2*
Tycoon Mania Video Poker Walmart WatchESPN YouTube*

all the events that need to be replayed in the translated file, just
prior to execution. The amount of memory allocation varies
from one run to another, since it depends upon the number of
events in the translated file. In practice, however, we found that
this does not affect performance in any noticeable manner. The
average memory overhead is approximately 5.5 KB, which is
negligible compared to the overall application code footprint.
In total, the memory overhead is much less than one percent.

V. EXAMPLE USE CASE: MICROARCHITECTURE-LEVEL
PERFORMANCE COMPARISON

Recent mobile CPU design trends have begun to embrace
heterogeneity. For example, ARM big.LITTLE technology
pairs brawny “big” high-performance cores with weak “little”
low-power cores to provide balanced multi-core CPU designs.
In general, the big cores are meant to be used in situations
where they significantly outperform little cores. Otherwise
little cores are preferred to conserve battery life. Therefore
it is important to know when an application can benefit from
big cores because they waste energy compared to little cores.

In order to perform our analysis, we need to use Mosaic
to collect a realistic user trace from a mobile device to study
it with our experimental infrastructure. We recorded a user
navigating to and playing the first level of Angry Birds on the
SGS5 that we replayed on the SO5-DEV and A20-DEV devel-
opment boards. The SGS5 allows us to capture a realistic user
interaction trace which was not possible on the SO5-DEV and
A20-DEV that use mice and monitors instead of touchscreens.
We have to use the development boards for our study because
the CPU hardware performance counters and superuser (root)
access is disabled on the SGS5, which is standard practice for
mobile device manufacturers. We recompile Android (4.4.2)
for each development board to enable hardware performance
counters to be monitored through the ARM Streamline [8] tool.

We did not have access to a single heterogeneous CPU to
conduct our experiments on so we study each CPU separately
using the methodology in [25]. Our experiment considers the
SO5-DEV’s ARM Cortex-A15 CPU as the big cores and the
A20-DEV’s ARM Cortex-A7 CPU as little cores. A15’s and
A7’s are a common heterogeneous CPU pairing, including the
SGS4 and SGS5 we use in our study. We use instructions-
per-second (IPC) as our responsiveness metric because it
portrays how efficient each microarchitecture is for executing
the interactive episode. The A15 is a dual-core processor, each
with a triple-issue, out-of-order superscalar 15-stage pipeline.
The L1 I- and D-caches are each 64 KB and the L2 cache is
2MB. The A7 is also a dual-core processor, but each core
consists of a dual-issue, in-order 8-stage pipeline. The L1
cache parameters are the same as the A15 but the L2 cache

is only 512KB. The A7 and A15 are clocked at 1 GHz
and 912 MHz, respectively, which are the closest frequency
configurations available, on each.

Our results show that the A15 notably outperforms the A7
throughout the Angry Birds interaction trace. This suggests it
is worth expending the extra energy to use the A15 over the
A7 in order to maximize responsiveness. Although the A15
was configured to be clocked slightly higher (9.6 %) than the
A7, Fig. 6a shows its IPC is 3X the A7’s IPC. Fig. 6b provides
a more in-depth look at why the A15 easily surpasses the A7’s
performance. The A15 has a 4X lower branch misprediction
rate than the A7’s branch predictor, allowing the program to
feed the A15’s triple-issue width and out-of-order pipeline. The
A7 has slightly higher L1 I- and D-cache miss rates than the
A15. The resultant pressure on A7’s L2 cache along with its
modest sizing compared to the A15, cause the A7’s L2 cache
to have a 5X higher miss rate than that of the A15 – making
it a major microarchitectural bottleneck.
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Fig. 6: Using Mosaic to perform a microarchitecture-level
performance analysis between ARM Cortex-A processors for
Angry Birds under the same user interaction sequence.

VI. PRIOR WORK
We discuss prior work related to record and replay, es-

pecially in regard to UI-level replay for Android devices.. We
focus on UI testing and automation tools and how they interact
with the Android input architecture in Fig. 1.

User-level UI Testing — Many developers and researchers
test and study interactive mobile applications manually. Either
they will test mobile application behavior or outsource the
work to a third party. The advantage of this approach is
that it is representative of real user behavior for the device
under test since real humans are utilizing the application.
However, humans react in terms of tens of milliseconds [19],
while computer systems operate on the order of micro and
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nanoseconds. For the same functional use case, there can be
significant variation amongst users and across runs which can
affect the soundness of experimental data.

Kernel-level Replay — Compared to other kernel-level
application record and replay tools, Mosaic is the only one
to able to be cross-platform. RERAN [18] is able to record
and replay all many sensor inputs for a particular; however,
the replay is tightly coupled to the phone it was derived from.
It does not alter the input event stream to enable portability
across platforms. Similarly, Orangutan [4] is a touchscreen
event interpreter where the developer writes a script and
passes it to a run-time to execute on a target platform. The
parameters such as interaction coordinates must be known by
the developer. However, Orangutan does attempt to adapt its
inputs to targets by toggling between Linux touch and multi-
touch protocols. While this extends it’s reach, Orangutan is
not able to detect and handle subtle event-level differences
between all machines based on our experimental experience.

Application-level Replay — Google provides the uiautoma-
tor [9], monkeyrunner [10] and espresso [11] testing frame-
works. uiautomator is a JUnit-based application testing frame-
work. Monkey runner allows a developer to externally exercise
an application. It is also capable of injecting events, but its
coordinates must be known to the developer. Robotium [12]
and Selendroid [13] are two other popular application testing
frameworks derived from the Selenium web browser automa-
tion tool [14]. These frameworks hook into the application
source code, which is not always available for several top
applications. Mosaic does not require source code changes.

Computer System Record and Replay — In the traditional
computer system and architecture research community, deter-
ministic record and replay has been extensively studied in the
context of shared memory multithreaded programs. The goal
is to deterministically reproduce the same (or similar) thread
or memory interleaving across different program executions to
ensure program reliability [16], [21], security [20], and debug-
gability [22], [23]. The corresponding techniques often target
background or batch processing applications and benchmarks,
such as PARSEC [15] and SPLASH [24].

Mosaic has an altogether different target and goal. It targets
mobile applications that are often highly interactive and user-
facing and aims at reproducing the same user interactivity,
which is essential to conduct mobile system research more
effectively. Since Mosaic operates at the user input event level,
it has much lower performance overhead (<0.1%) and storage
overhead (<5.5 KB) as compared to system-level record and
replay tools, which typically incur orders of magnitude perfor-
mance and storage overhead due to checkpoint and logging.

VII. CONCLUSION
Mosaic is a cross-platform, timing accurate user interaction

record and replay tool for Android. In a mobile devices
ecosystem consisting of tens of thousands of unique device
form factors, Mosaic’s unique virtualization scheme abstracts
away the hardware and software complexity related to user
input to replay user interactions across a variety of different
mobile devices. Mosaic can enable researchers and developers
to perform cross-device performance evaluations and analyze
different types of user interactivity. As the mobile device
ecosystem becomes increasingly fragmented to meet the di-
verse needs of users, the need for tools like Mosaic and will
become increasingly important.
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