
Software-assisted Hardware Reliability:
Enabling Aggressive Timing Speculation Using

Run-Time Feedback From Hardware and Software

A dissertation presented

by

Vijay Janapa Reddi

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2010

c�2010 - Vijay Janapa Reddi

All rights reserved.

Thesis advisors Author

David M. Brooks, Gu-Yeon Wei and Michael D. Smith Vijay Janapa Reddi

Software-assisted Hardware Reliability:

Enabling Aggressive Timing Speculation Using Run-Time Feed-

back From Hardware and Software

Abstract

In the era of nanoscale technology scaling, we are facing the limits of physics, chal-

lenging robust and reliable microprocessor design and fabrication. As these trends

continue, guaranteeing correctness of execution is becoming prohibitively expensive

and impractical. In this thesis, we demonstrate the benefits of abstracting circuit-level

challenges to the architecture and software layers. Reliability challenges are broadly

classified into process, voltage, and thermal variations. As proof of concept, we target

voltage variation, which is least understood, demonstrating its growing detrimental

effects on future processors: Shrinking feature size and diminishing supply voltage are

making circuits more sensitive to supply voltage fluctuations within the microproces-

sor. If left unattended, these voltage fluctuations can lead to timing violations or even

transistor lifetime issues. This problem, more commonly known as the dI/dt problem,

is forcing microprocessor designers to increasingly sacrifice processor performance, as

well as power efficiency, in order to guarantee correctness and robustness of opera-

tion. Industry addresses this problem by un-optimizing the processor for the worst

case voltage flux. Setting such extreme operating voltage margins for those large and

iii

Abstract iv

infrequent voltage swings is not a sustainable solution in the long term. Therefore,

we depart from this traditional strategy and operate the processor under more typical

case conditions. We demonstrate that a collaborative architecture between hardware

and software enables aggressive operating voltage margins, and as a consequence im-

proves processor performance and power efficiency. This co-designed architecture is

built on the principles of tolerance, avoidance and elimination. Using a fail-safe hard-

ware mechanism to tolerate voltage margin violations, we enable timing speculation,

while a run-time hardware and software layer attempts to not only predict and avoid

impending violations, but also reschedules instructions and co-schedules threads in-

telligently to eliminate voltage violations altogether. We believe tolerance, avoidance

and elimination are generalizable constructs capable of acting as guidelines to address

and successfully mitigate the other parameter-related reliability challenges as well.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
List of Figures . viii
List of Tables . xiv
Citations to Previously Published Work xv
Acknowledgments . xvi
Dedication . xix

1 Introduction 1
1.1 Challenges Facing Reliable Processor Design 3
1.2 Abstracting Circuit-level Challenges to Architecture 5
1.3 Extending Processor Efficiency Using Software 6
1.4 Contributions . 8
1.5 Impact . 13

2 Voltage Noise: Why It’s Bad and What to Do About It 16
2.1 Voltage Noise . 17
2.2 Why It’s Bad . 19

2.2.1 Worst-case Design Penalties 20
2.2.2 Area and Cost Implications 22
2.2.3 Limitations of Prior Work . 23

2.3 What To Do About It . 29
2.3.1 Tolerance . 31
2.3.2 Avoidance . 31
2.3.3 Elimination . 33

3 Tolerating Voltage Noise to Learn Activity Leading to Emergencies 36
3.1 Characterizing Voltage Droops and Overshoots 39

3.1.1 Changes in Current . 39
3.1.2 Effect of Stalls . 41

v

Contents vi

3.1.3 Workload Differences . 45
3.2 Exploiting Recurring Activity as Voltage Emergency Signatures . . . 47

3.2.1 Contextual Information . 49
3.2.2 Microarchitectural Events and Program Control Flow Interleaving 51
3.2.3 Repeatability and Stability . 52

3.3 Capturing Voltage Emergency Signatures 52
3.3.1 Emergency Detection . 53
3.3.2 Fail-safe Recovery Mechanism 53
3.3.3 Activity History Tracking . 54

3.4 Semantics of Voltage Emergency Signatures 56
3.4.1 Contents . 56
3.4.2 Size . 58
3.4.3 Coverage . 59

3.5 Accuracy of Voltage Emergency Signatures 60
3.5.1 Robustness . 60
3.5.2 Retargetability . 61
3.5.3 Lead time . 62

4 Avoiding Emergencies Using Voltage Emergency Signatures 64
4.1 Signature-based Throttling to Prevent Emergencies 66

4.1.1 Voltage Emergency Predictor 66
4.1.2 Feedback Mechanism . 69
4.1.3 Throttling Actuator . 70

4.2 Efficiency Comparison to Prior Work 70
4.2.1 Predictors . 73
4.2.2 Sensor-based Schemes . 74
4.2.3 Checkpoint-recovery . 76

4.3 Implementing a Voltage Emergency Predictor 77
4.3.1 Content Addressable Memory (CAM) 78
4.3.2 Bloom filter . 78
4.3.3 CAM Bloom filter . 80

5 Eliminating Emergencies via Hardware and Software Co-design 90
5.1 From Emergencies to Error-prone Code 93

5.1.1 Problematic Loops . 93
5.1.2 Emergency Hotspots . 96
5.1.3 Inter-thread Interference . 98

5.2 A Collaborative Architecture . 99
5.2.1 Emergency Tolerance . 101
5.2.2 Hardware Feedback to Software 102
5.2.3 Software Layer . 103

5.3 Compiler Code Transformations . 107

Contents vii

5.3.1 No Operation Injection . 108
5.3.2 Code Rescheduling . 108
5.3.3 Efficiency Comparison to Hardware-based Schemes 119

5.4 Operating System Thread Scheduling 132
5.4.1 Voltage Noise Phases . 133
5.4.2 Phase Scheduling . 135
5.4.3 Scheduling for Noise versus Performance 139

6 Conclusion 143

A Measuring Voltage Noise in Production Processors 148
A.1 Measurement and Validation . 149

A.1.1 Using Off-the-shelf Components 149
A.1.2 Comparing Impedance . 152

A.2 Determining the Worst-case Voltage Margin 154

B Framework for Evaluating New Techniques to Lower Voltage Noise155
B.1 Hardware Simulators . 158

B.1.1 Processor Microarchitecture 158
B.1.2 Power Consumption Model . 161
B.1.3 Power Delivery Subsystem . 162

B.2 Software Infrastructure . 163
B.2.1 Benchmarks . 163
B.2.2 Compiler . 164
B.2.3 Operating System Thread Scheduler 164

Bibliography 167

List of Figures

1.1 An abstract overview of exposing circuit-level reliability challenges to
the higher levels of execution. 3

2.1 Voltage within a processor fluctuates due to activity changes and in-
teractions between a running program and the processor’s underlying
power-delivery subsystem, as well its run-time microarchitectural be-
havior. 19

2.2 Designers use a power virus to determine the worst-case voltage swing. 21
2.3 Worst-case margins limit peak operational frequency, and the problem

is getting worse as technology trends are scaling. 22
2.4 Processor designers rely on on-chip and package capacitance to keep

the maximum amount of voltage swing within some reasonable bounds.
This increases the cost of a chip, as well as requires valuable space. In
the future, with increasing swing levels, both these resource require-
ments will have to increase. 23

2.5 Cumulative distribution of voltage samples on a real production chip
for several hundreds of benchmarks. All samples appear to fall within
a 3% range, indicating that an aggressive voltage margin such as 4%
would suffice under typical case operation conditions. However, the
worst-case voltage swing is as large as 12%, indicating a fail-safe mech-
anism is necessary. 24

2.6 Sensor-based throttling. (a) A feedback loop is intended to detect and
prevent emergencies. (b) Aggressive soft thresholds allow too little
time to prevent emergencies. (c) Conservative soft thresholds trigger
unnecessary throttling. 26

viii

List of Figures ix

2.7 Implications of feedback loop delay and soft threshold settings on cor-
rectness and performance. (a) A large percentage of emergencies are
not detected early enough to prevent them due to feedback loop de-
lays. (b) Even assuming a 0-cycle feedback loop delay, the number of
soft threshold crossings that are not followed by emergencies (i.e., be-
nign crossings) is so large that performance suffers due to unnecessary
throttling. 28

2.8 A co-design architecture to mitigate voltage noise that uses both hard-
ware and software to tolerate, avoid and eliminate voltage emergencies. 30

3.1 (a) Voltage droop in a Intel CoreTM2 Duo processor when the processor
is reset. A reset signal causes a large voltage droop, since current
rapidly jumps from some nominal value to zero and back up. This
leads to a voltage droop because of the impedance in the power delivery
network. (b) A similar reset test with no package capacitors to protect
against voltage drops causes a much larger voltage droop that prevents
the processor from startup because of timing violations. 41

3.2 Snapshots of voltage within the processor, as we execute microbench-
marks that stall processor activity every few cycles, leading to voltage
swings. 42

3.3 Peak-to-peak voltage swing analysis because of microarchitectural events
that cause sudden stalls within the processor. These results are relative
to an idling system. 44

3.4 Voltage droop characteristics of different programs. The figure illus-
trates that the noise characteristics of programs vary based on their
behavior, which we capture with various hardware counters (see Ta-
ble 3.2). 47

3.5 Voltage emergencies are associated with recurring activity (phases A,
B and C) over 880 cycles. The numbers next to the vertical bars in
the Flush graph correspond to the basic block number in Figure 3.6
containing the mispredicted branch. 49

3.6 An emergency prone nested-loop in function init regs of benchmark
403.gcc. init regs’s activity snapshot is shown in Figure 3.5. 50

3.7 Event history register for tracking the interleaving sequence of program
control flow and processor events. A voltage emergency signature is a
snapshot of the register when an emergency occurs. 55

3.8 Overview of voltage emergency signatures. Taking snapshots of a 4-
entry event history register for emergencies illustrated in Figure 5.6
across phases A, B and C. 56

3.9 Prediction accuracy improves as (a) signature contents represent ma-
chine activity more closely and as (b) the number of entries per signa-
ture increases. 58

List of Figures x

3.10 The number of new emergency signatures we discover over time (Compulsory
Misses) is decreasing, which indicates that signatures are recurring. . 60

3.11 In order to evaluate the robustness of voltage emergency signatures
we ran several benchmarks, including all the different input data sets
provided by Spec for the CPU2006 benchmark suite. We find that
the prediction accuracy of voltage emergency signatures consistently
remains high across very different program types. 61

3.12 The predictor sustains high prediction accuracy across different of
power delivery packages and microarchitecture combinations. 63

3.13 The predictor predicts emergencies with sufficient time to actuate a
throttling mechanism to avoid an impending emergency. 63

4.1 Overview of our voltage emergency predictor. The predictor relies
on code and microarchitectural event activity (i.e., voltage emergency
signatures) instead of current and voltage activity as prior schemes do
to decide when to throttle. It is trained using a fail-safe checkpoint-
recovery mechanism. 66

4.2 The voltage waveforms help illustrate how the predictor throttles ex-
ecution with sufficient lead time to prevent emergencies instead of re-
lying on soft thresholds. The predictor is therefore able to prevent
emergencies better. 68

4.3 Performance gains because of reducing the voltage margin from a con-
servative 13.5% (assuming the worst-case voltage swing) to an aggres-
sive 4% with different fail-safe mechanisms to handle voltage emergen-
cies. The dotted line indicates the ideal gain from reducing the margin. 73

4.4 Breakdown of the throttling and rollback costs associated with achiev-
ing the gains shown in Figure 4.3 across the different schemes. 74

4.5 Performance gains using a CAM-based signature predictor. CAM must
be sufficiently large to tolerate capacity misses, but large CAMs are
impractical and inefficient. 79

4.6 A Bloom filter-based signature predictor does not suffer rollback penal-
ties unlike a CAM. However, sizing the structure appropriately is im-
portant to tolerate its false positives. 79

4.7 When resources are limited, thresholds help to identify hot signatures
that are resource-worthy. But thresholds cause some emergencies to
go unsuppressed since their signatures are omitted from the predictor’s
lookup table. 82

4.8 The number of static program locations where emergencies occur (i.e.,
anchor PCs) is only a few hundred across a large spectrum of bench-
marks. Therefore, a small CAM can be used to enable the lookup logic
only when execution reaches these locations. 83

List of Figures xi

4.9 Rollback cost due to capacity misses in the CAM, which we use to
control lookup access into the Bloom filter as a means of reducing the
number of false positive throttles. 84

4.10 The signature compaction optimization folds similar signatures into
one more representative signature. On average, the number of signa-
tures drops by over 61%. 86

4.11 Event with thresholds, a plain Bloom filter of reasonable size gives
many false positives, but this number decreases significantly as we re-
strict Bloom filter lookups using a CAM (Bloom filter + CAM). False
positive throttles drop even further when we combine this latter struc-
ture with signature compaction (Bloom filter + CAM + Compaction). 87

4.12 Performance gains using a Bloom filter whose lookups are initially
screened using a CAM. T is the threshold we apply. 88

4.13 Performance gains using only compacted signatures in the Bloom filter
+ CAM structure. 88

5.1 Voltage swing grows progressively larger because of pulsing current
activity (see markers A, B and C). As that activity subsides, the voltage
swing reduces. 94

5.2 This snippet of high power floating point instruction execution mix
experiences frequent execution stalls on operand values at around the
resonant frequency. These stalls are responsible for current swings that
lead to voltage noise in Figure 5.1. 96

5.3 A small set of static program addresses (fewer than 100) are responsible
for the large number of voltage emergencies. We assume a 4% operating
margin, but this trend remains across different margins. 97

5.4 Microarchitectural event activity across two separate cores connected
to the same power plane leads to voltage swings. The magnitude of
voltage swing varies depending on which two events are happening
together. 99

5.5 Workflow diagram of the proposed software-assisted hardware-guaranteed
architecture to deal with voltage emergencies. For clarity of thought,
we limit our discussion to the compiler scheme only in this illustration. 101

5.6 A 50-cycle execution snapshot of benchmark Sieve showing the impact
of a pipeline stall due to data dependency. An operating margin of
4% is assumed (i.e., a maximum of 1.04V and minimum of 0.96V).
(a) Before Software Optimization shows how a stall triggers an emer-
gency as the issue rate ramps up quickly once the long-latency op-
eration completes. (b) After Software Optimization demonstrates how
compiler-assisted code rescheduling slows the issue rate to eliminate
the emergency illustrated in (a). 105

List of Figures xii

5.7 Aggregate distribution of root-causes across benchmarks in the Java
Grande benchmark suite. 106

5.8 Effect of code rescheduling on an emergency-prone loop from bench-
mark Sieve. (a) An emergency consistently occurs in basic block 3
along the dotted loop backedge path 4→ 1→ 2→ 3. (b) Moving in-
struction A ← B from block 1 to block 2 puts dependent instructions
closer together, thereby constraining the issue rate. This prevents all
subsequent emergencies in basic block 3. 110

5.9 (a) Control flow graph of an emergency-prone piece of code from bench-
mark RayTrace. (b) Rescheduled code after the compiler moves in-
structions to remove the emergency caused by the frequently mispre-
dicted branch at location 4. (c) Data dependence graph corresponding
to the original code that the rescheduling algorithm uses to extract the
safest RAW dependence chain. 118

5.10 Fraction of emergencies remaining after code transformation. 121
5.11 Code performance after transformation. The cost for handling emer-

gencies is not shown in this plot to isolate the effect of code transfor-
mation on the run-time performance. We evaluate overall performance
after factoring in code performance costs later on, along with penalties
for handling emergencies. 122

5.12 Not all emergencies can be eliminated. Some root-causes cannot be
fixed because the compiler cannot find sufficient code to construct
RAW dependence chains. Also, new emergencies can be introduced
as a result of making transformations to existing code. 125

5.13 There is a correlation between the number of emergencies the compiler
can eliminate and the average length of the dependence chains it cre-
ates. The compiler can eliminate more emergencies as it creates chain
lengths that approach the machine’s issue width. Our machine is 8-wide.126

5.14 This figure justifies the use of three program points for resolving volt-
age emergencies. The combination of the root-cause instruction, the
wrong path instruction, and the last writeback instruction, results in
the ability to identify and resolve nearly all of the voltage emergencies
encountered. 126

5.15 While some programs show no phases in voltage noise like benchmark
482.sphinx, others like 416.gamess and 465.tonto experience simple
and more complex phases, respectively. 134

5.16 Experimental setup showing how we evaluate the impact of co-scheduling
different phases together. We tether one program to Core 0. It runs to
completion during the experiment. Then every 60 seconds we launch
another program onto the second core. But we terminate this program
after 60 seconds and repeat this with another instantiation. At the end
of every run we collect our voltage measurements. 136

List of Figures xiii

5.17 Voltage noise profiles with and without co-scheduling of benchmark
473.astar. 137

5.18 Boxplot showing the variance in emergencies (or droops) as each pro-
gram on x-axis is co-scheduled with every other program shown on the
same axis. 138

5.19 Proof that scheduling for voltage noise is different from scheduling for
performance. Scheduling for performance causes more emergencies,
which upon factoring emergency tolerance rollback costs can actually
result in performance degradation. Noise-aware schedulers are neces-
sary in our architecture. 141

A.1 Setup illustrating how we sense and measure voltage fluctuations within
the processor during execution time. 151

A.2 Validating our measurements by comparing impedance we derive from
our experimental setup to Intel’s published results. 152

B.1 Simulation framework for studying new voltage noise techniques. . . . 158

List of Tables

3.1 Descriptions for microbenchmarks that cause observable voltage swings.
All microbenchmarks run in a loop, providing us sufficient time to make
measurements. 43

3.2 Breakdown of counters that define stall ratio (see Figure 3.4). 46

4.1 Number of voltage emergency signatures and the number of emergen-
cies they represent across the different benchmarks and their inputs. . 81

5.1 Only a small fraction of the static code (in the order of tens of in-
structions) need modification to eliminate emergencies. Additionally,
the changes the compiler makes has minimal impact on the dynamic
instruction count. 124

5.2 Number of emergencies that arise as the compiler generated applica-
tion code is running versus when the compiler is itself running (either
for generating newly requested dynamic code or while transforming
existing application code to prevent emergencies). 128

5.3 Distribution of execution time spent handling emergencies in the com-
piler versus running application code. 129

5.4 Increase in CPI to handle voltage emergencies, and net performance
improvement after scaling the operating margin and factoring in the
overheads. The upper bound on performance improvement is 29%
assuming the margin is scaled from 18% to 4%. These results are the
average measured across all benchmarks. 130

B.1 Architecture parameters for SimpleScalar. 161
B.2 Characteristics of the power delivery subsystem packages we use in our

study. By default and unless stated as otherwise, we model voltage
noise using Pkg 1. 163

B.3 Descriptions of C# benchmarks. 164

xiv

Citations to Previously Published Work

Portions of this dissertation have appeared in the following conference proceedings:

Vijay Janapa Reddi, Simone Campanoni, Meeta S. Gupta, Michael D.
Smith, Gu-Yeon Wei, David Brooks, “Eliminating Voltage Emergencies
Using Software-Guided Code Transformations”, Proceedings of the ACM
Transactions on Architecture and Code Optimization (TACO).

Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Michael D. Smith,
Gu-Yeon Wei, David Brooks, “Mitigating Voltage Noise Using Emergency
Signatures”, Proceedings of the ACM Transactions on Architecture and
Code Optimization (TACO).

Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Michael D. Smith,
Gu-Yeon Wei, David Brooks, “Predicting Voltage Droops Using Recurring
Program and Microarchitectural Event Activity”, IEEE Micro’s Top Picks
in Computer Architecture Conferences (TopPicks).

Vijay Janapa Reddi, Simone Campanoni, Meeta S. Gupta, Michael D.
Smith, Gu-Yeon Wei, David Brooks, “Software-Assisted Hardware Relia-
bility: Abstracting Circuit-level Challenges to the Software Stack”, Pro-
ceedings of the Design Automation Conference (DAC).

Vijay Janapa Reddi, Meeta S. Gupta, Krishna K. Rangan, Simone Cam-
panoni, Glenn Holloway, Michael D. Smith, Gu-Yeon Wei, David Brooks,
“Voltage Noise: Why It’s Bad, and What To Do About It” Proceedings of
the IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE).

Vijay Janapa Reddi, Meeta S. Gupta, Glenn Holloway, Michael D. Smith,
Gu-Yeon Wei, David Brooks, “Voltage Emergency Prediction: Using Sig-
natures To Reduce Operating Margins” Proceedings of the IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).

Meeta S. Gupta, Vijay Janapa Reddi, Glenn Holloway, Gu-Yeon Wei,
David Brooks, “An Event-Guided Approach to Handling Inductive Noise
in Processors” Proceedings of the Design Automation and Test in Europe
(DATE).

xv

Acknowledgments

This is the end. And to this end, many people have been a great source of strength

to muster through the difficult times. They have been an inspiring source to aspire

ever more ambitiously, and many a time they have been a tremendous source of

calmness. To each and everyone of you, I am extremely grateful. A lifelong goal and

dream have finally come true.

I thank my family for all the wonderful support they have provided me despite

the thick and thin we have been through. The effort is priceless, and I share the

success of this culmination with them. They deserve it as much as I do. I thank my

father for the countless hours of systematic encouragement to pursue further along,

my mother for the emotional support and all those delicious meals that have kept me

healthy, and my brother for always rooting on my behalf.

My dearest friends Karthik Pinnamaneni, Sati Hillyer and Sunil Verma have al-

ways been a priceless influence since my undergraduate days at Santa Clara University.

I cannot thank the trio enough for all their moral support, continuous encouragement

and all those deep philosophical exchanges that have not only shaped my drive to

succeed, but also defined and refined me as an individual. All of this has also influ-

enced me as a researcher. These folks are beyond just friends. They are family to

me.

I have enjoyed a very enriching graduate school experience because of my numerous

wonderful colleagues. Going back to the days of University of Colorado at Boulder, my

thoughts and patterns of thinking have emerged from wild discussions overall several

late nights in the lab with Alex Shye, Tipp Moseley and Rahul Saxena. Amongst

others are Heidi Pan and Jason Mars. They provided me with the utmost support

xvi

Acknowledgments xvii

and friendship in times of great need. More recently, my experiences have grown

further along over several meaningful discussions with folks at Harvard. This group

includes some amazing and aspiring individuals like Wonyoung Kim, Meeta Gupta,

Simone Campanoni and Svilen Kanev. Benjamin C. Lee, a prior graduate from our

lab, has been not only a good friend and mentor, but also a true source of inspiration.

Knowing him has taught me to aspire for the best and to not give up prematurely, no

matter how bad the odds seem. And I cannot say enough good things about Glenn

Holloway, who acted not only as a mentor when I needed one, but he has also been

by my side as a friend, a critique, an editor, and acted the role of many other such

things when I needed one. Thank you Glenn. I am also grateful for the camaraderie

I share with everyone in MD307.

None of my achievements would have been possible with great minds influencing,

guiding and believing in my academic success. Without Prof. Silvia Figueira, I

may have never embarked on this journey towards getting a PhD. I thank her for

streamlining me during the course of my undergraduate studies. And without Dr.

Connors at University of Colorado at Boulder, I would have never come across Dr.

Robert Cohn and the Pin Team. All of them have been instrumental in my work and

success. Dan and Robert are exceptional mentors. They have always supported my

aspirations, even at the expense of their own time, allowing me to aspire and achieve

my personal goals. It is thanks to them that I have had the opportunity to work with

Profs. Michael D. Smith, Gu-yeon Wei and David Brooks. These members of my

committee have seen to it that I consistently perform my best, opening new doors

and constantly providing me with new insight on how I could do better each and

Acknowledgments xviii

every single time. I am truly fortunate to be in the company of such great minds. I

aspire to be like them some day, embodying the best traits of each and every single

one of them.

While this PhD marks the ending of one major journey in my life, I see it as only

the beginning of another, one of many more to come. I can only hope that I will

continue to meet such amazing and influential people as I grow further along, both

as an individual and as a researcher in the scientific community.

To my mother, father and brother.

xix

Chapter 1

Introduction

Contents
1.1 Challenges Facing Reliable Processor Design 3

1.2 Abstracting Circuit-level Challenges to Architecture . . 5

1.3 Extending Processor Efficiency Using Software 6

1.4 Contributions . 8

1.5 Impact . 13

1

Chapter 1: Introduction 2

The landscape of processor design is changing. Performance is no longer the only

criteria. Power constraints are driving designers to consider performance-per-watt

efficiency, trading performance for lesser power consumption. However, techniques

and technology advances necessary to deliver good performance-per-watt efficiency

are leading to transient processor reliability errors. Guaranteeing correctness into

the presence of these errors is inadvertently degrading performance, consequently

leading to lower efficiency. As the industry employs power-constrained processor

design techniques more aggressively in the future, especially due to increasing core

count per chip and the power wall, ramifications of these reliability errors will only

continue to expand. Therefore, it is imperative we understand their implications and

learn to address them effectively.

Traditionally, designers have been tackling reliability errors at the circuit-level,

masking the issues from the processor microarchitecture above and the software run-

ning on top of it. However, these traditional solutions are not scaling well with

reducing feature size and more aggressive power-constrained designs. Future systems

will require adaptive processor design techniques. The underlying microarchitecture

must dynamically detect and recover from reliability errors in the field.

In order to build such a resilient processor architecture, we propose abstracting

circuit-level reliability challenges to the higher levels, the microarchitecture and soft-

ware layers. The lower layers propagate relevant information to the higher layers,

as illustrated in Figure 1.1. Using this information, the higher layers influence or

mitigate problems at the lower layers. We envision this happening at run-time. Such

dynamic feedback and reaction would enable an architecture that is efficient even in

Chapter 1: Introduction 3







 

 

Figure 1.1: An abstract overview of exposing circuit-level reliability challenges to the
higher levels of execution.

the presence of errors. In the short term, we propose an architecture solution. In the

longer term, we capture the emerging role of software at the chipset-level, showing

its potential for enabling long term resiliency in processors.

1.1 Challenges Facing Reliable Processor Design

Technology scaling has greatly improved transistor density over the past three

decades. However, continued scaling has begun to introduce parameter variations,

affecting both manufacturing yield and run-time efficiency. Parameter variations are

broadly classified into three sub-categories: process, voltage and thermal variations.

Process variation refers to differences in transistor characteristics from one die to

another, within-die or even wafer-to-wafer, resulting in differences between chips. It

occurs during fabrication time because of imperfections in lithography techniques and

unevenness in dopant injection. Post-fabrication, this variation does not change or

affect chip behavior. It is static.

Voltage and thermal variations are more dynamic, affecting chip operation at run-

time. These variations occur from execution-time interactions between the chip and

Chapter 1: Introduction 4

the workloads it is running. Temperature variation arises from aggressive utilization of

certain circuit blocks, creating hotspots within the microprocessor. Voltage variation

results from non-ideal power distribution. Both these variations are affected by the

activity of a running workload.

In all cases, variations affect the worst-case delay within a circuit. Dynamic vari-

ations also reduce the lifetime of a processor through repeated stresses on individual

components. These emergencies must be avoided at all costs to ensure robust pro-

cessor operation.

Traditionally, designers have coped with parameter variations through careful de-

sign and testing, allocating sufficiently large margins or tolerance guardbands. This

compromises the peak operational capacity of a circuit to ensure reliable and ex-

pected execution. For a processor relying on a single reference source signal (i.e.,

clock signal), the clock rate of the processor is set forth by the operational speed of

the slowest logic path. As processor features have shrunk, parameter variations have

amplified the difference between peak and worst-case operational delay in these slow-

est logic paths. Therefore, the effective clock rate is slowing down. Consequently, the

maximum performance-per-watt efficiency we can extract from our processors suffers.

As we go into the future, designers must increasingly compromise peak efficiency

for growing worst-case delays. Otherwise, designers must compromise on chip yield,

throwing away processors that do not meet stringent delay specification, or they

must invest in expensive manufacturing or packaging solutions to mitigate the effects

of parameter variations. Considering that every part of a commodity processor affects

chip price, these alternative solutions are impractical in the long term, leaving margins

Chapter 1: Introduction 5

as the most cost-effective solution.

Industry is yet to actively integrate and account for parameter variations during

the chip development cycle. Today, industry designs, tests and optimizes only for

power and performance targets during the chip development stage. Parameter vari-

ations are seen as a post-fabrication time issue. But margins necessary to guarantee

correctness are progressively growing, and post-fabrication time solutions will become

prohibitively impractical and ineffective in the future. Therefore, innovation is nec-

essary in the presence of parameter variations. We must make parameter variations

an active component of the processor development cycle.

1.2 Abstracting Circuit-level Challenges to Archi-

tecture

The problem with addressing emergencies at the circuit-level, like using worst-case

margins, is that circuit techniques are inflexible. The solutions that designers put in

place are not adaptable once the chips leave the fabrication plant. Therefore, designers

make cautious and pessimistic assumptions about the conditions under which a chip

may operate to ensure high reliability. But such conservative decisions lead to worst-

case design that is not representative of typical case execution. Such worst-case

design severely penalizes chip performance and power efficiency for very infrequent

cases, rather than optimizing the chip for the average case behavior.

Solutions at the processor architecture level are better than circuit-level techniques

because they are dynamic. Architectural level techniques are feedback-driven, observ-

Chapter 1: Introduction 6

ing run-time activity to determine the appropriate course of action to take. Such a

higher level solution enables the processor to dynamically adapt to execution-time

emergency activity, rather than being pessimistically penalized through conservative

assumptions at the fabrication facility. Therefore, we would be able to operate the

processor under more typical case conditions, and a consequence reap more efficiency

from our chips.

In order to protect the chip from emergencies during operation in the field, design-

ers can build recovery and rollback logic into the processor. The processor runs ahead

assuming execution is always correct, but then rolls back execution upon detecting an

error. This process is similar to branch speculation, where the processor predicts the

branch outcome and continues executing speculatively, rolling back execution only if

the prediction was incorrect.

1.3 Extending Processor Efficiency Using Software

Although architecture level solutions are dynamic and enable design for typical

case operation, they lack the global perspective of software. Software can re-configure

code running on a chip to eliminate emergencies. It can do this because software

has global knowledge, such as what code is running on the processor, or which set

of threads are co-scheduled together in a multicore chip. Therefore, in addition to

innovating solutions at the architecture layer, we mitigate emergencies at the software

layer as well.

Eliminating emergencies improves the overall efficiency of the processor. The

architecture will need to recovery and rollback fewer times due to fewer emergencies.

Chapter 1: Introduction 7

Therefore, by intermittently using the architecture layer, and relying on the global

view of software to eliminate recurring emergencies, we enable smoother run-time

performance.

Another reason for relying on software is that the efficiency improvement we ob-

serve through architecture-level solutions is a function of emergency frequency. As

technology scaling trends continue, processors will increasingly suffer from more num-

ber of emergencies (see Chapter 2). As a consequence, more aggressive utilization of

the architecture’s dynamic fail-safe mechanism will become necessary.

Since the fail-safe mechanism is a run-time feature, performance at execution time

will suffer if the number of emergencies is significant, which will lead to larger num-

ber of rollbacks. Therefore, architecture-level solutions, although effective in the near

term, are not an ideal solution. Software can sustain the existence of such hardware

solutions by targeting and reducing recurring emergencies, keeping the overhead of

dynamic rollback and recovery tolerable even in future, more emergency-prone, tech-

nology nodes.

Software is already playing a critical role in ensuring robustness. Large-scale

companies like Google write error tolerant application code [15]. Google engineers

assume that hardware failures are inevitable and write their code accordingly. System

failures do not affect their application’s correctness nor quality of service. Google

search engine automatically detects failures via timeouts, and reissues requests to

other available nodes, thus proving resilient to hardware failures.

However, compromising transparency between hardware and the application, as

Google does, is not a generalizable solution for the mass market. Independent software

Chapter 1: Introduction 8

vendors (ISVs) will require that hardware is always robust. This is especially true for

backward compatibility and legacy code reasons.

In the future, we envision that microprocessor companies will ship their processors

with formally verified software that operates below the operating system. It will

act as a transparent layer that guarantees resiliency in the presence of emergencies.

Such software-assisted chipset-level reliability is simply an extension of present day

application-level reliability like in the Google case.

1.4 Contributions

The embodiment of this thesis work is to demonstrate how to build a cost-effective

and fault-tolerant platform in the presence of parameter variations. We make the

following contributions:

1. Tolerance, avoidance and elimination. We believe these three principles should

serve as guiding principles to solve process, voltage and thermal variation-

related problems.

2. Resilient architecture design. We demonstrate that collaboration between hard-

ware and software can effectively enable dynamic detection and recovery from

emergencies in the field, even as the processor is running.

3. Proof-of-concept. We show that tolerance, avoidance and elimination are useful

constructs for mitigating voltage variation, proving this via an instantiation of

our resilient architecture design.

Chapter 1: Introduction 9

Overview. Since our solution relies on hardware and software co-design, there

are two distinct methods for dealing with emergencies. First, the hardware-layer

is responsible for guaranteeing reliable operation without the assistance of software

using its fail-safe mechanism. The software layer seeks to eliminate emergency events

from recurring in the future through code transformations, or even operating system-

level thread scheduling. An advantage of our multi-layered approach is that it allows

the hardware to focus on guaranteeing correct operation for the initial emergency,

while the software focuses on eliminating or reducing the performance impact of all

future emergencies in the steady state.

In order to facilitate software-assisted hardware reliability, a fault-tolerant sys-

tem must gather and pass along pertinent information across all the different layers

(circuits, microarchitecture and software). Figure 1.1 illustrates the layers and a high-

level synopsis of the information flowing across the layers. Those interactions allow

the processor to dynamically detect and resolve emergencies.

The bottom layer includes low-level circuit blocks that provide critical emergency

information, like voltage and temperature readings from sensors, to the microarchi-

tectural layer. This middle layer collects the context (sensor readings, executing code

location etc.), possibly throttling (taking preventive measures) to avoid any imme-

diate catastrophic failure, before propagating the context to the software layer. The

software layer then smoothes the activity (or code) running on the processor to avoid

recurring emergency events. Smoothing voids the microarchitecture from repeatedly

activating its fail-safe mechanism whenever a similar context of activity recurs, thus

improving performance.

Chapter 1: Introduction 10

Since the process we describe is feedback-driven, the hardware may profile the

emergency initially before deciding to invoke the software layer. Profiling allows the

hardware to first identify whether the emergency is recurring, since software can

only fix recurring events. Moreover, profiling amortizes the overhead of invoking the

software layer. An added benefit of relying on software is that the logic guaranteeing

robustness at the hardware layer does not have to be very fine-grained or implemented

costly.

Specific Contributions. To narrow the scope of work, and demonstrate proof of

concept, in this thesis we focus only upon voltage variation. Efforts at reducing pro-

cessor power have the unfortunate side-effect of causing large current variations within

the processor. Due to parasitic inductance in the power-supply network, current os-

cillations may cause an undesirable swing in the microprocessors supply voltage [34].

This can result in supply voltages that violate the minimum or maximum voltage mar-

gins for the processor. Such transient reductions in supply voltage increase circuit

delay [45]. Therefore, voltage variation can cause timing problems in a microprocessor

that lead to incorrect execution. We refer to such violations as voltage emergencies.

Current designs are able to dangerous voltage emergencies through careful place-

ment of decoupling capacitors and advanced packaging. However, such traditional

means are being severely stretched due to recent technology trends. These trends will

make voltage variation management a considerable challenge in the coming years.

In the context of voltage variation, we answer several research questions that

demonstrate and validate our contributions. For each question, we provide a brief

synopsis of our findings, encouraging the reader to read further details in subsequent

Chapter 1: Introduction 11

chapters. Overall, we show that it is possible to build a software-assisted hardware

reliability platform:

• What information should the circuit layer provide to the microarchitecture layer?

This involves sensing voltage at different points on the chip, and during each

cycle monitoring for voltage emergencies. Upon detecting an emergency, these

voltage sensors must signal the processor microarchitecture of an emergency.

• How should we design the microarchitecture so that it can tolerate emergen-

cies? We can deal with voltage emergencies by leveraging existing hardware

checkpoint-recovery logic in use for handling soft-errors. Whenever we detect

an emergency, we simply rollback execution to some previously know safe state.

Such recovery logic is already shipping in production systems, and is general

purpose, serving additional tasks such as debugging, replaying execution.

• What information should the microarchitecture propagate to the software layer?

We discovered that it is the interleaving of program and microarchitectural

events that leads to voltage emergencies. Capturing and propagating this in-

formation allows the software to effectively smooth-away emergencies.

• What should the software layer look like? We demonstrate that a runtime com-

piler such as those used for application or process virtualization suffice. We also

demonstrate that it is possible to handle emergencies at the operating system

layer.

• What smoothing techniques should the software utilize to eliminate emergencies?

From a compiler perspective, we can eliminate recurring emergencies by intel-

Chapter 1: Introduction 12

ligently constraining the instruction level parallelism of the processor via code

transformation techniques. At an operating system level, scheduling threads

cooperatively leads to fewer emergencies.

The thesis is structured in a bottom-up fashion. First, we provide the reader

with background and motivation on voltage variation in Chapter 2. We discuss prior

work. Additionally, we show that voltage emergencies will have a big impact in future

systems as voltage supply scales (even if moderately) with increasing current draw,

which is bound to happen as the chips grow denser with logic because of shrinking

feature size.

Our scheme dictates that the hardware must be robust. So in Chapter 3 we elab-

orate the general-purpose checkpoint-recovery we assume is available in production

systems. Since the recovery mechanism tolerates emergencies, we capture activity

leading to voltage emergencies. This allows us to analyze the activity, explaining

exactly what causes emergencies. Understanding this insight enables us to efficiently

eliminate emergencies.

We state that software will frequently interject and eliminate emergencies. But

software can be buggy. Moreover, software cannot eliminate all emergencies. There-

fore, in Chapter 4 we introduce a low-cost emergency avoidance mechanism that works

in conjunction with the general purpose recovery logic. The general purpose recovery

logic is very expensive, ranging into hundreds to thousands of cycles per rollback. By

comparison, the smaller avoidance mechanism penalizes performance by fewer than 10

cycles per activation. While this additional low-cost mechanism consumes chip area

and additional power, the avoidance mechanism assures a robust hardware platform

Chapter 1: Introduction 13

that is more efficient than using only general purpose recovery logic.

We introduce our compiler and operating system thread scheduling software solu-

tions in Chapter 5. We initially describe the information gathering resources necessary

at the microarchitectural level. This middle architecture layer is the critical link in

information exchange, as it monitors what is going on at the circuit-level and passes

along information to the software for voltage smoothing. Thereafter, we discuss the

specifics of our compiler and thread scheduling algorithms.

In summary, this thesis is a demonstration of software-assisted hardware relia-

bility. We discuss details and findings that enable efficient hardware and software

co-design. While the details we provide are specific to mitigating voltage emergen-

cies, the concepts and structure we introduce and discuss in the following chapters

are generalizable to other avenues of reliability research as well.

1.5 Impact

Efficiency at any cost is no longer an option. This is especially true in today’s

commodity market place. We focus primarily on building robust processors that

deliver good performance and power efficiency within reasonable costs. As variation

trends stretch the limits of existing strategies for mass markets, we believe our contri-

bution can soften their impact in future technology nodes. To appreciate the impact

of our contribution, it is important to understand evolving trends in computing and

application domains.

The commoditization of hardware is forcing architects for applications involving

high-volume web services (e.g., search engines), biological and physical analyses and

Chapter 1: Introduction 14

simulations (e.g., gene sequencing), and massively multi-player role-playing games and

simulations are continuously striving for higher availability and better performance,

but with decreasing costs as the need for compute power density increases. These

applications contain enormous amounts of request/thread-level and application-level

parallelism that encourages application architects to build computing clusters with

large numbers of parallel processors. This is especially true as data migrates from

clients to a cloud of distributed resources located in datacenters.

Clearly, for a fixed level of performance per processor, the application architects

would prefer processors that cost less to purchase (e.g., cheaper packaging) and less to

run (e.g., consume less power and produce less heat), because they can then purchase

more computing power to solve their problems faster or make their infrastructures

more available. Consequently, leading application domains and ISVs are focusing on

energy efficiency and the ratio of price-to-performance much more than sole perfor-

mance. This trend has been led by large companies that are increasingly relying on

cheaper commodity desktop and workstation processors, rather than purchasing more

costly high-end server processors because of the commoditization of hardware.

The Google Cluster Architecture is a perfect example, running their popular web

search engine in a manner demonstrating that “price/performance beats peak per-

formance” [14]. Barroso et al. describe an architecture where, for example, power

reductions are extremely desirable if they can be obtained without a corresponding

loss in performance or increase in price of the hardware. Furthermore, predictability

in the speed of computation in each processor is important for the success of their

load balancing algorithms.

Chapter 1: Introduction 15

Though massively parallel applications are where there exist obvious big savings,

the work we propose in this thesis benefits desktop, as well as workstation computing

domains. This stems from understanding that the massively parallel applications we

mention above are increasingly run on architectures built out of commodity micropro-

cessors. By focusing on this large segment of the microprocessor market, individuals

purchasing single-processor systems will also experience savings, albeit on a smaller

scale. Summing these individual savings on a national scale could however yield large

savings.

Chapter 2

Voltage Noise: Why It’s Bad and

What to Do About It

Contents
2.1 Voltage Noise . 17

2.2 Why It’s Bad . 19

2.2.1 Worst-case Design Penalties 20

2.2.2 Area and Cost Implications 22

2.2.3 Limitations of Prior Work 23

2.3 What To Do About It . 29

2.3.1 Tolerance . 31

2.3.2 Avoidance . 31

2.3.3 Elimination . 33

16

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 17

Processors are designed to operate at fixed voltage levels called the nominal volt-

age. While it is possible to dynamically change this voltage setting to improve proces-

sor power and performance efficiency in a controlled manner, unexpected deviations

from expected settings, called voltage variation, or voltage noise, or sometimes even

referred to as the dI/dt problem, can lead to incorrect execution and affect processor

lifetime. In this chapter, we introduce and explain voltage noise and its ramifications,

specifically in the long-term. Briefly, voltage noise degrades peak processor efficiency.

And while researchers have been proposing solutions to mitigate it, like the broad

class of sensor-based schemes we will discuss, prior work cannot guarantee execution

correctness at the very aggressive settings necessary to recover from the penalties

associated with voltage noise.

Therefore, we introduce new hardware and software co-design principles to the

voltage noise problem: tolerance, avoidance and elimination. By tolerating voltage

noise we learn activity leading to it, which can then be used to build not only intelli-

gent hardware that learns to anticipate and avoid dangerous voltage flux intelligently,

but in fact design software that can eliminate the problem altogether. It is through

these three constructs that we believe designers of future processors can tackle the

voltage noise reliability problem.

2.1 Voltage Noise

Ideally, voltage within a processor is always steady at its fixed and expected

nominal value. This nominal voltage determines how quickly designers can operate

the processor’s circuits because voltage has a direct relationship with circuit delay.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 18

Consequently, voltage determines the clock frequency of a processor, which in turn

translates to processor performance and power efficiency.

However, voltage within a processor is always fluctuating from its nominal value.

Consider Figure 2.1 that illustrates voltage activity within the processor over several

cycles. Current swings over a small amount of time cause voltage to swing due to

parasitics in the power-delivery subsystem. Quantitatively, the magnitude of the

voltage swing is proportional to the rate of change of current over time times the

magnitude of inductance. More abstractly, voltage noise depends on the interactions

between the program, the microarchitecture of the processor, and the characteristics

of the underlying power-delivery subsystem.

Voltage noise is becoming a major hurdle. As logic density is increasing with

shrinking feature sizes, denser chips are consuming more current. To reduce or even

cap the maximum power consumption as current increases, designers are using ag-

gressive power saving techniques like clock gating. This gating technique turns off

parts of the processor to reduce dynamic power consumption depending on processor

utilization. Unfortunately, it causes unacceptable stress on the power delivery net-

work. Suddenly turning off and turning on logic causes sudden changes in current

draw. These large changes over short time-scales cause voltage to droop or overshoot

rapidly because of impedance present throughout the power supply network.

Since voltage determines circuit delay, unexpected and intermittent voltage drops

below nominal voltage can cause logic paths within the processor to slow down, lead-

ing to circuit timing violations that eventually manifest as incorrect execution. Volt-

age can also exceed the nominal setting value. Such voltage spikes or overshoots

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 19

Figure 2.1: Voltage within a processor fluctuates due to activity changes and inter-
actions between a running program and the processor’s underlying power-delivery
subsystem, as well its run-time microarchitectural behavior.

can degrade the lifetime of a processor by affecting the reliability of the transistors

within. To ensure reliable and correct operation of the processor at all times, designers

allocate sufficiently large guardbands or operating voltage margins to tolerate volt-

age noise. Dangerous voltage swings beyond these operating margins, called voltage

emergencies, must be avoided under all circumstances.

2.2 Why It’s Bad

Processor designers strive to ensure robust processor behavior in the presence of

voltage noise through cautious and conservative design and testing strategies at the

circuit-level. While these approaches have been practical and suitable in the past, they

are fast becoming outdated and inefficient as technology is scaling; the International

Technology Roadmap for Semiconductors (ITRS) identifies voltage noise as one of

the Grand Challenges to overcome in order to sustain high performance-per-watt

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 20

efficiency in future processors.

Industry standard practice today is to make pessimistic assumptions about voltage

swings. Industry designs for the worst-case voltage swing to avoid voltage emergen-

cies. In the following subsections, we explain the issues with the pessimistic present

technique, explaining why it will not work in the future from a performance, area and

cost perspective. We then conclude this section by demonstrating the limits of alter-

native solutions that researchers have been proposing. The points we make in this

section build towards our case that existing, as well as previously proposed solutions,

need improvements to sustain processor efficiency in the long-term.

2.2.1 Worst-case Design Penalties

The traditional way of dealing with voltage noise is to over-design the system to

accommodate the worst-case voltage swing. In this way, designers prevent voltage

emergencies. To determine the amount of over-design necessary, chip designers write

a power virus in software that causes extremely rare and large voltage swings, as

shown in Figure 2.2. According to recent research efforts, designers of the POWER6

processor [33] show the need for operating margins greater than 20% of the nominal

voltage. These conservative processor designs with large margins ensure robustness.

However, conservative designs lower the peak operating frequency of the proces-

sor. Figure 2.3 plots peak frequency at different voltage margins across four PTM [55]

technology nodes (45nm, 32nm, 22nm, and 16nm) based on detailed circuit-level sim-

ulations of an 11-stage ring oscillator consisting of fanout-of-4 inverters. Assuming a

fixed power budget, we study the implications of margins. This is a valid assumption,

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 21

Figure 2.2: Designers use a power virus to determine the worst-case voltage swing.

since the industry has already reached maximum power consumption.

From the figure, we observe that the peak frequency for a given voltage margin is

decreasing in newer technology nodes. The plot shows that at today’s 32nm node, a

20% voltage margin translates to a 33% frequency degradation, and at future tech-

nology nodes the situation gets much worse. To understand this decreasing trend, we

must understand power consumption. Power is equal to voltage times current. As we

go into future technology nodes, the amount of current draw increases, since we have

more logic packed into the chip. But because of the fixed power budget, we require

scaling of the nominal supply voltage, which ITRS anticipates to happen gradually.

Since threshold voltage scaling has all but stopped and nominal voltage is decreas-

ing, circuit delay is increasing. And as a result, the peak operational frequency of

the processor is reducing. Practical limitations on reducing power delivery impedance

combined with large anticipated current draws therefore make margin-based solutions

unsustainable.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 22

50403020100
40

50

60

70

80

90

100

Margin (%)

P
e
a
k

F
re

q
u
e
n
cy

 (
%

)

45nm (Vdd=1.0V)

32nm (Vdd=0.9V)

22nm (Vdd=0.8V)

16nm (Vdd=0.7V)

Figure 2.3: Worst-case margins limit peak operational frequency, and the problem is
getting worse as technology trends are scaling.

2.2.2 Area and Cost Implications

To reduce voltage swings and to keep voltage margins within some reasonable

bounds, processor designers rely on package and on-chip decoupling capacitance [49].

Figure 2.4 captures the belly-side view of a Intel CoreTM2 Duo processor package. The

package has several capacitors, covering a spectrum of low and mid frequencies, that

dampen the maximum voltage swing. On-chip decoupling capacitance targets high

frequency noise. Traditionally, designers have been using oxide capacitors. But in-

dustry is making advances in integrating deep-trench decoupling capacitors into logic

circuits, which would provide more capacitance per unit area than oxide capacitors.

However, the use of on-chip capacitors requires careful placement, estimation and

allocation at design time. At present, the only quantifiable methodology that strongly

establishes the precise amount of capacitance needed and its placement is to estimate

for the worst-case voltage swing. Moreover, capacitors occupy precious area and in-

crease the cost of a chip, both of which affect the cost of a chip. Commodity processors

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 23

Figure 2.4: Processor designers rely on on-chip and package capacitance to keep the
maximum amount of voltage swing within some reasonable bounds. This increases
the cost of a chip, as well as requires valuable space. In the future, with increasing
swing levels, both these resource requirements will have to increase.

must deliver good processor performance-per-watt efficiency within reasonable costs

to stay competitive in the market.

Current designs are able to manage voltage swings through careful placement of

decoupling capacitors and advanced packaging. But traditional means of reducing

these swings are being severely stretched due to recent technology trends. While

decoupling capacitors compensate for impedance due to the parasitic inductance of

the power supply network, they do not suffice to compensate for the inductance of

the wires between the die and the package.

2.2.3 Limitations of Prior Work

Traditional solutions are occurring at the expense of growing and intolerable op-

erational efficiency. So researchers have been seeking alternative solutions. In this

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 24

Figure 2.5: Cumulative distribution of voltage samples on a real production chip
for several hundreds of benchmarks. All samples appear to fall within a 3% range,
indicating that an aggressive voltage margin such as 4% would suffice under typical
case operation conditions. However, the worst-case voltage swing is as large as 12%,
indicating a fail-safe mechanism is necessary.

section, we explain this prior work, justifying why the general idea makes sense by

corroborating it with our chip measurement data. However, we conclude why prior

effort will not work in the long run.

Smaller voltage margins enable higher performance for the same nominal voltage.

Therefore, recent efforts have been focusing on understanding the peak-to-peak volt-

age swings. Designers are considering to operate the processor under more typical

case conditions, rather than allocating voltage margins sufficient for the worst-case

voltage swing. We did analysis to determine the average voltage swing within a pro-

cessor during the course of several benchmarking runs, finding that the worst-case

voltage swing is overly conservative. Figure 2.5 shows that on average the peak-to-

peak voltage swing is 3% of the processor’s nominal supply voltage for a variety of

workloads ranging from single-threaded SPEC CPU2006 [5] to the multi-threaded

Parsec benchmark suite [16]. These are measured chip results, and we describe the

measurement setup in Appendix A.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 25

The Intel CoreTM2 Duo processor we use in our experiments can tolerate a worst-

case voltage droop of 14%. During execution we find voltage swings as large as

12%. However, this happens very infrequently. From this we conclude that while the

processor is robust against the worst-case voltage swing, it is severely over-designed

for the more typical 3% voltage swing we see across most benchmarks.

It is a better design choice to tighten the worst-case voltage margin to 4%, while

providing a fail-safe guarantee mechanism for those very infrequent large voltage

swings. A 4% voltage margin translates to 15% improvement in clock frequency,

assuming a 1.5x voltage to frequency scaling factor [17].

Therefore, instead of using worst-case design, researchers have been proposing

sensor-based techniques that react to and mitigate on-chip voltage emergencies, as a

means of designing the processor for typical case operation. A typical sensor-based

proposal uses a tight feedback loop like that shown in Figure 2.6a. The loop includes a

sensor that tries to detect impending emergencies and a throttling actuator that tries

to avoid them. The sensor relies on a soft current or voltage threshold as a “canary”.

Crossing that threshold means that voltage is approaching its lower margin, so the

actuator turns on throttling until the crisis is past. Proposed throttling schemes range

from frequency throttling, to pipeline freezing/firing, to issue ramping, and altering

the number of accessible memory ports [26, 34, 44, 43]. The behavior of the feedback

loop is determined by two parameters, the setting of the soft threshold level and

the delays around the feedback loop. Unfortunately, choosing those parameters to

accommodate reduced operating margins is thwarted by correctness failures and/or

performance penalties.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 26






 






(a)

(b) (c)

Figure 2.6: Sensor-based throttling. (a) A feedback loop is intended to detect and
prevent emergencies. (b) Aggressive soft thresholds allow too little time to prevent
emergencies. (c) Conservative soft thresholds trigger unnecessary throttling.

Correctness Failures. Figure 2.6a illustrates the use of a soft threshold to throt-

tle execution and prevent an emergency. The graph shows voltage waveforms with

and without sensor-based throttling (Throttled Execution and Uncorrected Execution,

respectively). The solid horizontal line marked Aggressive Soft Threshold indicates the

threshold at which a voltage sensor starts to take action to prevent an emergency.

Setting the soft threshold aggressively (i.e., close to the lower operating margin) re-

quires a very fast reaction by the sensor and actuation system. Failure to respond

quickly enough results in a voltage emergency. In Figure 2.6b, the voltage starts to

recover with throttling, but not in time to avoid crossing the lower operating margin.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 27

Figure 2.7a shows the sensitivity of sensor-based mechanisms to feedback loop

delays by plotting the number of emergencies that go unsuppressed in our benchmark

suite as a function of sensor-loop delay times. This data is based on the experimental

infrastructure we discuss in Appendix B.1. Here we assume the soft threshold to

be 3% below the nominal voltage and the lower operating margin to be 4% below

nominal. Feedback loop delays ranging between 0 and 5 cycles would require a nearly

perfect sensor. Analog to digital conversion takes time and so does gathering data

from all the sensor spread across the chip. Yet even a 2-cycle delay causes 50% of all

soft threshold crossings to violate the simulated microprocessor’s minimum operating

margin specification. In other words, fail-safe execution is not possible at this margin

using sensor-based schemes, as they cannot operate in a timely manner.

Performance Penalties. To accommodate slow sensor response times and en-

sure that throttling effectively prevents emergencies, sensor-based schemes can use

conservative soft thresholds. Lifting the soft threshold away from the lower operating

margin, as illustrated by the Conservative Soft Threshold in Figure 2.6c, gives the

throttling system more time to prevent an emergency. But as the Uncorrected Execu-

tion waveform in Figure 2.6c shows, even in the absence of throttling, a soft threshold

crossing may not be followed by an emergency. Throttling execution in such cases

decreases performance without any compensating benefit. The more conservative the

soft threshold setting, the greater the performance penalty. Figure 2.7b shows that

this penalty can be quite large. Assuming an ideal sensor with no feedback loop

delay (i.e., 0-cycle sensor delay), the percentage of benign soft threshold crossings

is between 77% and 58% for soft thresholds ranging from 2% to 3%. So even if it

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 28

(a) (b)

Figure 2.7: Implications of feedback loop delay and soft threshold settings on cor-
rectness and performance. (a) A large percentage of emergencies are not detected
early enough to prevent them due to feedback loop delays. (b) Even assuming a
0-cycle feedback loop delay, the number of soft threshold crossings that are not fol-
lowed by emergencies (i.e., benign crossings) is so large that performance suffers due
to unnecessary throttling.

were possible to design a feedback loop with no delay, the large performance penalties

would deter architects from reducing operating margins.

Resonant vs. Isolated Emergencies. A sensor-based scheme proposed by

Powell and Vijaykumar [43] reduces sensitivity to feedback loop delay by focusing

on voltage emergencies that are the result of resonating patterns. While resonance-

induced emergencies are dominant for some packages, recent work by Gupta et al. [30]

illustrates that non-resonant (pulse) events are also a major source of emergencies

across a range of packages. James et al. [33] have observed isolated (non-resonant)

pulses in a POWER6 chip implementation. And Kim et al. show that resonant

emergencies are likely to become less important than isolated pulses in future chip

multi-processors with on-chip voltage regulators, as package inductance effects are

decoupled from the power grid via on-chip regulators [35]. Therefore, to realize the

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 29

benefits in improved energy efficiency or performance that reduced margins can en-

able, new solutions are needed that cope with both resonant and non-resonant voltage

emergencies in future systems.

2.3 What To Do About It

In this section, we propose a new interdisciplinary solution for voltage noise, in-

volving VLSI circuits, computer architecture, and software systems. In particular,

we lean towards a hardware-guaranteed, software-assisted voltage noise management

system.

As we have seen previously, conservative designs either lower the operating fre-

quency. Practical limitations on reducing power delivery impedance combined with

large current fluctuations make margin-based solutions unsustainable. And we have

also seen that recent efforts proposing the tightening of noise margins by adding

fail-safe mechanisms to the hardware cannot guarantee absolute correctness at very

aggressive settings. In summary, the limitations of prior work are that they are

not scalable solutions, specifically because they always attempt to proactively avoid

emergencies altogether.

We take a radial route to the problem, advocating a system that allows emer-

gencies to occur. We intend to tolerate emergencies infrequently, while eliminating

frequently recurring emergencies using patterns in emergency behavior of a running

code. We implement this vision in both hardware and software. Figure 2.8 illustrates

an overview of the system. The system has an Emergency Detector (hardware) that

triggers a Fail-safe Recovery Unit (hardware) to rollback execution whenever it de-

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 30

























































Figure 2.8: A co-design architecture to mitigate voltage noise that uses both hardware
and software to tolerate, avoid and eliminate voltage emergencies.

tects an emergency. The detector then feeds an Emergency Predictor (hardware) with

a signature that represents processor activity leading up to that emergency. The

predictor quickly programs itself to suppress recurrences of the emergency by throt-

tling processor activity. But if the profiler within the predictor identifies that the

emergency is occurring very frequently, perhaps because it is in loop, then the hard-

ware accumulates information to guide a dynamic Run-time System (software) that

eliminates recurrences of that emergency. The run-time software layer eliminates the

emergency either via Code Transformation (using compiler techniques) or by invoking

the operating system’s Thread Scheduler to co-schedule the suffering thread with an

alternative program. The latter is useful in multi-core systems. However, when soft-

ware is unsuccessful, the hardware emergency predictor takes over, re-arming itself

with the signature pattern to instead predict and suppress the emergency.

The following subsections elaborate the three guiding principles that designers

should use to build a noise-tolerant architecture. We explain the benefits of each of

these three principles, and discuss our specific implementation schemes. We reserve

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 31

our discussions to a high level in this chapter. The rest of the thesis chapters provide

in-depth and specific details on how to implement each of the schemes and evaluate

them thoroughly.

2.3.1 Tolerance

Tolerating emergencies is useful both for tightening margins, and observing the

emergency behavior of running code. By tolerating emergencies we can eliminate

emergencies intelligently, as we empirically understand the activity leading to them.

Our architecture relies on a hardware mechanism that allows voltage emergencies

to occur, but when they do, the architecture has a built-in mechanism to recover

processor state and resume execution.

We propose relying on a checkpoint-rollback mechanism to guarantee fail-safe

execution. Checkpoint-rollback mechanisms have been proposed for handling soft er-

rors [7, 10, 54]. They support execution rollback in the presence of an error. They are

already available in existing production systems [9, 48], and more novel applications

of this general-purpose hardware are continuously emerging [54, 51, 39, 36, 47, 41].

Our extension of its service to voltage noise is yet another addition.

2.3.2 Avoidance

Tolerating emergencies using coarse-grained checkpoint-recovery hardware is not

always practical, since it is a prohibitively expensive rollback mechanism. Therefore,

we built a voltage emergency predictor that identifies when emergencies are imminent

and prevents their occurrence by predicting them. A voltage emergency predictor pre-

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 32

dicts voltage emergencies using voltage emergency signatures and throttles machine

execution to prevent them. Throttling is the act of slowing down machine execution

so that voltage recovers to its nominal level gracefully.

An emergency signature is an interleaved sequence of control-flow events and mi-

croarchitectural events leading up to an emergency. A voltage emergency signature is

captured when an emergency first occurs (tolerated) by taking a snapshot of relevant

event history and storing it in the predictor. Our emergency tolerating checkpoint-

recovery mechanism then rolls the machine back to a known correct state and resumes

execution. Subsequent occurrences of the same emergency signature cause the pre-

dictor to throttle execution and prevent the impending emergency. By doing so, the

predictor enables aggressive timing margins in order to maximize performance, even

in the presence of emergencies.

The cost of signature-based throttling is fewer than 10 cycles, which is much

cheaper than the thousands of cycles that it costs to rely on the general-purpose

checkpoint-recovery mechanism. This middle layer plays an important role in our

hardware-software co-design solution to voltage noise, as it serves two purposes: First,

it serves as a low-cost profiling hardware mechanism, determining when to invoke

software. Therefore, it allows us to amortize the cost of invoking software. Second,

it acts as a cheaper fail-safe alternative when software cannot eliminate the voltage

emergency.

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 33

2.3.3 Elimination

While avoidance is cheaper than tolerating emergencies, software can eliminate

emergencies altogether. Software has a much more global view of execution than the

hardware does. For instance, it knows what threads are running on a chip, and it can

also know the instructions that a program is executing. By relating emergencies to

such high-level information, software can relieve the hardware of repeatedly taking

action to ensure correctness, be it via either tolerance or avoidance.

Software can handle recurring emergency activity better than hardware. Consider

a frequently executing loop that experiences recurring emergencies every iteration of

the loop simply because the program is taking the same error-prone code path every

iteration. Such a scenario can be handled by software, rather than hardware. Hard-

ware would repeatedly tolerate, or throttle execution to ensure correctness to avoid

or tolerate that emergency. But an intelligent software piece, like a compiler, is ca-

pable of performing fine-grained instruction-level tweaks to eliminate the emergency.

A compiler typically has several options when choosing the order of instructions, and

many of the options result in equally performing software. Therefore, in the case

of this voltage emergency-prone loop, the compiler can rearrange instructions along

the problematic code path to avoid recurring emergency activity without impacting

performance.

In multi-core chips, an operating system thread scheduler can smooth out voltage

noise from threads that are interfering with one another. Thread scheduling is an

important topic of study in symmetric or chip multiprocessors. Prior work demon-

strates that threads can hurt each other’s performance by destructively interfering

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 34

with one another [50, 25, 38, 37, 56, 23, 22]. For instance, scheduling two cache in-

tensive programs together is bad, since the cache resource becomes a bottleneck and

both programs suffer. It is better to schedule one of those cache intensive programs

with another program that is more CPU-bound (i.e., less intensive on the cache),

resulting in less interference and better overall system performance.

We find that similar thread interference also exists in the context of voltage noise.

The number of emergencies varies depending on which threads are co-scheduled to-

gether. Therefore, a noise-aware operating system thread scheduler can schedule

threads intelligently to minimize the number of emergencies. By reducing emergen-

cies, the overall throughput of a system increases due to fewer rollbacks; in our system

we assume a global checkpoint-recovery mechanism across all cores sharing a power

supply source.

However, we must be judicious in our use of software. Invoking software is expen-

sive, costing several thousands of cycles. Thus, it is important to carefully determine

when it is economical to pay the penalty of invoking software. Moreover, software

might not always be able to eliminate every emergency. In both of these cases, our

low-cost avoidance mechanism becomes invaluable. It allows us to cheaply profile

and prevent emergencies, while relying initially on the general purpose checkpoint-

recovery hardware to identify recurring signature patterns.

Voltage noise management will be a considerable challenge in the future. In-

creasing processor currents, decreasing supply voltages, and a significant increase in

current variability due to power saving techniques all contribute to this issue. Our

holistic hardware and software design enables aggressive voltage margins, mitigating

Chapter 2: Voltage Noise: Why It’s Bad and What to Do About It 35

the inefficiencies of worst-case voltage margins and overcoming the limitations of prior

work, based on tolerance, avoidance and elimination.

Chapter 3

Tolerating Voltage Noise to Learn

Activity Leading to Emergencies

Contents
3.1 Characterizing Voltage Droops and Overshoots 39

3.1.1 Changes in Current . 39

3.1.2 Effect of Stalls . 41

3.1.3 Workload Differences . 45

3.2 Exploiting Recurring Activity as Voltage Emergency Sig-
natures . 47

3.2.1 Contextual Information . 49

3.2.2 Microarchitectural Events and Program Control Flow In-
terleaving . 51

3.2.3 Repeatability and Stability 52

3.3 Capturing Voltage Emergency Signatures 52

3.3.1 Emergency Detection . 53

3.3.2 Fail-safe Recovery Mechanism 53

3.3.3 Activity History Tracking 54

3.4 Semantics of Voltage Emergency Signatures 56

3.4.1 Contents . 56

3.4.2 Size . 58

36

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 37

3.4.3 Coverage . 59

3.5 Accuracy of Voltage Emergency Signatures 60

3.5.1 Robustness . 60

3.5.2 Retargetability . 61

3.5.3 Lead time . 62

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 38

Rather than trying to avoid voltage swings beyond certain operating margins that

guarantee correctness and reliability, in this body of work we rely on a hardware mech-

anism that allows such voltage emergencies to occur. When they do, the architecture

has a built-in mechanism to recover processor state. In this way we (1) always guar-

antee execution correctness, and (2) have a means of identify leading indicators of

dangerous voltage fluctuations, or that which we refer to as voltage emergencies.

We start off by first understanding voltage fluctuations within a production pro-

cessor using our measurement setup (see Appendix A). In this chapter, we limit our

discussion to studying voltage noise in a single core, since it simpler and provides a

more comprehensible starting point. Subsequent chapters tackle multicore systems.

Processor stalls cause voltage to fluctuate. We study events that cause stalls

like branch mispredictions and cache misses. By studying them in isolation using mi-

crobenchmarks, we are able to classify their effect on voltage. However, real programs

experience an intermingling of stalls that are more convoluted and harder to digest.

Nevertheless, we successfully construct a strong relationship between processor stalls

and the amount of voltage swing a program experiences during its execution. We use

performance counters to determine stalling activity. But this analysis is at a very

coarse granularity, giving us insight only at the granularity of several tens of seconds.

Finer timescales lead to measurement error (see Appendix A).

To gain further clarity into the interactions between those microarchitectural

events that cause voltage noise and program code that influences such activity, we

switch to our simulation framework (see Appendix B) to provide more depth. By ob-

serving activity at a cycle-by-cycle granularity, we conclude that it is the interleaving

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 39

of program control and microarchitectural events that are leading indicators of volt-

age emergencies. These voltage emergency signatures allow us to predict emergencies,

which is useful for both avoidance (Chapter 4) and elimination (Chapter 5). But we

must first capture them. We demonstrate our approach to tracking these signatures

using specialized, yet simple logic called the event history register (EHR), showing

that certain flavors of voltage emergency signatures yield better prediction accuracy

than others. Accuracy is our quantitative metric of evaluating how representative a

certain signature is of the emergency it represents.

3.1 Characterizing Voltage Droops and Overshoots

In this section, we demonstrate measurements of voltage noise in a production

chip. We show oscilloscope snapshots in response to certain current stimuli that

we create either explicitly by toggling power circuitry, or by inducing execution stalls

within the processor. We then stitch these microbenchmarking effects to noise profiles

of full programs, showing that there is a strong correlation between stalling behavior

and voltage noise. Our effort is first in demonstrating that such a working relationship

exists in a production processor. In the next section, we investigate this relationship

deeper, examining the interactions between program control flow, microarchitectural

events and voltage noise.

3.1.1 Changes in Current

To demonstrate that even processors in production experience large voltage swings,

we reset the processor as it is idling, running the idle loop of the operating system.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 40

The reset signal turns off the processor and turns it back on immediately. During

this toggle period, the processor invalidates all its internal caches without writing

anything back to memory and reinitializes itself. Consequently, the processor draws

a significant amount of current within a very short period of time. Impedance in the

power delivery network temporarily causes a voltage “droop” (a transient expression

for drop).

We observe the effect of a reset signal on the core’s supply voltage in Figure 3.1a.

There is a sharp 150mV voltage droop for about five nanoseconds towards the left side

of the image. If core supply voltage droops for a more extended period of time, the

processor may experience circuit delays that cause timing closure problems. In our

case the processor does not experience a timing glitch because production processors

are made robust against such reset signals using de-coupling capacitance (see Chap-

ter 2.2.1). But the processor cannot boot up if we were to remove the de-coupling

capacitance. Extremely large voltage droops over an extended period of time, such as

the 350mV drop we see over 20 nanoseconds in Figure 3.1b, lead to timing violations

that prevent the processor from even booting up. The large overshoot that follows

the droop can damage transistors, shortening the lifetime of the processor.

While reset signals cause very large voltage swings, it is not the only reason voltage

can droop or overshoot. We find similar behavior in the presence of microarchitectural

events. Events can cause stalls during execution, forcing sharp changes in processor

current draw. Such sudden changes may translate to large voltage swings, depending

on a variety of factors which we explore next.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 41

(a) Intel CoreTM2 Duo with all
package capacitors.

(b) Intel CoreTM2 Duo with no
package capacitors.

Figure 3.1: (a) Voltage droop in a Intel CoreTM2 Duo processor when the processor
is reset. A reset signal causes a large voltage droop, since current rapidly jumps from
some nominal value to zero and back up. This leads to a voltage droop because of the
impedance in the power delivery network. (b) A similar reset test with no package
capacitors to protect against voltage drops causes a much larger voltage droop that
prevents the processor from startup because of timing violations.

3.1.2 Effect of Stalls

Microarchitectural execution behavior causes current fluctuations within a proces-

sor that can lead to voltage swings. In our study, we considered several microarchi-

tectural parameters, such as the reorder buffer, the instruction fetch queue, and the

load/store queue, along with microarchitectural events like cache misses and pipeline

flushes (caused by branch mispredictions). For clarity and to provide deep insight, in

this section we constrain our discussion to the impact of microarchitectural events.

In the following section, we broaden our discussion to encompass all events.

We hand-crafted microbenchmarks that cause cache misses, translation lookaside

buffer (TLB) misses and branch mispredictions to study their effect on processor

current and voltage. Table 3.1 shows how we construct these microbenchmarks.

Please refer to the table for details. We construct our microbenchmarks such that

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 42

(a) Voltage snapshot show-
ing recurring TLB misses,
including the regulator’s
switching frequency.

(b) Closeup of one of the
TLB overshoots from (a).

(c) Overshoot followed by
a successive droop due
to consecutive L1 cache
misses.

Figure 3.2: Snapshots of voltage within the processor, as we execute microbenchmarks
that stall processor activity every few cycles, leading to voltage swings.

the processor is experiencing nothing but the expected stalling effects over several

seconds in time. Each microbenchmark kernel is put in a loop, so that the activity is

recurring long enough to study it.

To prove that our microbenchmarks exhibit steady and repeatable behavior for

measurements, Figure 3.2a presents a snapshot of voltage within the processor as it

is experiencing recurring TLB misses. The sawtooth-like triangular waveform that is

about two periods longs is the voltage regulator’s switching frequency, or regulator

noise. We are not interested in this, and consider it as background activity. But

embedded within that same waveform are recurring high frequency voltage spikes or

overshoots that correspond to our TLB Invalidation microbenchmark.

A TLB miss causes voltage within the processor to swing because a TLB miss stalls

processor execution briefly, causing a momentous drop in current. As a consequence,

voltage overshoots because of impedance. We see this overshoot in Figure 3.2b.

We observe similar effects with other microarchitectural events, but with the ex-

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 43

Microbenchmarks Description

L1 Cache Miss Generates L1 cache misses using back-to-back-loads and pointer-chasing. Pre-
initializes an array larger than the cache to form a circular linked list of memory
addresses, such that accessing one memory location yields the next memory
location to load from. The offset between subsequent accesses determines the
frequency of cache misses, and thus ideally matches the cache’s line size. Such
back-to-back loading of memory locations serializes execution and renders out-
of-order execution and memory disambiguation ineffective, thus allowing clean
noise measurement of individual cache miss events:
register char **ptr = &array[0];
while (ptr != NULL)

ptr = (char **)*ptr;

L2 Cache Miss Uses the same back-to-back loading technique that the L1 cache miss mi-
crobenchmark uses to force second level cache misses. The array size and memory
access offset are adjusted to the second level cache’s size and its corresponding
line size, respectively. Alternatively, certain x86 processors support the CLFLUSH
instruction. However, this does not guarantee serialization.

TLB Invalidation Re-loads the cr3 register to purge the virtual to physical address mappings from
the TLB:
asm ("movl %%cr3, %0;

movl %0, %%cr3;
: "=r" (tmpreg) :: "memory");

An alternative approach is to use the INVLD instruction to purge the entry corre-
sponding to the page containing the instruction. Re-execution of the instruction
forces a stall, as a result of the TLB miss. Either way, this microbenchmark
requires Ring 0, or root, privilege for execution.

Branch Misprediction An if-then-else statement whose condition variable depends upon the output of
a randomization function (e.g., rand() from standard C library) to thrawt the
branch predictor from successfully knowing the outcome of a branch, thus forcing
pipeline flushes. To avoid function call perturbations during measurement, we
pre-initialize an array that is larger than the predictor’s history register with values
from rand(). As the static recurring pattern does not fit in the history register,
performance counter data indicates 50.59% branch misprediction on the if-then
edge and the remainder on the else path.
if (array[i] & 0x1)

...
else

...

Table 3.1: Descriptions for microbenchmarks that cause observable voltage swings.
All microbenchmarks run in a loop, providing us sufficient time to make measure-
ments.

ception that some other events can induce a correspondingly strong voltage droop

following an initial overshoot. Consider the L1 Cache Miss microbenchmark from Ta-

ble 3.1. This microbenchmark serializes processor execution by repeatedly accessing

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 44

Figure 3.3: Peak-to-peak voltage swing analysis because of microarchitectural events
that cause sudden stalls within the processor. These results are relative to an idling
system.

cache lines that always miss in the L1 cache, but hit in the L2 cache. Pipeline activ-

ity ramps down during the time it takes to service the L1 miss. Current draw drops

sharply, leading to an overshoot (see Figure 3.2c). However, after the L1 miss data

is available, functional units become busy and there is a sudden increase in current

activity. This steep increase in current causes the voltage to droop, which is also

observable in Figure 3.2c.

From these microbenchmarks, we learn that the effects on voltage vary depending

on the event. But in addition to the subtle differences between voltage overshoots and

droops, the magnitude of the voltage swing also varies depending on the event. We

summarize the magnitude of voltage swing relative to an idling system. In addition

to the events discussed thus far, we studied the effect an L2 Cache Miss event and

Pipeline Flush event have on voltage. Figure 3.3 shows that branch mispredictions

cause the largest amount of voltage swing compared to other events (over 1.7x the

effective nominal voltage band that includes the regulator noise).

Our evaluation using microbenchmarks allowed us to distinctly understand how

specific events cause voltage to swing. But real programs experience a confluence of

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 45

events. Therefore, it is imperative to also gain insight into how the intermingling of

microarchitectural event activity affects voltage swings.

3.1.3 Workload Differences

Every program during execution experiences a unique mix of microarchitectural

event activity. Therefore, the amount of voltage swing per program will vary substan-

tially based on the program’s activity. In this section, we will validate this claim, in

addition to showing a relationship between program stall behavior and the amount of

voltage droop. While in the previous section we discuss processor stalls in the context

of a few select microarchitectural events, here we take a more holistic approach. For

example, we look at front-end stalls as a whole, rather than looking at individual

microarchitectural events like L1 or L2 cache misses or pipeline flushes.

In order to understand how voltage droops vary across programs, we define the

term “Droops per 1K cycles.” A droop here refers to a voltage dip below idling

conditions when only the idle loop of the operating system is running. No work

is being done during this process. Therefore, it represents steady microarchitectural

state for the purposes of our evaluation. We analyze droops in this aggregate droops

per 1000 clock cycles form, since it is a form of metric commonly used to characterize

the access behavior of workloads (like cache misses).

We quantify voltage droops across the CPU2006 benchmark suite in Figure 3.4.

The data indicates that droops vary largely across programs. The trend is that

programs fall into one of three categories: around 40, 80 or 110 droops per 1K cycles.

But interestingly, we find that the number of droops has a relationship with the raw

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 46

Hardware Performance Counter Description

RESOURCE STALLS.BR MISS CLEAR Stalls due to branch misprediction.
RESOURCE STALLS.FPCW Stalls due to floating point unit (FPU) control word write.
RESOURCE STALLS.LD ST Pipeline exceeded load or store limits.

RESOURCE STALLS.ROB FULL Reorder buffer (ROB) full stalls.
RESOURCE STALLS.RS FULL Reservation station (RS) full stalls.

Table 3.2: Breakdown of counters that define stall ratio (see Figure 3.4).

performance of the machine.

Based on our understanding of how microarchitectural event stalling leads to volt-

age swings, one can conclude that fewer stalls will result in a smaller number of droops.

In other words, if the machine utilization is good (high IPC), then the processor is not

stalling, and therefore the number of droops will be smaller. We should therefore be

able to construct a metric that captures machine performance, as a leading indicator

of voltage noise.

We introduce a metric called Stall Ratio to assist us in understanding the relation-

ship between processor resource utilization and voltage swings. It is a representation

of processor stalling activity. Stall ratio is a comprehensive metric including several

counters such as reorder buffer occupancy, reservation station usage, branch predic-

tion rate etc. Table 3.2 summarizes all the counters, and the behavior they repre-

sent/capture. We gather this metric for each workload using hardware performance

counters with the help of VTune [1].

We gathered the stall ratio corresponding to each program, and overlay it onto

the “Droops per 1K cycles” plot in Figure 3.4. The lineplot corresponds to stall ratio,

and its y-axis is on the right. From this overlay, we visually see a relationship between

voltage swing and stall ratio. Quantitatively, the correlation between droops and stall

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 47

Figure 3.4: Voltage droop characteristics of different programs. The figure illustrates
that the noise characteristics of programs vary based on their behavior, which we
capture with various hardware counters (see Table 3.2).

ratio is ∼97%; we normalize the correlation result to 1.0 at the maximum value where

both stalls and droops are most similar. This result confirms that machine utilization,

or more generally stalling activity of a processor is indicative of the amount of droop.

Stall ratio is a good leading indicator of the amount of droop a program expe-

riences. However, it falls short of helping us understand how program control flow

influences voltage swings. We explore the relationship between microarchitectural

events and program control flow next.

3.2 Exploiting Recurring Activity as Voltage Emer-

gency Signatures

Programs are highly repetitive. Repeating code patterns give rise to repeating

patterns of memory access and data flow through the processor. As we have shown

using measurements, and Gupta et al. [28] have shown using simulation, repeating

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 48

sequences of processor microarchitectural event activity have the potential to cause

dangerous voltage swings. What we are yet to understand is when microarchitectural

events are benign versus harmful. In other words, there is no guarantee that a pipeline

flush or any recurring event will always cause large intolerable voltage swings. From

here on, we refer to such dangerous voltage fluctuations as voltage emergencies. In

this section, we show it is possible to predict the likelihood of an emergency more

accurately by taking into account the context leading up to the emergency.

We explore the working principles underlying voltage swings occurrence using

a specific, but real-life, scenario from benchmark 403.gcc. We switch over to our

simulation framework for this part of the work (see Appendix B), since it allows us

to monitor both microarchitectural stalls and program control flow precisely in order

to better understand voltage swings.

A microarchitectural event acting in complete isolation only sometimes causes an

emergency by itself. To help illustrate when an event causes an emergency, Figure 3.5

shows pipeline activity over 880 cycles for benchmark 403.gcc while it is executing

the nested loop illustrated in Figure 3.6. Figure 3.5 illustrates pipeline flushing due

to branch mispredictions using a vertical bar in the Flush subgraph. The number

next to each vertical bar in the Flush graph corresponds to the basic block number

in Figure 3.6 containing the mispredicted branch. Other relevant pipeline activities

across different parts of our simulated microprocessor ranging from cache access, to

functional unit usage, to the rate at which instructions are being dispatched, issued

and committed are also shown for the same time frame. The resulting current draw

and voltage activity are also shown. Lastly, Figure 3.5 shows three distinct phases A,

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 49

Figure 3.5: Voltage emergencies are associated with recurring activity (phases A, B
and C) over 880 cycles. The numbers next to the vertical bars in the Flush graph cor-
respond to the basic block number in Figure 3.6 containing the mispredicted branch.

B and C (see top of figure) and each phase terminates at an emergency (see bottom

of figure).

3.2.1 Contextual Information

Microarchitectural events perturb machine activity significantly, but by them-

selves are not responsible for voltage emergencies. Pipeline flush Event 2 in Figure 3.5

is an ideal candidate for illustrating this point. Event 2 in Phase A causes a voltage

droop a few cycles before Event 5 (also in Phase A), but it does not cause an emer-

gency. The same event, however, always causes an emergency in Phase B (at the end

of B). Understanding the processor activity leading up to these events explains this

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 50

0

1

2

3

5

4

6

7

Figure 3.6: An emergency prone nested-loop in function init regs of benchmark
403.gcc. init regs’s activity snapshot is shown in Figure 3.5.

inconsistent behavior. The Issue, as well as other rates prior to Event 2 are different

between Phase A and Phase B, so the perturbation effects of Event 2 are different be-

tween the phases. By comparison, pipeline flush Event 5 always occurs just prior to

an emergency in both Phase A and Phase C. Nevertheless, our argument that activity

prior to an event matters holds true. The voltage just prior to Event 5 in Phase A

is rising versus falling in Phase C. The latter occurs because the voltage is already in

flux due to the perturbation brought about by Event 2 in Phase B. For this reason,

any scheme attempting to characterize and exploit recurring patterns must take into

account the execution context preceding an emergency.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 51

3.2.2 Microarchitectural Events and Program Control Flow

Interleaving

Voltage emergencies are uniquely identifiable by tracking control flow instructions

and microarchitectural events in order of occurrence. Rapid fluctuations in a pro-

gram’s control and data flow and in its level of utilization of processor resources lead

to changes in current flow that induce large voltage swings. For instance, the distinct

current and voltage activity between phases A, B and C are the result of different con-

trol flow paths exercised by the program combined with the voltage droops induced

by pipeline flush Events 2 and 5. During the early part of Phase A, the program is

executing basic blocks 2→ 3→ 5 (from Figure 3.6) in a steady-state manner. The

stable and repetitive Issue rate pattern during the early part of Phase A in Figure 3.5

confirms this. Slightly past the midpoint of Phase A, the program switches control

flow from basic blocks 2→3→5 to basic blocks 2→5. This switch triggers a pipeline

flush to recover from speculatively executing incorrect code along Edge 2→3 to ex-

ecuting correct code along Edge 2→ 5. The activity on the recovery path following

the pipeline flush causes the voltage to droop slightly but not enough to violate the

operating margin (shown using Lower Operating Margin). After a few cycles, a mispre-

diction on basic block 5’s control instruction eventually leads to a voltage emergency.

So the emergency in Phase A is because of the activity including, as well as following,

basic blocks 2→3→5 combined with pipeline flush Events 2 and 5. In contrast, the

emergency in Phase B arises from executing basic blocks 2→3→4→5 followed by the

single flush Event 2. Consequently, tracking control flow sequence along with pipeline

flush events in order of occurrence yields two unique activity patterns representing

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 52

Phase A and Phase B.

3.2.3 Repeatability and Stability

Voltage emergencies, like program phases, are repetitive over a program’s lifetime,

which make them predictable. Consider the three phases illustrated in Figure 3.5.

The phases are recurring because execution sequence flows through phases A→B→C

and back to Phase A. A subsequent occurrence of the same phase leads to yet another

emergency. For instance, Event 2 always causes an emergency as execution flows

through phases B→ C, but not through phases A→ B. Thus, a pattern of voltage

emergency occurrence emerges. Identifying and exploiting such recurring activity is

the basis for predicting voltage emergencies in terms of program behavior, as well as

microarchitectural behavior.

3.3 Capturing Voltage Emergency Signatures

We refer to activity leading up to a voltage emergency as a voltage emergency sig-

nature. These signatures are the enabling mechanism behind effectively suppressing

emergencies, either at the hardware or software layer, as we will discuss in subse-

quent chapters. But first, we shall understand how to capture a voltage emergency

signature. This section describes the hardware necessary to capture program control

flow and microarchitectural event interleaving. Since voltage emergencies contribute

to timing faults, all logic capturing signatures must be designed carefully with suffi-

ciently conservative timing margins.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 53

3.3.1 Emergency Detection

Capturing a voltage emergency signature, with our scheme, requires an emergency

to occur at least once. This requires a mechanism to monitor operating margin

violations. We rely on a voltage sensor. The sensor is used to signal that an emergency

has occurred and the system ought to take appropriate actions.

3.3.2 Fail-safe Recovery Mechanism

Processor state is potentially corrupted as emergencies occur, since voltage emer-

gencies induce timing faults. So we rely on a fail-safe checkpoint-recovery mechanism

to recover from emergencies. The fail-safe mechanism initiates a recovery whenever

the sensor detects an emergency, and in that process also captures a voltage emer-

gency signature. Checkpoints can be taken at varying intervals (e.g., 10-1000 cycles).

We assume a 100-cycle rollback penalty.

Gupta et al. [30] have proposed a low-overhead implicit checkpointing scheme to

handle voltage emergencies by buffering commits until it is confirmed that no voltage

emergencies have occurred while the buffered sequence was in flight. While shown to

be effective, implicit checkpointing is specialized to a specific style of processor design

(i.e., out-of-order superscalar execution).

Instead, we propose relying on coarse-grained checkpoint-recovery that is already

shipping in today’s production systems [48, 9]. Researchers are proposing a broad

range of novel applications that use traditional checkpoint-recovery [54, 51, 39, 36,

47, 41]. With ever-increasing applications of this fail-safe mechanism, we believe

checkpoint-recovery will become part of future mainstream processors. However,

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 54

checkpoint-recovery alone as a solution for handling voltage emergencies is unaccept-

able since the overhead of tolerating repeated emergencies degrades performance.

We assume explicit-checkpointing is robust against sensor delays involving detec-

tion to notification time lag. Any checkpoint falling after an emergency, but before

its subsequent detection due to sensor delays, can be corrupt. Therefore, providing

correct recovery semantics requires maintaining two checkpoints.

3.3.3 Activity History Tracking

Event history tracking is a well-studied topic in the area of branch prediction.

Our contribution is unique in that we can identify the information flow that precisely

captures activity prone to voltage emergencies. We rely on a shift register to capture

the interleaved sequence of control flow instructions and architectural events that give

rise to an emergency. Figure 3.7 portrays a high-level schematic of an example 4-entry

signature capturing mechanism (a thorough evaluation of signature details will follow

in Section 3.4). As a control flow instruction is executed or a microarchitectural

event occurs, the corresponding instruction address or event type (e.g., pipeline flush

or L2miss) encoding is shifted into the event history register; the oldest entry is

simply discarded. Whenever an emergency is detected, a snapshot of the event history

register is captured instantly (as illustrated using the dotted lines). The captured

snapshot is a voltage emergency signature.

The interleaving of events in the event history register is important for capturing

the dynamic current and voltage activity resulting from program interactions with the

underlying microarchitecture (as described in Section 3.2). The purpose of tracking

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 55






   









Figure 3.7: Event history register for tracking the interleaving sequence of program
control flow and processor events. A voltage emergency signature is a snapshot of the
register when an emergency occurs.

the instruction stream is to capture the dynamic path of a program. Consequently,

control flow instructions are ideal candidates for tracking a program’s dynamic exe-

cution path.

Figure 3.8 illustrates example snapshots of the emergencies shown in Figure 5.6

across phases A, B and C. The updates into a 4-entry wide event history register

are shown over time. At the point of the emergency in Phase B, the history register

contains the following (from oldest to most recent): two control flow instruction ad-

dresses (illustrated as BR) and an event encoding for the pipeline flush (illustrated

as 2), followed by another branch. It is important to never clear the event history

register after capturing a snapshot to maintain a rolling window of contextual infor-

mation. For example, the oldest BR in Signature C overlaps with the most recent

entry in Signature B.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 56

            



   

   

   












 

Figure 3.8: Overview of voltage emergency signatures. Taking snapshots of a 4-entry
event history register for emergencies illustrated in Figure 5.6 across phases A, B and
C.

3.4 Semantics of Voltage Emergency Signatures

We discuss factors that influence the quality of a voltage emergency signature,

such as the type and amount of information recorded. The function of a voltage

emergency signature is to precisely indicate whether a pattern of control flow and

microarchitectural event activity will give rise to an emergency. To evaluate the

effectiveness of different flavors of signatures, we define accuracy as the fraction of

predicted emergencies that become actual emergencies.

3.4.1 Contents

Information tracking in the event history register must correspond to parts of

the execution engine that experience large current draws, as well as dramatic spikes

in current activity. The event history register can collect the control flow trace at

different points in a superscalar processor: in-order fetch and decode, out-of-order

issue, and in-order commit. Each of these points contribute different amounts of

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 57

information pertaining to an emergency. For instance, tracking execution in program

order fails to capture any information regarding the impact of speculation on voltage

emergencies. Tracking information at the in-order fetch and decode sequence captures

the speculative path, but it does not capture the out-of-order superscalar issuing of

instructions.

The accuracies of different signature types are illustrated in Figure 3.9a, assuming

a signature size of 32 entries. Later in Section 3.4.2 we investigate the effect of tracking

more or less number of entries. Tracking committed control flow sequences in the

event history register gives an accuracy of only 40%. If the history register tracks

information at the decode stage, an accuracy of 72% is possible because the decode

stage captures the speculative control flow path. Accuracy improves further by 12%,

from 72% to 84%, if the history register tracks control flow at the issue stage, since

we can now capture interactions more precisely at the level of hardware instruction

scheduling and code executed along a speculative path.

Interleaving microarchitectural events with program control improves accuracy

even further, as processor events provide additional information about swings in the

supply voltage. For instance, pipeline flushes cause a sharp change in current draw as

the machine comes to a near halt before recovering on the correct execution path. The

last two bars of Figure 3.9a show accuracy improvements from adding microarchitec-

tural event activity to the event history register. The second to last bar represents

the effect of capturing events that have the potential to induce large voltage swings—

pipeline flushes and secondary (L2) cache misses. An improvement of five percentage

points is achieved by taking flushes and L2 misses into account (i.e., total accuracy

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 58

(a) (b)

Figure 3.9: Prediction accuracy improves as (a) signature contents represent machine
activity more closely and as (b) the number of entries per signature increases.

of 89%). Capturing the more frequently occurring events like DTLB and DL1 misses

contributes additional improvements of ∼4%. Microarchitecture perturbations result-

ing from instruction cache activity (i.e., IL1 and ITLB) are negligible and do not lead

to an improvement in accuracy.

From here on, we assume the event history register resides at the issue stage of

the pipeline and captures microarchitectural-event activity. More formally, the event

history register is updated whenever a control flow instruction is executed, along with

Level 1 and Level 2 cache and TLB misses. Lastly, pipeline flushes are also events

recorded in the event history register.

3.4.2 Size

Accuracy depends not only on recording the right interleaving of events, but also

on balancing the amount of information the event history register keeps. Accuracy

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 59

improves as the length of history register increases. However, it can be detrimen-

tal to increase the number of register entries beyond a certain count. Large num-

bers of entries in a signature can cause unnecessary differentiation between similar

signatures—signatures whose most recent entries are identical and whose older entries

are different, but not significantly so.

Figure 3.9b shows prediction accuracy improves as signature size increases. Accu-

racy is only 13% on average for a signature containing only 1 entry, which supports

our discussion earlier on that voltage emergencies do not solely depend upon the last

executed branch or a single microarchitectural event. It is the history of activity that

determines the likelihood of a recurring emergency. Prediction accuracy begins to

saturate once signature size reaches 16, and peaks at 99% for a signature size of 64

entries.

3.4.3 Coverage

For signatures to be effective and to amortize the cost of discovering signatures

at execution time, emergency-prone activity that signatures represent must be re-

curring. Figure 3.10 demonstrates that signatures are recurring, since the number

of new signatures we discover over time decreases. We capture this in the form of

Compulsory Misses. A compulsory miss occurs when we record a signature pattern for

an emergency that was previously unknown.

Figure 3.10 illustrates the percentage of new signatures over time (in terms of the

number of committed instructions). The dropping percentage of compulsory misses

over time demonstrates that the coverage of emergency-prone activity is increasing.

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 60

Figure 3.10: The number of new emergency signatures we discover over time
(Compulsory Misses) is decreasing, which indicates that signatures are recurring.

However, the number of misses does not asymptotically approach zero because we

continuously discover new signatures as the program goes through different activity

or phase changes.

3.5 Accuracy of Voltage Emergency Signatures

In this section, we demonstrate the robustness of signatures assuming a signature

size of 32 entries. We show that it is robust across different machine configurations

and power delivery subsystems with no need for fine-tuning. We also demonstrate

they are capable of anticipating emergencies some 16 cycles ahead of time with 90%

accuracy.

3.5.1 Robustness

Applications exhibit different characteristics that drive the machine into differ-

ent levels of activity and, therefore, varying rates of current draw. Figure 3.11 plots

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 61

Figure 3.11: In order to evaluate the robustness of voltage emergency signatures we
ran several benchmarks, including all the different input data sets provided by Spec
for the CPU2006 benchmark suite. We find that the prediction accuracy of voltage
emergency signatures consistently remains high across very different program types.

prediction accuracy across the spectrum of benchmarks from CPU2006. For bench-

marks with multiple inputs, we present the average prediction accuracy across differ-

ent inputs. The signatures enable high prediction accuracy with an average of 93%

and a median of 94%. Voltage emergency signatures are able to handle a range of

benchmarks from control-flow-intensive benchmarks like 403.gcc and 400.perlbench

to memory-intensive benchmarks like 429.mcf, and to 462.libquantum that exhibit a

large number of microarchitectural events such as cache misses. Overall, high predic-

tion accuracy is observed across both the integer and floating-point benchmarks.

3.5.2 Retargetability

Figure 3.12 shows prediction accuracy when we pair different power delivery pack-

ages Pkg 1, Pkg 2, and Pkg 3 with our baseline microprocessor design Arch 1 (see Ta-

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 62

ble B.1 in Appendix B for details), average prediction accuracy remains high (93%,

96%, and 95%, respectively) despite decreasing package quality. Signatures consis-

tently enable emergency prediction with over 90% accuracy without specialization. By

comparison, sensor-based schemes require careful configuration of soft thresholds [30].

When we pair package Pkg 1 with a simpler out-of-order processor Arch 2 (one with

the same structure as that in Table B.1, but with half-sized fetch and decode widths

and half-sized buffers, queues, and caches), the accuracy of our predictor still remains

high at 97%.

3.5.3 Lead time

Up to this point, voltage emergency signatures represent activity up until the

moment of an emergency. This is an optimistic assumption, allowing us to verify

the effectiveness of signatures as good leading indicators, or predictors of voltage

emergencies. However, real systems require non-zero lead times to account for circuit

delays in order to make effective use of signatures.

To experiment with these delay times, we erase trailing segments of emergency

signatures. Figure 3.13 shows accuracy slightly degrades from 93% as lead time

increases. However, even with 16 cycles of lead time, prediction accuracy remains

high at 90%. This indicates that signatures can anticipate emergencies 16 cycles

before an emergency is imminent.

As we demonstrate in the next chapter, it is possible to build intelligent hardware

prediction logic using voltage emergency signatures. These predictors can anticipate

impending emergencies effectively several cycles ahead of time using signatures (as we

Chapter 3: Tolerating Voltage Noise to Learn Activity Leading to Emergencies 63

Figure 3.12: The predictor sustains high
prediction accuracy across different of
power delivery packages and microarchi-
tecture combinations.

Figure 3.13: The predictor predicts
emergencies with sufficient time to ac-
tuate a throttling mechanism to avoid
an impending emergency.

see here), and therefore avoid them by slowing processor activity down appropriately

and just briefly. Since there is sufficient lead time, voltage recovers back to its nominal

level gradually. Therefore, the processor can continue executing smoothly without an

abrupt glitch. This is only possible because the prediction accuracy of signatures is

high.

Chapter 4

Avoiding Emergencies Using

Voltage Emergency Signatures

Contents
4.1 Signature-based Throttling to Prevent Emergencies . . 66

4.1.1 Voltage Emergency Predictor 66

4.1.2 Feedback Mechanism . 69

4.1.3 Throttling Actuator . 70

4.2 Efficiency Comparison to Prior Work 70

4.2.1 Predictors . 73

4.2.2 Sensor-based Schemes . 74

4.2.3 Checkpoint-recovery . 76

4.3 Implementing a Voltage Emergency Predictor 77

4.3.1 Content Addressable Memory (CAM) 78

4.3.2 Bloom filter . 78

4.3.3 CAM Bloom filter . 80

64

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 65

To reduce the gap between nominal and worst-case operating voltages, this chapter

introduces a voltage emergency predictor that identifies when emergencies are immi-

nent and avoids their occurrence. The emergency predictor anticipates dangerous

voltage swings using voltage emergency signatures. Using these signatures, the pre-

dictor throttles (or slows) machine execution to prevent emergencies. An emergency

signature is an interleaved sequence of control-flow events and microarchitectural

events leading up to an emergency. The predictor captures these voltage emergency

signature when an emergency first occurs by taking a snapshot of relevant event

history and storing it within its prediction tables. A built-in checkpoint-recovery

mechanism then rolls the machine back to a known correct state and resumes execu-

tion. Subsequent occurrences of the same emergency signature cause the predictor to

throttle execution and avoid the impending emergency. By doing so, the predictor

enables aggressive timing margins in order to maximize performance.

An effective emergency avoidance predictor mechanism must meet two criteria:

First, it must anticipate an emergency accurately to prevent performance degradation

due to unnecessary throttling. Second, it must initiate the emergency avoidance

mechanism with enough lead time to throttle and successfully prevent the emergency

from occurring. Voltage emergency signatures inherently demonstrate both these

traits, as shown in the previous chapter. This chapter starts off with Section 4.1

showing that it is possible to use the predictable behavior of voltage emergencies

to smooth away recurring emergency activity. The subsequent section, Section 4.2,

compares our new solution against prior work, demonstrating the robustness of our

predictor scheme. Finally, Section 4.3 concludes with implementation details.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 66























Figure 4.1: Overview of our voltage emergency predictor. The predictor relies on code
and microarchitectural event activity (i.e., voltage emergency signatures) instead of
current and voltage activity as prior schemes do to decide when to throttle. It is
trained using a fail-safe checkpoint-recovery mechanism.

4.1 Signature-based Throttling to Prevent Emer-

gencies

A voltage emergency predictor is a structure that learns recurring voltage emer-

gency activity during runtime and prevents subsequent occurrences of said emergen-

cies via execution throttling. By doing so, the predictor enables aggressive timing

margins in order to maximize performance. This section explains the components of

the predictor and the overall scheme that it fits within.

4.1.1 Voltage Emergency Predictor

Figure 4.1 is a block diagram of the overall scheme. The Voltage Emergency Pre-

dictor monitors control flow and microarchitectural events and keeps track of these

voltage emergency signatures that lead to emergencies. The predictor captures these

signatures just before the Checkpoint-recovery block initiates a rollback. Voltage sen-

sors scattered across the chip trigger the checkpoint-recovery rollback signal whenever

voltage droops below the minimum operating voltage margin. Checkpoint-recovery

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 67

mechanism rolls the machine back to a known correct state after an emergency oc-

currence and resumes execution.1 Subsequent occurrences of the same emergency

signature cause the predictor to throttle execution and prevent the impending emer-

gency. The predictor does this by invoking the Actuator, telling it to slow machine

execution, which allows voltage to recover back to its nominal level gradually. Unlike

prior work, the prediction-based approach allows the microprocessor to operate with

margins much tighter than otherwise possible.

A voltage emergency predictor outperforms previously proposed architecture-centric

techniques [26, 34, 43, 44] that rely on voltage sensors to detect and react to emer-

gencies via throttling. Prior schemes detect emergencies by solely relying on voltage

sensors. These voltage sensors monitor the supply voltage for specific soft threshold

crossings. Whenever the supply voltage falls below the soft threshold setting of a sen-

sor, the machine throttles execution in pursuit of emergency prevention. But delay in

detection and soft threshold settings can severely impact or limit how effective these

sensor-based schemes are.

Prior schemes cannot always guarantee correctness without incurring large perfor-

mance penalties. Aggressively setting the soft threshold close to the operating margin

limits time available to throttle and successfully prevent an emergency. Alternatively,

setting the threshold too conservatively leads to unnecessary throttling that degrades

performance. Not every conservative soft threshold crossing eventually crosses the

lower operating voltage margin.

Figure 4.2 illustrates why the predictor outperforms sensor-based throttling. As

1Please refer back to the previous chapter for specific details on capturing voltage emergency
signatures.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 68

Figure 4.2: The voltage waveforms help illustrate how the predictor throttles ex-
ecution with sufficient lead time to prevent emergencies instead of relying on soft
thresholds. The predictor is therefore able to prevent emergencies better.

soon as the predictor identifies a voltage emergency signature, the predictor starts to

throttle execution with sufficient lead time to prevent an emergency from occurring.

The predictor recognizes and tracks patterns of emergency-prone activity to proac-

tively throttle execution well before an emergency can occur. In contrast, sensor-based

throttling, corresponding to waveform Throttled Execution (Sensor) from Figure 2.6b,

fails to avoid the emergency with aggressive soft threshold settings. Relaxing this

soft threshold allows more detection and throttling time, but the system incurs large

performance penalties due to false warnings.

An additional benefit is that our voltage emergency predictor does not require

fine tuning based on specifics of the microarchitecture nor the power delivery sub-

system, as is the case with sensor-based schemes. The current and voltage activ-

ity of a microprocessor are products of machine utilization that are specific to the

workload’s dynamic demands. Relying on voltage emergency signatures allows the

predictor to dynamically adapt to emergency-prone behavior patterns resulting from

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 69

the processor’s interactions with the power delivery subsystem without having to be

preconfigured to reflect the characteristics of either.

4.1.2 Feedback Mechanism

Voltage emergency signatures are dynamic and, as such, the overall scheme re-

quires that the predictor discovers emergency signatures at runtime. Initially, the

predictor does not know any emergency signatures. The predictor detects emergen-

cies as margin violations occur at run-time. Since an emergency can potentially cor-

rupt machine state, the predictor relies on checkpoint-recovery to recover and resume

execution.

Detecting an emergency using checkpoint-recovery is robust since the predictor

may occasionally mispredict, thereby allowing an emergency to corrupt execution.

The predictor cannot prevent all emergencies. In such cases, checkpoint-recovery

acts as a fail-safe mechanism. It recovers processor state and the machine incurs a

rollback penalty.

However, our experimental data indicates that the number of checkpoint-recoveries

necessary is small. In tests, only ∼1% of emergencies result in rollback penalties

and all other emergencies are avoided successfully. In other words, the predictor is

very good at preventing emergencies. Over time, the predictor collects a history of

emergency-prone activity and uses this history to successfully prevent future emer-

gencies via throttling.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 70

4.1.3 Throttling Actuator

Predictor designers can choose the flavor of throttling they wish to implement.

The choice may vary depending upon the margin setting and the aggressiveness

of the underlying microarchitecture. Power hungry cores require aggressive throt-

tling. Previously proposed throttling solutions range from frequency throttling, to

pipeline freezing/firing, to issue ramping, and altering the number of accessible mem-

ory ports [26, 34, 44, 43].

The benefit of using the voltage emergency predictor to trigger the actuator is

that it does not require fine tuning based on specifics of the microarchitecture nor the

power delivery subsystem. But such is the case with reactive sensor-based schemes.

According to prior work, the throttling mechanism must respond fast enough to

prevent the emergency, especially considering that sensor delays are a large component

of the throttling actuation loop [30]. Therefore, the choice of throttling for sensor-

based schemes will depend upon how quickly the sensors can detect and identify an

impending emergency. The choices are limited, as compared to our scheme which

can anticipate emergencies with 90% accuracy even some 16 cycles ahead of time

(see Section 3.5.3).

4.2 Efficiency Comparison to Prior Work

An aggressive reduction in operating voltage margins can translate to higher per-

formance or higher energy efficiency. Since performance and power are inextricably

tied, this section focuses on clock frequency performance improvements for a proces-

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 71

sor configuration that is representative of a typical out-of-order superscalar processor

like the Pentium 4 microarchitecture design. Assessing performance also enables

straightforward accounting of penalties resulting from throttling and rollbacks.

This section evaluates the maximum attainable performance within the context of

all runtime costs for our scheme and compare to a variety of idealized and practical

approaches. More specifically, this section compares the signature-based predictor to

a variety of other schemes that also use throttling and/or checkpoint-recovery. Initial

analysis makes optimistic assumptions about hardware implementation of the voltage

emergency predictor, but subsequently we explore design tradeoffs, showing that a

resource-constrained predictor achieves performance improvements. All schemes as-

sume a half-rate throttling mechanism that gates every other clock cycle. For sensor-

based schemes, we assume sensors are ideal with zero delay, and can instantly react

to either resonant or single-event-based voltage emergencies. We also test them with

respect to tolerable delays. For our predictor, we assume an unbounded prediction

table with a voltage emergency signature predictor with 16 cycle lead time.

Worst-case Operating Voltage Margin. Designers typically build in conser-

vative margins (guardbands) to safeguard against potentially large voltage dips that

can lead to timing violations. Such margins translate to clock frequency reductions

and performance loss. Recent papers on industrial processor designs have shown that

15% to 20% operating voltage margins would be required to protect against voltage

emergencies [33, 17]. Similarly, our setup experiences a worst-case droop of 13.5%.

Voltage Margin to Frequency Scaling. The roughly linear relationship be-

tween operating voltage and clock frequency facilitates translation of voltage margin

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 72

reductions into performance gains. Based on detailed circuit-level simulations of an

11-stage ring oscillator consisting of fanout-of-4 inverters, we observe a 1.5x relation-

ship between voltage and frequency at the PTM 32nm node [55]. This relationship

is consistent with results reported by Bowman et al. [17], which show that a 10%

reduction in voltage margins leads to a 15% improvement in clock frequency.

While the evaluation in this section relies on a 1.5x voltage-to-frequency scaling

factor, we also see a disconcerting trend across technologies. Simulation results re-

veal voltage-to-frequency scaling factors of 1.2x, 1.5x, 2.3x, and 2.8x for PTM nodes

at 45nm, 32nm, 22nm, and 16nm, respectively. Given a slowdown in traditional

constant-field scaling trends, sensitivity of frequency to voltage is growing, which

increases the need for techniques that can efficiently reduce voltage noise in future

processors.

Based on the 1.5x scaling factor, a 4% operating voltage margin corresponds to

a 6% loss in frequency. Similarly, a conservative voltage margin of 13.5%, enough

to cover the worst-case dips observed, leads to 20% lower frequency. If we take

this conservative margin as the baseline for comparisons and the 13.5% margin can

reduce to 4% while avoiding voltage emergencies, the corresponding clock frequency

improvement suggests system performance gains of 17.5%. This sets the upper bound

on maximum performance gains achievable. We make the simplifying assumption that

frequency improvements directly translate to higher overall system performance.

Calculation of performance gains shown for each scheme begins with the maxi-

mum 17.5% gains possible, which then scales down by accounting for all performance

overheads. Again, a conservative voltage margin of 13.5% allows for emergency-free,

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 73

Figure 4.3: Performance gains because of reducing the voltage margin from a con-
servative 13.5% (assuming the worst-case voltage swing) to an aggressive 4% with
different fail-safe mechanisms to handle voltage emergencies. The dotted line indi-
cates the ideal gain from reducing the margin.

lower-frequency operation and is the common baseline for all comparisons. Figure 4.3

shows the performance gains for the different schemes while Figure 4.4 breaks down

the associated penalties into throttling and rollback costs.

4.2.1 Predictors

This section begins with an ideal oracle predictor evaluation. It is an important

comparison point. An oracle predictor sets the upper bound on the potential benefits

of all other prediction-based schemes.

Oracle Predictor. An oracle predictor throttles exactly when an emergency is

about to occur, and it always prevents the emergency. It does not waste throttles

nor does it incur rollback penalties. By removing all voltage emergencies, it gives the

best performance gain achievable by a predictor (14% in Figure 4.3), while incurring

only 2.9% throttling overhead (see Figure 4.4).

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 74

Figure 4.4: Breakdown of the throttling and rollback costs associated with achieving
the gains shown in Figure 4.3 across the different schemes.

Voltage Emergency Signature-based Predictor. The signature-based pre-

diction scheme incurs total performance overhead of 5% on average across all bench-

marks. This overhead includes the rollback cost for detecting emergencies, as well as

subsequently throttling to avoid them. The rollback penalty for discovering signatures

is ∼1.2% and the throttling penalty is ∼3.8%, as the breakdown in Figure 4.4 shows.

This slight overhead translates to performance gain of 12.3% relative to our baseline,

which is just 2.2 percentage points less than the oracle predictor despite rollback costs

for discovering signatures at execution time. The overhead is low since the predictor is

very good at preventing emergencies once it learns the recurring emergency signature

patterns.

4.2.2 Sensor-based Schemes

Ideal Sensor. Still using a 4% operating margin as the hard lower operating

voltage margin, we evaluate sensor-based schemes for two soft voltage threshold set-

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 75

tings, a conservative threshold of 2% and an aggressive one of 3%. We optimistically

assume that the sensor has no delay and that all emergencies that would occur after

voltage crosses the soft threshold are prevented (i.e., there is no rollback cost). Note

that an actual sensor would have a delay of several cycles and so would give worse

performance results (as we discuss below).

Despite optimistic assumptions about sensor delay, performance gains for the 2%

and 3% soft thresholds are only 2.2% and 9.0%, respectively. Gains for the sensor-

based schemes are low because of the high fraction of benign soft threshold crossings

that lead to unnecessary throttling penalties, as shown earlier in Figure 2.7b.

Sensor-based Throttling with Fail-safe Recovery. We extended the sensor-

based scheme with checkpoint-recovery to test whether we can leverage the simpler

sensor-based mechanism by combining it with a fail-safe guarantee to protect against

those emergencies that go undetected due to delay. We evaluated delay times of

5-cycle and 8-cycles.

Our results in Figure 4.3 indicate that we cannot achieve performance gains by

extending sensor-based technology with checkpoint-recovery. Both the 2% and the

3% soft threshold schemes suffer from negative gains. The gain with a 5-cycle delay is

-9%, and the gain drops further to -18% as delay increases to 8 cycles. Delay causes

a large fraction of emergencies to be missed. Therefore, Figure 4.4 shows that the

system experiences high rollback cost because the processor must frequently recover

previous safe state.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 76

4.2.3 Checkpoint-recovery

Explicit Checkpoint and Recovery. Gupta et al. propose the use of check-

pointing specifically for the purpose of handling voltage emergencies [30]. They

demonstrate that explicit checkpoint-recovery schemes cannot be directly applied to

handling voltage emergencies due to their high rollback costs. The system experiences

a -13% performance gain when using an explicit checkpoint-recovery mechanism that

has a 100-cycle rollback penalty. These results confirm prior work.

Delayed Commit and Rollback. To overcome limitations of explicit checkpoint-

recovery, Gupta et al. propose an implicit checkpointing scheme called DeCoR that

speculatively buffers register file and memory updates until it has been verified that

no emergency has occurred during a period long enough to detect one [30]. The com-

mit proceeds as usual unless an emergency is detected, in which case the machine rolls

back and resumes execution at a throttled pace. This system assumes a 5-cycle sensor

delay for DeCoR to detect emergencies, representing the best case as demonstrated

by its designers.

DeCoR’s performance gain is 13.0%. The signature-based predictor outperforms

DeCoR, but only slightly. However, the benefits of using a signature-based predic-

tor outweigh using DeCoR for a general-purpose processor design. DeCoR’s implicit

checkpointing requires changes to traditional microarchitectural structures. In com-

parison, coarse-grained checkpoint-recovery is already shipping in production sys-

tems [48, 9] and can serve multiple purposes ranging from boosting processor per-

formance [51, 39, 36] to fault detection [47] and debugging [41]. A signature-based

predictor leverages the coarse-grained checkpoint-recovery hardware, thereby retain-

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 77

ing all the benefits of coarse-grained checkpoint-recovery while also reducing voltage

emergencies.

4.3 Implementing a Voltage Emergency Predictor

Up to this point, prior evaluation assumes unbounded or infinite resources for

matching voltage emergency signatures. This section discusses implementing the

predictor under resource constraints. First, we discuss a Content Addressable Memory

(CAM) approach, but because this requires an impractically large 64KB CAM to

achieve good performance, we subsequently evaluate the more space-efficient Bloom

filter structure.

A prediction table is a hardware structure for recognizing voltage emergency sig-

natures. Lookups in the prediction table happen whenever the processor updates the

contents of the event history register. The processor combines the event sequence from

the history register with the address of the last issued branch instruction to form a

signature, and then tries to match that signature in the prediction table. If the match

succeeds, the processor throttles execution to prevent a potential emergency.

Prediction table management takes place by a software component in firmware.

The use of firmware to manage the prediction table is consistent with systems in which

firmware manages energy and deals with processor design errors [24, 42, 52, 46]. When

an emergency occurs, the emergency predictor firmware is responsible for managing

the signature.

To avoid large space overheads, a realistic predictor implementation uses a com-

pact 3-bit encoding per signature entry regardless of the implementation. This encod-

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 78

ing captures processor events and it records the outcome of each conditional branch

(fall-through or taken). But encoding causes aliasing between signatures. Therefore,

an encoded signature also contains the program counter for the most recently issued

branch—the anchor PC. Combining an anchor PC with branch outcomes gives com-

plete path information for a signature. The 3-bit encoding compactly captures all

of the relevant information consisting of different processor events, and takes into

account the edge taken by each branch (i.e., fall-through paths are encoded as 000

versus 001 for taken edges). This compact representation results in a total signature

length of 16 bytes (4 bytes for the anchor PC and 12 bytes for a signature size of 32

entries with 3 bits per entry).

4.3.1 Content Addressable Memory (CAM)

A CAM is a natural structure for implementing a prediction table. As per our

investigation of different CAM sizes (see Figure 4.5), we find a large CAM of 64KB is

necessary to achieve a gain that is comparable to the unbounded predictor. However,

since a CAM-based structure consumes large amounts of power and area, it is only

practical in small sizes. Unfortunately, at small sizes capacity misses prevent emer-

gencies from being detected, which leads to severe rollback cost. Performance gain is

negative for a 4KB CAM.

4.3.2 Bloom filter

A Bloom filter is a compact lookup structure that saves space, but may sometimes

return a false match. It is a probabilistic hash table that maps keys to boolean values,

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 79

Figure 4.5: Performance gains using a
CAM-based signature predictor. CAM
must be sufficiently large to tolerate ca-
pacity misses, but large CAMs are im-
practical and inefficient.

Figure 4.6: A Bloom filter-based signa-
ture predictor does not suffer rollback
penalties unlike a CAM. However, sizing
the structure appropriately is important
to tolerate its false positives.

implemented using a bit vector and k hash functions. The procedure to add a key to

the Bloom filter hashes the key k ways and sets the bits in the bit vector corresponding

to the k indices returned by the hash functions. A key matches in the Bloom filter

if and only if the bits for all k indices hashed from that key are set. With some

probability, all of the indices for a key that has never been entered may nevertheless

be set, in which case matching that key produces a false positive result. False positives

only affect performance, not correctness. Therefore, the predictor can tolerate false

positive activity.

Figure 4.6 plots the performance gains when using a Bloom filter implementation.

A Bloom filter with three hash functions achieves better performance than a CAM

at sizes past 8KB. Gains are 5.62% versus 4.42% using a 16KB Bloom filter instead

of a 16KB CAM. A Bloom filter is also comparatively more energy-efficient.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 80

However, at smaller sizes Bloom filters have higher false positive rates, which

causes unnecessary throttling that degrades performance. Figure 4.6 shows that at

4KB, performance gain is -29%. Therefore, a Bloom filter needs to be sufficiently

large to give acceptable performance. It takes a size of 32KB to achieve gains that

are comparable to an unbounded signatures-based predictor. But at more practical

sizes, like 8KB and 4KB, performance gains are still negative. Consequently, in-

telligent structures/optimizations are necessary to achieve performance gains within

reasonable structure sizes.

4.3.3 CAM Bloom filter

This section proposes three optimizations that allow us to improve the perfor-

mance of a naive Bloom filter. Due to these optimizations, the system achieves better

performance by reducing the number of throttles due to false positive lookup hits.

The optimizations consist of thresholds, CAM-based filtering of Bloom filter lookups,

and signature compaction. We explain why these optimizations enable better perfor-

mance than a CAM or a Bloom filter by itself. In summarizing, we demonstrate their

effectiveness by showing the percentage of throttles they reduce by constraining the

number of false positives.

Thresholds. An effective way of reducing false positives is to keep the occupancy

of the Bloom filter low. That is done by excluding the less frequently occurring

emergency signatures. The trade-off is that with higher thresholds, the predictor

misses more emergencies and will therefore incur more rollback cost. The firmware

that manages the prediction table could at the same time profile signature occurrences

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 81

Benchmark
Number of Number of

Benchmark
Number of Number of

Signatures Emergencies Signatures Emergencies

400.perlbench.checkspam 12317 255923 400.perlbench.diffmail 7906 136066
400.perlbench.splitmail 62 146425 401.bzip2.chicken 2430 126905

401.bzip2.combined 88617 986728 401.bzip2.liberty 80 202660
401.bzip2.program 70819 897442 401.bzip2.source 90923 1068100

401.bzip2.text 2641 99015 403.gcc.166 31245 1280457
403.gcc.200 47233 1272642 403.gcc.c-typeck 57026 1310646

403.gcc.cp-decl 13856 626146 403.gcc.expr 35311 1348139
403.gcc.expr2 87174 978192 403.gcc.g23 5255 299808
403.gcc.s04 2525 341422 403.gcc.scilab 49065 1303976

410.bwaves.bwaves 3739 849930 416.gamess.cytosine 34481 596727
416.gamess.h2ocu2+ 31018 450079 416.gamess.triazolium 41202 1169664

429.mcf.inp 7571 1006028 433.milc.su3imp 792 522592
435.gromacs.gromacs 12625 352528 436.cactusADM.benchADM 17714 333852
437.leslie3d.leslie3d 26013 822309 444.namd.namd 64 2097
445.gobmk.nngs 68060 632549 445.gobmk.score2 67003 617961

445.gobmk.trevorc 68398 654497 445.gobmk.trevord 67189 624310
447.dealII.dealII 5266 170814 450.soplex.pds-50 3906 309634
450.soplex.ref 1347 180947 454.calculix.hyper 366 254818
458.sjeng.ref 96779 1025541 459.GemsFDTD.ref 2982 1051679

462.libquantum.ref 39 159201 464.h264ref.baseline 19065 400705
464.h264ref.main 46127 539755 464.h264ref.sss main 58928 688194

473.astar.BigLakes2048 9704 135274 481.wrf.wrf 4101 222365
482.sphinx3.an4 4701 348221 483.xalancbmk.ref 9968 1064952

Table 4.1: Number of voltage emergency signatures and the number of emergencies
they represent across the different benchmarks and their inputs.

and exclude those signatures whose occurrence counts fall below a chosen threshold.

Before proceeding to understand the effect of thresholds on Bloom filter pop-

ulation, we must initially understand the number of voltage emergency signatures

and the dynamic number of voltage emergencies they represent (assuming we do not

throttle to avoid emergencies). Table 4.1 shows that the number of signatures varies

significantly. For example, benchmark 403.gcc has over 87000 signatures that re-

peatedly give rise to emergencies under input data set expr2. At the other end of

the spectrum are benchmarks like 444.namd and 462.libquantum which have only 64

and 39 signatures, respectively. The number of emergencies is in the hundreds of

thousands.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 82

Figure 4.7: When resources are limited, thresholds help to identify hot signatures
that are resource-worthy. But thresholds cause some emergencies to go unsuppressed
since their signatures are omitted from the predictor’s lookup table.

Figure 4.7 plots the effect of applying thresholds on the number of signatures we

insert into the Bloom filter on the log scale. It also shows the fraction of emergencies

that go unsuppressed as a result of applying thresholds. Consider a threshold of one

at which only 4.9% of all emergencies go unsuppressed (i.e., they cause rollbacks).

Just waiting for an emergency signature to recur drastically reduces the number of

signatures per benchmark. On average, at a threshold of one only 16000 signatures

remain across the entire benchmark suite. The knee in the curve for thresholds is

slightly past 10 emergencies, at which point the number of signatures drops down

even further to ∼2000. The number of signatures continues to fall further to only a

few hundred signatures at an aggressive threshold of 100, which indicates that few

signatures contribute to most emergencies. Therefore, we can reduce the number

of false positives by only storing the hot (or frequently occurring) signatures in the

Bloom filter.

Bloom filter Plus CAM. By screening the anchor PC components of signa-

tures using a CAM, we can reduce the number of lookups in the Bloom filter. This

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 83

Figure 4.8: The number of static program locations where emergencies occur (i.e.,
anchor PCs) is only a few hundred across a large spectrum of benchmarks. Therefore,
a small CAM can be used to enable the lookup logic only when execution reaches
these locations.

effectively reduces the number of times false positives cause throttling. Figure 4.8

shows the number of anchor PCs across the different benchmarks on a binary log

scale. The maximum number of such PCs we discover, even considering a large code

footprint application like 403.gcc, is around 4000. Caching such a large number of

32-bit addresses will require an impractical 16KB CAM.

However, we find that by caching only the working set of anchor PCs, a small CAM

is sufficient assuming it relies on a Least Recently Used (LRU) replacement algorithm.

Carefully sizing the CAM is important because capacity misses allow emergencies to

happen, which leads to rollbacks. Figure 4.9 shows that rollback cost is relatively

small when no thresholds are active. It is between 1.5% and 0.5% for CAM sizes of

128 bytes (32 entries) and 256 bytes (64 entries), respectively. Performance loss due to

capacity misses is even more negligible at 512 bytes (128 entries). However, rollback

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 84

Figure 4.9: Rollback cost due to capacity misses in the CAM, which we use to control
lookup access into the Bloom filter as a means of reducing the number of false positive
throttles.

penalties due to thresholds dominate at a threshold of one (T=1) and a threshold of

10 (T=10), so much so that even a large CAM cannot mitigate the cost.

Signature Compaction. Signatures corresponding to a specific anchor PC some-

times exhibit similarity. Therefore, we can congregate similar signatures together.

The Bloom filter experiences fewer false positives by folding multiple signatures cor-

responding to a specific anchor PC into a single representative signature. By using

a weighted similarity metric based on Manhattan distance, we determine how much

compaction is possible for a set of signatures corresponding to a particular bench-

mark. Let x and y be k-element signatures associated with the same instruction

address. We define the similarity of x and y to be:

s =
2

k(k + 1)

k�

i=1

i

0





if xi = yi

otherwise

If the signatures are identical, s is one. If no two corresponding elements are the

same, it is zero. The later elements in x and y correspond to later events in time.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 85

They are more heavily weighted in s, because they are more significant for emergency

prediction. Other measures of similarity might yield better compaction, but they

would be more expensive to compute in hardware. For a given instruction address,

we partition the signatures into maximal sets in which each signature x is related

to one or more other signatures y with similarity of 0.9 or greater. The resulting

partition is then used instead of the original signature set.

Signature compaction reduces the total number of signatures by over 61% on av-

erage. Figure 4.10 illustrates the percentage of compaction we achieve across the

benchmarks. The stack plot shows the upper bound across the different thresholds.

The biggest winners are usually benchmarks that experience a large number of sig-

natures. For instance, applying compaction reduces the number of signatures in

403.gcc.expr2 by ∼60% when we do not apply thresholds (T=0). The effectiveness of

compaction drops (slightly) with thresholds (T=1 and T=10) since thresholds discard

infrequent or noisy signatures. Therefore, the quality of signatures is higher and there

is less similarity among signatures. Other benchmarks reflect this trend as well.

Figure 4.11 shows the percentage of false positives we reduce by applying the

different optimizations progressively. A naive Bloom filter with no thresholds (T=0)

suffers from a large percentage of false positives, especially at small sizes. The naive

Bloom filter throttles unnecessarily over 90% of the time at a 4KB size, which explains

the -29% gain we show in Figure 4.6. Thresholds help reduce false positive throttles.

While thresholds reduce a naive Bloom filter’s false positives by identifying only

the hot signatures to store, the associated rollback cost of thresholding can be high.

Alternatively, we can reduce the percentage of false positives by 60% by using a CAM

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 86

Figure 4.10: The signature compaction optimization folds similar signatures into one
more representative signature. On average, the number of signatures drops by over
61%.

to avoid unnecessary lookups (compare T=0 in Bloom filter to T=0 in Bloom filter

+ CAM at the 4KB size). Applying thresholds lowers false positive throttling even

further. Lastly, combining these schemes with signature compaction negates nearly

all false positive throttles, as the number drops to just 2.3%.

Performance Evaluation with Optimizations. We now analyze the net ef-

fects of the optimizations discussed previously. We use a prediction table combining

a 128-entry CAM (512 bytes) with the naive Bloom filter, and we refer to this imple-

mentation as the Bloom filter + CAM. Briefly, we find that using a 8KB table with

the proposed optimizations enables 11.1% gain in performance, as compared to the

12.3% gain for the unbounded predictor we covered in the previous section. We do

not evaluate the naive Bloom filter with thresholds because the structure has a high

number of false positives regardless of the threshold value even at reasonable sizes like

4KB and 8KB. The left-most cluster of bars in Figure 4.11 confirm this statement.

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 87

Figure 4.11: Event with thresholds, a plain Bloom filter of reasonable size gives
many false positives, but this number decreases significantly as we restrict Bloom
filter lookups using a CAM (Bloom filter + CAM). False positive throttles drop even
further when we combine this latter structure with signature compaction (Bloom filter
+ CAM + Compaction).

Figure 4.12 shows the performance of the Bloom filter + CAM without thresholds

(T=0) and with them (T=1 and T=10). Even when we do not apply thresholds, the

Bloom filter + CAM consistently performs better than the naive Bloom filter. This

shows the value of the CAM-based screening structure—lookups cause large false

positives penalties when the Bloom filter set is heavily populated. For instance, at a

4KB size, we observe an improvement of 19 percentage points at T=0.

Thresholds are important at small table sizes. A higher threshold yields better

performance at small table sizes because it reduces the false positive rate. With a

4KB prediction table size, performance loss is ∼10% without a threshold (T=0). But

a threshold of T=10 reduces false positive throttling so much that performance gain

increases to 7.3% despite rollback penalties from applying a threshold. Thresholds

become less important as the table size grows to 16KB and 32KB because the Bloom

filter’s population count goes down, and so does its false positive rate.

We are able to improve performance gains of a Bloom filter + CAM even further by

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 88

Figure 4.12: Performance gains using a
Bloom filter whose lookups are initially
screened using a CAM. T is the thresh-
old we apply.

Figure 4.13: Performance gains using
only compacted signatures in the Bloom
filter + CAM structure.

relying on compacting similar signatures together (see Figure 4.13). Large improve-

ments for T=0 are seen in Figure 4.13 as compared to Figure 4.12, since compaction

reduces the number of signatures by over 61%. The best reductions are at smaller

Bloom filter sizes, since the false positive rate is much higher for these smaller struc-

tures. In fact, a 2KB Bloom filter + CAM + Compaction outperforms a 4KB Bloom

filter + CAM.

Thresholds are less effective at reducing overall cost when signatures are com-

pacted. Nevertheless, the benefits of thresholding can be significant when a Bloom

filter + CAM is smaller than 2KB in size. They are also effective when there are a

large number of infrequently recurring signatures that pollute the Bloom filter.

As predictor table size grows, the false positive rate drops so that lower thresholds

are more attractive. For an 8KB prediction table, performance gain for a threshold

of T=10 is 3 percentage points less than that for a threshold of T=1, because false

Chapter 4: Avoiding Emergencies Using Voltage Emergency Signatures 89

positives are reduced so much that rollback penalties dominate. With T=1 (which

simply excludes all non-recurring emergency signatures), the performance gain for an

8KB table is 11.1%, as compared to the 13.5% gain for the unbounded prediction

table.

To this end, we have demonstrated it is possible to use recurring voltage emergency

signatures to prevent emergencies with minimal performance loss. We achieve perfor-

mance improvements despite tolerating emergencies using coarse-grained checkpoint-

recovery to identify recurring signatures. Checkpoint-recovery when used by itself

results in negative performance improvement. Moreover, our performance is very

comparable to an oracle-based predictor.

Chapter 5

Eliminating Emergencies via

Hardware and Software Co-design

Contents
5.1 From Emergencies to Error-prone Code 93

5.1.1 Problematic Loops . 93

5.1.2 Emergency Hotspots . 96

5.1.3 Inter-thread Interference . 98

5.2 A Collaborative Architecture 99

5.2.1 Emergency Tolerance . 101

5.2.2 Hardware Feedback to Software 102

5.2.3 Software Layer . 103

5.3 Compiler Code Transformations 107

5.3.1 No Operation Injection . 108

5.3.2 Code Rescheduling . 108

5.3.3 Efficiency Comparison to Hardware-based Schemes 119

5.4 Operating System Thread Scheduling 132

5.4.1 Voltage Noise Phases . 133

5.4.2 Phase Scheduling . 135

5.4.3 Scheduling for Noise versus Performance 139

90

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 91

Hardware solutions deal with voltage emergencies ineffectively. Hardware repeat-

edly, and consequently inefficiently, throttles and rolls back execution to mitigate

emergencies. Even an ideal voltage emergency predictor that never mispredicts must

pay recurring penalties, throttling once per impending voltage emergency.

However, voltage emergency signatures demonstrate that voltage fluctuations within

a processor are not random, as previously thought. Rather, it is recurring program

and corresponding microarchitectural activity combined with the interactions of the

underlying power delivery subsystem that repeatedly give rise to emergencies. We can

leverage this information to build better solutions that mitigate voltage emergencies

much more effectively at the software layer. As technology innovation continues and

software layers like virtualization become an integral part of the hardware platform,

voltage emergency signatures can enable software-layer solutions that go beyond just

repeatedly avoiding emergencies, software can eliminate emergencies altogether.

This chapter presents a collaborative architecture between hardware and software

to mitigate emergencies. The resulting architecture is much more efficient than pure

hardware-based solutions in the presence of emergencies. By infrequently tolerat-

ing (and/or even avoiding) emergencies and by ultimately eliminating emergencies

through algorithmic code changes at a higher level, software enables more fluid exe-

cution at the hardware layer, due to fewer rollbacks and throttles.

In this chapter, we present an instantiation of hardware and software co-design to

reduce voltage emergencies. Our collaborative approach relies on the general-purpose

fail-safe mechanism as infrequently as possible to handle emergencies, while a software

layer dynamically smoothes out bursty machine activity to eliminate emergencies. We

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 92

discuss this co-design architecture bottom-up, starting with a compiler scheme that

targets single cores systems. Subsequently, we expand our discussion to multiple

cores per chip, dealing with voltage noise at the operating system level. This thread

scheduling solution builds on top of the architecture necessary to support uncore-level

compiler code transformations. Therefore, we cover these topics in that order.

We cover the design and implementation of a dynamic compiler-based system

for suppressing recurring emergencies. We demonstrate a compiler-based issue rate

staggering technique that reduces emergencies by applying transformations such as

rescheduling existing code or injecting new code into the dynamic instruction stream

of a program.

For multi-core systems, we discuss co-scheduling of threads to mitigate voltage

emergencies. Typically, scheduling efforts focus on improving performance. We show

that scheduling for performance, independently of voltage emergencies in a noise-

tolerant architecture such as ours, can in fact lead to more emergencies. System

performance will actually degrade due to underlying rollback penalties.

In an effort to present our software solutions elegantly, we evaluate the compiler

and thread scheduler solutions as separate isolated techniques. We do not assess the

combined benefits, although such a scheme is feasible. Similarly, we limit our fail-

safe hardware mechanism to checkpoint-recovery, not assessing checkpoint-recovery

in combination with the voltage emergency predictor. We stay true to our goals,

identifying new co-design solutions and demonstrating the improvements they enable

even in the presence of voltage emergencies at very aggressive voltage margin settings.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 93

5.1 From Emergencies to Error-prone Code

Hardware techniques do not exploit the effect of program structure on voltage

emergencies. They work best for intermittent voltage emergencies. For instance, con-

sider a loop incurring repeated voltage emergencies. Although an efficient hardware

mechanism, such as our voltage emergency predictor, can avoid a recurring emer-

gency, it must repeatedly throttle. Therefore, hardware mechanisms waste precious

processor cycles even when they operate near perfection.

Leaving recurring emergency activity to software is better. Software can instead

eliminate that recurring penalty altogether by restructuring the loop through perma-

nent code transformations. In this section, we demonstrate both illustratively and

quantitatively the role that software can play in mitigating emergencies. We use spe-

cific examples that motivate our fine-grained instruction scheduling solution, as well

as the more coarser-grained operating system level scheduling of threads to reduce

voltage noise.

5.1.1 Problematic Loops

Joseph et al. [34] show that program code can include successive periods of high

and low current profiles that lead to emergencies. While their synthetic hand-crafted

microbenchmark contains only a single loop body, it consistently causes voltage emer-

gencies during execution. Real programs have several loops. Programs spend major-

ity of their execution time running through code within these loops. Therefore, if

emergency-prone loops exist in real applications, then it is logical to apply a per-

manent solution at the code level. By doing so, we limit the recurring performance

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 94

A CB

Figure 5.1: Voltage swing grows progressively larger because of pulsing current ac-
tivity (see markers A, B and C). As that activity subsides, the voltage swing reduces.

penalty of activating control hardware to either tolerate or avoid emergencies.

We find that real programs have emergency-prone hotspots embedded within fre-

quently executing loops. One such program is benchmark 436.cactusADM from SPEC

CPU2006. Figure 5.1 illustrates a voltage emergency that recurs every several thou-

sands of processor clock cycles. Prior to the emergency, we find that there are no

emergency-causing microarchitectural events in the Events subgraph embedded within

Figure 5.1. This confirms that only the executing sequence of instructions is respon-

sible for the emergency.

Additionally, we find that the emergency-prone activity in Figure 5.1 is recurring.

In-depth inspection reveals that this part of the execution takes place within a loop.

This finding further relates Joseph et al.’s microbenchmark to real world examples,

demonstrating that emergency-prone code can reside in program loops.

Figure 5.2 is a control flow graph (CFG) representation of the loop responsible for

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 95

this emergency. Our Pin Tool [3] that generates this CFG reveals loopback edge paths

in Figure 5.2 using dotted lines. There are two dotted edges between bbl:42 and bbl:47,

revealing loop nesting. The loop body consists of basic block bbl:42. Power-hungry

floating point instructions dominate the basic block instruction sequence. Execution

dependencies in between the power-hungry instruction sequences cause the processor

to intermittently stall. Current activity drops as the processor waits for operand

values to become available during stalls. Once these values become available, execute

resumes and current surges for few tens of cycles. This fluctuating activity causes

current oscillations around the resonant frequency of the power delivery subsystem

between cycle times 4263700 and 4263850. Such current pulse trains around the

resonant frequency cause voltage to swing in progressively increasing magnitudes.

Markers A, B and C in Figure 5.1 illustrate this behavior. As current fluctuation

subsides, voltage swings also subside. In our investigation of such activity across

other benchmarks in the CPU2006 harness, we find similar instances, indicating that

this is not unique to the benchmark under investigation in Figure 5.1.

A compiler that reschedules such problematic instruction sequences can eliminate

this recurring behavior altogether. The loop could be restructured to prevent all

future occurrences of the emergency. Using hardware assistance, the compiler could

identify the code corresponding to this emergency-prone region of execution, and

target its transformation accordingly.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 96

Figure 5.2: This snippet of high power floating point instruction execution mix expe-
riences frequent execution stalls on operand values at around the resonant frequency.
These stalls are responsible for current swings that lead to voltage noise in Figure 5.1.

5.1.2 Emergency Hotspots

Only a few code locations within loops are responsible for nearly all emergencies.

By identifying these hotspot code locations and the paths along which emergencies

occur, a compiler can target custom and specific code transformations only along

those executions paths. By doing so, it can preserve original program behavior and

performance as much as possible.

Using the event categorization algorithm described by Gupta et al. [28] we identify

the instruction responsible for an emergency, demonstrating in Figure 5.3 that only a

small number of unique static program addresses are responsible for all emergencies.

The stacked plot shows the number of unique static program addresses responsible for

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 97

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

L
o

g
 S

ca
le

 Static program locations

 Dynamic emergency count

Figure 5.3: A small set of static program addresses (fewer than 100) are responsible
for the large number of voltage emergencies. We assume a 4% operating margin, but
this trend remains across different margins.

emergencies and the total number of emergencies they contribute over the lifetime of

a program. The log-scale distribution indicates that on average fewer than 100 static

program addresses are responsible for several hundreds of thousands of emergencies.

Hardware, because of its limited view of program execution and structure, cannot

exploit the fact that there are so few program locations responsible for all emergencies.

Even an ideal oracle-based hardware technique will activate its fail-safe mechanism

once per emergency, paying recurring penalties. Additionally, hardware must ensure

that performance gains from operating at a reduced margin outweigh the fail-safe

penalties. When combined with implementation costs, potential changes to tradi-

tional architectural structures, and challenges like response-time delays [30], design,

testing, validation and wide-scale retargetability all become increasingly difficult.

Unlike hardware schemes, a software-based solution does not require design-time

package- and microarchitecture-specific solutions. Dynamic software systems can

adapt their solution to their run-time environment. Moreover, since there are just

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 98

a few static hotspots, dynamic software assistance is necessary only intermittently

during execution, assuming software is able to eliminate the emergency. Therefore,

the overheads of software invocation are amortizable.

5.1.3 Inter-thread Interference

In multi-core systems, we find that microarchitectural behavior across two inde-

pendent cores can interfere with one another, leading to voltage emergencies. There-

fore, carefully scheduling noise-compatible threads together can reduce voltage emer-

gencies

Voltage noise interference in multi-core systems is not yet understood in literature,

especially from a detailed microarchitectural perspective. Therefore, in Figure 5.4 we

present our initial findings from measurement. Our Intel CoreTM2 Duo chip consists

of two cores in one chip. We stimulate each core with a specific microarchitectural

event. We then capture the magnitude of voltage swing across the entire chip, since

both cores are affected by the same power supply source. The figure’s legend shows

the magnitude of the swing relative to an idling machine; the colors correspond to the

intensity of the swing. The y-axis corresponds to Core 0 and the x-axis corresponds

to Core 1.

We introduced microbenchmarking details for the events in Figure 5.4 before in

Table 3.1. But briefly, L1 and L2 events correspond to Level 1 and Level 2 cache

miss events, respectively. TLB corresponds to translation lookaside buffer flushes. BR

indicates a pipeline flush due to branch misprediction.

From observing the intensity of the colors in the heatmap, we conclude that the

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 99

Figure 5.4: Microarchitectural event activity across two separate cores connected to
the same power plane leads to voltage swings. The magnitude of voltage swing varies
depending on which two events are happening together.

maximum voltage swing is when both Core 0 and Core 1 experience pipeline flushes

due to branch mispredictions. Consequently, scheduling a branch heavy program

onto one core, while avoiding a similar noise-characteristic schedule on the adjacent

core, reduces the magnitude of the voltage swing. For instance, co-scheduling the BR

program with a L2 heavy or a TLB intensive program reduces peak swing across the

entire chip.

5.2 A Collaborative Architecture

Software elimination of voltage emergencies requires collaboration between hard-

ware and software. There are two benefits of such a collaborative noise-tolerant

architecture: First, software code transformation avoids recurring emergencies. Sec-

ond, a collaborative architecture allows hardware designers to relax worst-case timing

margin requirements because of the reduced number of emergencies. The net effect

is better performance. We present an overview of how our collaborative architecture

works and highlight the critical components. We present details about each of the

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 100

hardware and software components.

Our software component includes two pieces: a compiler and an operating system-

level thread scheduler. For clarity, we spend more time discussing the needs of our

more fine-grained compiler approach, as it requires specific attention to details. But

we expand our discussion to incorporate the thread scheduler towards the end of

Section 5.2.3. The thread scheduler builds on top of the same underlying architecture

needed for the compiler solution.

Figure 5.5 illustrates the operational flow of our system in the context of a single

core. An Emergency Detector continuously monitors execution. When it detects

an emergency, it activates the hardware’s Fail-safe Mechanism. We assume that a

general-purpose checkpoint-recovery mechanism restores execution to a previously

known valid processor state whenever an emergency is detected. After recovery, the

detector notifies the Run-time System software layer of the voltage emergency, passing

along relevant information.

Whenever software receives a notification, the run-time system extracts the infor-

mation about recent processor activity from the Event History Register. This register

maintains the voltage emergency signature pertaining to the current emergency. The

run-time system then uses this information to identify the code region corresponding

to an emergency. Subsequently, the run-time system calls a dynamic Compiler to alter

the code responsible for the emergency in an attempt to eliminate future emergencies

at the same program location.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 101



























Figure 5.5: Workflow diagram of the proposed software-assisted hardware-guaranteed
architecture to deal with voltage emergencies. For clarity of thought, we limit our
discussion to the compiler scheme only in this illustration.

5.2.1 Emergency Tolerance

Tolerating or allowing voltage emergencies to occur is useful. Allowing emergen-

cies enables us to identify emergency-prone code regions for software transformation.

Therefore, we need to detect operating margin violations, and for that we rely on a

voltage sensor.

However, since we allow emergencies to occur, we require a mechanism to recover

from corrupt processor state. The detector invokes the fail-safe mechanism upon de-

tecting an emergency. We rely on the checkpoint-recovery mechanism discussed in

Chapter 3 to tolerate emergencies. It is similar to existing implementations found in

reactive techniques for processor error detection and correction, previously proposed

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 102

for soft error recovery [54, 7]. These are primarily based on checkpoint and rollback.

The form of checkpoint-recovery we rely on is explicit checkpointing, which is already

shipping in production today’s systems [9, 48]. While we choose explicit checkpoint-

ing for evaluation in this work, our overall approach is independent of the specific

checkpointing implementation.

Explicit-checkpoint mechanisms rely on explicitly saving the architectural state of

the processor, i.e., the architectural registers and updated memory state. We want

to rely on this mechanism infrequently, since there is substantial overhead associ-

ated with restoring the register state, and there are additional cache misses at the

time of recovery (a buffered memory update is assumed, with updated lines between

checkpoints marked as volatile).

We assume one recovery unit per power plane (or power supply source). So if

there are multiple cores per chip that a power plane is supplying, then a single global

recovery unit supports all cores. Regardless of which core is responsible for a voltage

emergency, all cores tied to the common source are affected by a voltage droop. They

all run the risk of incorrect execution due to circuit delays. Therefore, a common

recovery unit must restore state across all cores tied to the same power plane in the

event of a voltage emergency.

5.2.2 Hardware Feedback to Software

Enabling a software solution requires that the underlying hardware provide perti-

nent information to software. Otherwise, code transformation efforts cannot be made

intelligently. Information pertaining to an emergency is available in its corresponding

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 103

voltage emergency signature(s). The software extracts this information whenever it

receives a notification about an emergency.

The event history register captures emergency signatures and it is very similar

to structures already found in existing architectures. The history register tracks an

interleaving of microarchitectural event activity (like cache misses, branch mispredic-

tions etc.) along with program control flow path information. It uses issued branch

instructions as control flow path indicators. Production systems today provide similar

logic as the event history register. For instance, a branch trace buffer (BTB) main-

tains information about the most recent branch instructions, their predictions, and

their resolved targets. A data event address register (D-EAR) tracks recent memory

events like cache activity and translation lookaside buffer (TLB) misses.

Additionally, we require a firmware component in our hardware. The firmware,

in addition to managing signatures and keeping track of their occurrences (see Chap-

ter 4), effectively acts as a hardware performance counter, tracking the number of

emergencies that are occurring. This helps the firmware decide when to invoke soft-

ware. Tolerating emergencies within some limit allows the system to amortize the

overhead of invoking the run-time software layer.

5.2.3 Software Layer

The software component consists of a run-time system, a compiler and an operat-

ing system thread scheduler. For clarity, here we limit our discussion to the compiler.

Towards the end of this section we expand our discussion to include the thread sched-

uler, its resources requirements are a subset of the compiler’s requirements.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 104

The voltage emergency detector only communicates with the run-time system,

which converts the information gathered by the hardware event history register into

a particular location in the code. It then invokes the compiler to analyze that informa-

tion and modify the corresponding program or thread to prevent future recurrences.

The run-time system component records the time and frequency of emergency

occurrences in addition to recent microarchitectural event activity extracted from

the performance counters. Using this information the run-time system locates the

instruction responsible for an emergency using an event categorization algorithm [28].

We refer to this problematic instruction as the root-cause instruction.

Event categorization identifies root-cause instructions based on the understand-

ing that microarchitectural events along with long-latency operations can give rise to

pipeline stalls. A burst of activity following the stall can cause the voltage to drop

below the minimum operating margin due to a sudden increase in current draw. Such

a violation of the minimum voltage margin is by definition a voltage emergency. Fig-

ure 5.6(a) illustrates such a scenario. A data dependence on a long-latency operation

stalls all processor activity. When the operation completes, the issue rate increases

rapidly as several dependent instructions are successively allocated to different exe-

cution units. This gives rise to a voltage emergency because of the sudden increase

in current draw. The categorization algorithm associates the long-latency operation

as the root cause since it caused the burst of activity that gave rise to an emergency.

There are several other causes of voltage emergencies, ranging from cache misses

to branch mispredictions and TLB misses. The run-time system is equipped to detect

the root-cause for all types of emergencies. Figure 5.7 shows the distribution of root-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 105

480 490 500 510 520 530

10

20

30

C
u

rr
e

n
t

480 490 500 510 520 530

2

4

6

8

10

Is
su

e
 R

a
te

480 490 500 510 520 530

Flush

Longlat

Cache

TLB

P
ro

ce
ss

o
r

E
ve

n
t

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

V
o

lta
g

e

480 490 500 510 520 530

Flush

Longlat

Cache

TLB

480 490 500 510 520 530

2

4

6

8

10

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

480 490 500 510 520 530

10

20

30

Before Software Optimization After Software Optimization

Steep dI/dt causes voltage to
 drop below the minimum margin

Data dependence on a long latency operation
 causes all pipeline activity to stall

Software optimization reduces issue
 rate, thereby causing a smaller dI/dt

Smaller dI/dt prevents
 the voltage emergency

Rapid issue rate causes steep dI/dt

Figure 5.6: A 50-cycle execution snapshot of benchmark Sieve showing the impact
of a pipeline stall due to data dependency. An operating margin of 4% is assumed
(i.e., a maximum of 1.04V and minimum of 0.96V). (a) Before Software Optimization
shows how a stall triggers an emergency as the issue rate ramps up quickly once the
long-latency operation completes. (b) After Software Optimization demonstrates how
compiler-assisted code rescheduling slows the issue rate to eliminate the emergency
illustrated in (a).

causes across the benchmarks in order to characterize the activity leading to voltage

emergencies in our benchmarks.

A majority of the emergencies in the Java Grande benchmark suite arise because

of stalls due to Long Latency operations, Cache Miss and Branch Misprediction events.

The Others category corresponds to those events we were unable to successfully at-

tribute to any specific observable microarchitectural event. This likely resulted from

code-based bursts of activity such as the “power virus” demonstrated by other re-

searchers [34]. Finally, TLB Miss events did not tend to result in emergencies in our

evaluated benchmark suite.

Thus far, we have discussed our software component within the context of our com-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 106

Figure 5.7: Aggregate distribution of root-causes across benchmarks in the Java
Grande benchmark suite.

piler solution. However, differences exist between this technique and the operating

system thread scheduler solution. Our thread scheduler does not require fine-grained

root-cause identification, since it is not fixing instruction sequences. Rather, it re-

lies on more coarse-grained mixing of instruction sequences across processor cores to

smooth out voltage emergencies.

However, the thread scheduler relies on dynamic feedback from hardware. It

requires the hardware to tell it how often emergencies are occurring. Using this infor-

mation, the scheduler decides whether the currently scheduled set of running threads

are interacting smoothly. Ideally, they are causing few or no voltage emergencies.

Otherwise, it changes the set of scheduled threads at the next scheduling interval to

dynamically obtain better performance.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 107

5.3 Compiler Code Transformations

Figure 5.6(a) illustrates that voltage emergencies can depend on the issue rate

of the machine. Therefore, slowing the issue rate of the machine at the appropriate

point can prevent voltage emergencies. We can achieve the same goal in software by

altering the program code that gives rise to emergencies at execution time, and can

do so without large performance penalties.

Dynamic optimization systems [13] are well suited for scenarios where “90% of

the execution time is spent in 10% of the code”. In our scheme, a dynamic com-

piler eliminates a large fraction of recurring emergencies by applying transformations

such as rescheduling existing code or injecting new code into the dynamic instruc-

tion stream of a program. Unlike hardware schemes, our solution does not require

design-time package- and microarchitecture-specific solutions. A dynamic compiler

is inherently fine-grained, code-aware, and machine-specific, and it can adapt to the

run-time environment.

The compiler tries to exploit pipeline delays by rescheduling instructions to de-

crease the issue rate close to the root-cause instruction. Pipeline delays exist be-

cause of NOP instructions or read-after-write (RAW), write-after-read (WAR), or

write-after-write (WAW) dependencies between instructions. Hardware optimization

techniques like register renaming in a superscalar machines can optimize away WAR

and WAW dependencies, so a RAW dependence is the only kind that forces the hard-

ware to execute in sequential order. The compiler tries to exploit RAW dependencies

that already exist in the program to slow the issue rate by placing the dependent

instructions close to one another.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 108

In the following sections, we discuss two approaches we explored for injecting

pipeline delays at the software level. We outline one simple approach consisting

of inserting nops, and a more sophisticated approach that exploits existing RAW

dependencies. Later, in Section 5.3.3, we evaluate each approach in turn.

5.3.1 No Operation Injection

A simple way for the compiler to slow the pipeline is to insert NOP instructions

specified in the instruction set architecture into the dynamic instruction stream of a

program. However, modern processors discard NOP instructions at the decode stage.

Therefore, the instruction does not affect the issue rate of the machine. Instead of

real NOPs, the compiler can generate a sequence of instructions containing RAW

dependencies that have no effect. Since these pseudo-NOP instructions perform no

useful work, this approach often degrades performance, as we later demonstrate.

5.3.2 Code Rescheduling

A better way to smooth processor activity is to exploit RAW dependencies already

existing in the original control flow graph (CFG) of the program. This constrains the

burst of activity when the machine resumes execution after the stall, which prevents

the emergency. Whether the compiler can successfully move instructions to create

a sequence of RAW dependencies depends on whether moving the code is possible

given the program’s control and data dependencies. In general, our approach to code

rescheduling maintains data dependencies and works around control dependencies by

cloning instructions and then moving them around the control flow graph such that

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 109

the original program semantics are all still maintained.

To illustrate our code rescheduling approach, in Figure 5.8(a) we present a sim-

plified sketch of the code corresponding to the activity shown in Figure 5.6(a). The

long-latency operation illustrated in Figure 5.6 corresponds to the divide instruction

shown in basic block 4 of Figure 5.8. An emergency repeatedly occurs in basic block 3

along the dotted loop backedge path 4→ 1→ 2→ 3. The categorization algorithm

identifies the divide instruction corresponding to C ← A / B in basic block 4 as the

root-cause instruction. The compiler identifies the control flow path using the branch

history information extracted by the profiler from the BTB counters, and recognizes

that moving instruction A ← B from basic block 1 to 2 will constrain the issue

rate of the machine because of a tighter sequence of RAW dependencies. But the

compiler also recognizes that the result of A ← B is live along edge 1 → 3, so it

clones the instruction into a new basic block (basic block 5) along that edge to ensure

correctness.

The result after rescheduling is illustrated in Figure 5.6(b). The slight change in

current activity between cycles 490 and 500 is a result of code rescheduling. After

dependent instructions are packed close to one another in basic block 2, the issue

rate in Figure 5.6(b) does not spike as high as it does in Figure 5.6(a) once pipeline

activity resumes after the stall.

Code rescheduling alters the current and voltage profile. Therefore, the scheduler

must be careful not to simply displace emergencies from one location to another by

arbitrarily moving code from far away regions. To retain the original activity, the

code rescheduling algorithm searches for RAW dependencies starting with the basic

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 110



































(a) Before.




































(b) After.

Figure 5.8: Effect of code rescheduling on an emergency-prone loop from benchmark
Sieve. (a) An emergency consistently occurs in basic block 3 along the dotted loop
backedge path 4→1→2→3. (b) Moving instruction A← B from block 1 to block 2
puts dependent instructions closer together, thereby constraining the issue rate. This
prevents all subsequent emergencies in basic block 3.

block containing the root-cause instruction. Using this anchor point, the software

code scheduler enlarges its search window iteratively over the CFG until it finds a

RAW dependence to exploit or it reaches the scope of a function body, at which point

it gives up.

Out-of-order execution complicates instruction rescheduling, as the machine can

bypass the RAW dependence chain generated by the compiler if there is enough other

code available for execution in the hardware’s scheduling window. The scheduler

handles this by choosing a RAW candidate from a set C1 of candidates by computing

the subset C2 ⊆ C1 such that each element of C2 has the longest RAW dependence

chain after moving the instructions to the required location. By targeting long RAW

dependence chains, the compiler increases the chances that the machine’s schedul-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 111

ing window will fill with dependent code, reducing the issue rate. Otherwise, the

compiler must generate multiple sets of smaller RAW dependence chains to fill up

the scheduling window. This requires the compiler to move around more code, but

the more code the compiler transforms, the higher the chances that it will render an

optimization ineffective, since we cannot statically predict the interactions amongst

the newly created set of dependence chains.

In the following paragraphs, we present a detailed description of our algorithm,

which is a specific instantiation of the general concept we propose to prevent emergencies—

staggering the issue rate using RAW dependence chains.

Rescheduling Algorithm. Given a root-cause instruction, our scheduler con-

strains the instruction issue rate at different points within the CFG. The sched-

uler transforms the code differently depending on whether or not the emergency was

caused by a branch misprediction. For instance, when an emergency is caused by a

branch misprediction, the scheduler takes into account the speculative set of instruc-

tions executed by the machine. We experimentally discovered that constraining the

issue rate before a pipeline flush event along the wrong path significantly increases

the chances of preventing an emergency. Therefore, to prevent branch misprediction-

related emergencies, the scheduler targets the following locations:

1. The root-cause instruction: the instruction identified by the hardware as

the cause of the voltage emergency.

2. The last write-back instruction: the most recent instruction in the write

back stage of the pipeline.

3. The wrong-path instruction: the first instruction along the speculative path

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 112

that is executed prior to detecting a branch misprediction.

In the simpler case, such as an emergency caused by a sudden burst of activity fol-

lowing a cache miss or a long latency stall (as illustrated in Figure 5.6), the schedule

only targets the root-cause instruction and the last writeback instruction to success-

fully remove emergencies. We consider these two particular locations to prevent the

out-of-order issue logic from intelligently bypassing the RAW dependence chain put

in place to prevent the emergency by discovering other instruction sequences available

for execution. These other instruction sequences could lead to a burst of activity that

can cause an emergency, thus rendering our transformations ineffective. Therefore,

we conservatively target two locations to constrain the issue rate.

Algorithm 1 illustrates the entry point/function to transform the code correspond-

ing to an emergency hotspot (i.e., root-cause instruction r). It takes as input the three

input instructions described above that the run-time system mechanism (illustrated

in Figure 5.5) identified. The algorithm then invokes the Scheduler function to trans-

form the code in order to constrain the issue rate just before a specific instruction:

the algorithm constrains the issue rate on the last write back instruction regardless

of the emergency type and before every successor of the root-cause instruction. How-

ever, depending on the emergency type, we decide the successor paths on which to

constrain the issue rate. In the case of a branch misprediction-related emergency, we

constrain the issue rate on the fallthrough, as well the taken path, thereby smoothing

voltage along the speculative path as well.

Determining Candidates for Code Motion. The Scheduler function discovers

and schedules a RAW chain before its input parameter instruction a. To locate the

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 113

Algorithm 1: Entry routine that reschedules instructions to eliminate a voltage

emergency hotspot
Input: Emergence type t

Input: Root-cause instruction r

Input: Last write-back instruction l

Input: Wrong instruction w

Scheduler(l) ;

switch t do

case Branch misprediction-related emergency

a ∈ Succ(r)|a �= w ;

Scheduler(a) ;

Scheduler(w) ;

end

otherwise

a ∈ Succ(r) ;

Scheduler(a) ;

end

end

closest and longest RAW chain, the Scheduler invokes the GlobalCandidate function.

The GlobalCandidate function defines the scope or range of basic blocks from within

which the LocalCandidate function attempts to construct the longest RAW dependence

chain. When LocalCandidate fails (for instance, when no dependent instructions can

be found), GlobalCandidate enlarges the range of basic blocks to consider and the

process repeats.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 114

Function Scheduler(a)
Input: Instruction a

l = GlobalCandidate(a) ;

if length(i) > 0 then

MarkScheduled(i) ;

GCSMove(i, a) ;

end

The return value of GlobalCandidate is a linked list of instructions l that can

be successfully scheduled. If this list is not null, the Scheduler function notes these

instructions as already visited using the MarkScheduled function. Visited or previously

scheduled instructions cannot be subsequently rescheduled, as that would perturb or

invalidate a previously scheduled RAW chain, or could lead to schedule thrashing.

Performing Code Motion. Upon identifying a useful RAW chain from Glob-

alCandidate, the Scheduler function calls GCSMove to migrate the necessary set of

instructions from one location to another. GCSMove is based on the standard Global

Code Scheduling (GCS) algorithm [8]. Briefly, the GCS algorithm clones instructions

as necessary to move instructions. It discovers the necessary set of clones by means

of the pre and post dominance relations computed using the CFG. An instruction

a predominates instruction b if, and only if, instruction a always executes before in-

struction b. Instruction b postdominates instruction a if, and only if, instruction b is

always executed after executing instruction a. If the instruction to schedule, say b,

postdominates target instruction a, and a predominates b, then no instruction cloning

is necessary. However, if this condition does not hold, instructions must be cloned and

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 115

inserted in positions found by the anticipated expressions computed using data-flow

analysis [8].

The LocalCandidate function attempts to construct the longest dependence chain

using the MoveableBefore function. This intermediate MoveableBefore function checks

to see if the first instruction s given as its input can be moved just prior to its target a

by means of GCS. We impose constraints within MovableBefore to prevent perturbing

the original voltage profile so much so that our constructive code transformations

become ineffective. Specifically, we impose instruction cloning rules:

1. The head of the RAW chain, instruction s, can be scheduled before target a

assuming no limit on the number of clones necessary to migrate s anywhere

within the scope defined by the GlobalCandidate function.

2. All other instructions belonging to the RAW chain can be cloned at most once.

3. Allowed cloning must not increase the dynamic instruction count of the pro-

gram, since aggressive cloning can potentially degrade performance.

If these conditions are not satisfied, the LocalCandidate function returns a null list

of instructions, forcing GlobalCandidate to enlarge the scope and retry. When these

constraints are relaxed in an attempt to improve the chances of finding a suitable

RAW dependence chain, there is a risk of increasing the execution time, and even

potentially perturbing neighboring code so much so that the transformed code leads

to new emergencies.

A Demonstration of the Code Rescheduling Algorithm. To facilitate

better understanding, here we illustrate the functionality of the code rescheduling

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 116

Function GlobalCandidate(a)
Input: Instruction a

Output: Linked list of instructions

S = BasicBlock(a) ;

i = {} ;

while i == {} ∧ S �= CFG do

i = LocalCandidate(S, a) ;

S1 = S ;

forall s ∈ S do

S1 = S1∪ Succ(s) ∪ Prev(s) ;

end

S = S1 ;

forall s ∈ S do

S1 = S1∪ BasicBlock(s) ;

end

S = S1 ;

end

return i ;

algorithm with a simplified example extracted from a real scenario in benchmark

RayTrace. Consider the original program CFG and its related Data-Dependence

Graph (DDG) shown in Figure 5.9a and Figure 5.9c, respectively. Instruction 4 is the

root-cause related to a branch misprediction. Instruction 8 corresponds to the wrong

path instruction, or the first instruction executed along the incorrectly speculated

path. In order to smooth the voltage emergency at the root-cause, the scheduler

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 117

Function LocalCandidate(S, a)
Input: Instruction set S

Input: Instruction a

Output: Linked list of instructions

C = ∅ ;

forall s ∈ S do

if MovableBefore(s, a) ∧¬ Marked(s) then

C = C ∪ {s} ;

end

end

j ∈ C ;

forall c ∈ C do

if DataDependencesLength(c, a) > DataDependencesLength(j, a) then
j = a ;

end

end

return LongestRAWDependenceChain(j) ;

attempts to add a RAW dependence chain of instructions between instructions 4 and

5, instructions 4 and 8 and just before the last writeback instruction. For simplicity,

we only elaborate the steps taken to construct the chain between instructions 4 and

5.

The algorithm starts by looking for the best RAW chain by calling the Global-

Candidate function, giving instruction 5 as its input. The GlobalCandidate function

calls LocalCandidate to find the longest RAW chain inside the present scope of inter-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 118

(a) Before rescheduling. (b) After rescheduling.

(c)

Figure 5.9: (a) Control flow graph of an emergency-prone piece of code from bench-
mark RayTrace. (b) Rescheduled code after the compiler moves instructions to remove
the emergency caused by the frequently mispredicted branch at location 4. (c) Data
dependence graph corresponding to the original code that the rescheduling algorithm
uses to extract the safest RAW dependence chain.

est, which is the basic block containing instruction 5. The LocalCandidate function

returns null upon first invocation. Consequently, GlobalCandidate enlarges the scope

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 119

and re-invokes the LocalCandidate function. Figure 5.9a illustrates this scope enlarge-

ment process using the initially small dotted inner circle, and subsequently enlarging

the scope to include more basic blocks.

During the subsequent call to LocalCandidate, several additional blocks are chosen

for creating the RAW chain. These basic blocks are chosen because they are within

one edge distance away from all basic blocks previously considered. At this point,

the algorithm finds six candidate instructions (1, 2, 9, 10, 11 and 14) as heads of

RAW chains. Hence, we have C = {1, 2, 9, 10, 11, 14}. From this set of six potential

chains, LocalCandidate chooses the longest RAW chain it can create without violating

our cloning rules. It finds instruction 1 as the best candidate. Moving instruction 1

along with its data-dependent sequence (instructions 1, 2 and 3) between instructions

4 and 5 leads to an optimum solution with a chain length of three. Note that while

instruction 9 can lead to a RAW chain length of 4, LocalCandidate cannot choose this

alternative because we specified that cloning cannot increase the dynamic instruction

of the program. Alternative implementations of our algorithm that relax this con-

straint are possible for improving emergency coverage, albeit at the risk of potentially

slower runtime performance. The transformed CFG is shown in Figure 5.9b, where

we see that instructions 1, 3, and 5 have been replicated and migrated down the CFG.

5.3.3 Efficiency Comparison to Hardware-based Schemes

Our system evaluation demonstrates the effectiveness of the compiler at reducing

voltage emergencies and shows the impact of its code changes on performance. After

showing that the compiler can reduce over 60% of emergencies with minimal over-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 120

heads, we present a performance study showing that our software-assisted scheme

overcomes the challenges of existing hardware techniques effectively.

Given that modern hardware does not support fine-grained access to voltage sen-

sors, we explored our design using a hardware simulator together with our software

compilation infrastructure. We used SimpleScalar/x86 to simulate a Pentium 4. We

use the configuration setup shown in Table B.1. Please refer to that appendix for

further details.

We use the C# benchmarks from the Java Grande benchmark suite [19]. Table B.3

gives a summary of the benchmarks. We invite the readers compare the traits of our

benchmark setup to more traditional benchmarks like SPEC CPU2006 using the

emergency distribution previously discussed in Section 5.2.3.

CIL byte code is unavailable for SPEC workloads, so we were unable to evaluate

them directly. However, since the distribution and number of emergencies for the

Java Grande programs is representative of prior hardware-based work using SPEC

workloads [29], we expect our results to generalize, and we feel that the results and

contributions of our work outweigh this limitation of the experimental infrastructure.

Effectiveness of the Compiler-Based Transformations. The goal of our

software-based voltage emergency elimination is to: (1) reduce the number of volt-

age emergencies, and (2) ensure that performance does not suffer as a result of our

code transformations. We first evaluate the effectiveness of NOP injection and code

rescheduling, where we find that (1) the choice of transformation affects performance,

and that (2) the transformation itself can introduce new emergencies if the scheduler

is not careful. Following this analysis, in the next section, we will factor in all costs

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 121

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

1

2

3
F

ra
ct

io
n
 o

f
E

m
e

rg
e

n
ci

e
s

R
e
m

a
in

in
g

NOP injection
Code rescheduling Baseline

(a)

Figure 5.10: Fraction of emergencies remaining after code transformation.

to evaluate full-system performance.

NOP injection. As described earlier, the NOP injection algorithm inserts new

instructions in the program that simulate NOP instructions immediately following

the root-cause instruction. The effectiveness of the transformation is shown by the

left bar in Figure 5.10. The bar shows the fraction of emergencies remaining after the

compiler has attempted to prevent emergencies by injecting pseudo-NOP code. The

number of emergencies is reduced by ∼50% in benchmarks FFT, RayTrace, Method,

Sieve, and Heapsort, which shows that the transformation can be effective. However,

the transformation is ineffective across the remaining benchmarks LU, Montecarlo,

Sor and SparseMM. In fact, the number of emergencies increases by over twofold for

benchmark LU.

Analysis reveals that pseudo-NOP injection does reduce the original program’s

emergencies, but the transformation itself also gives rise to new emergencies. The

compiler may have to spill and fill registers to generate pseudo-NOP code. This has

the adverse effect of not only increasing the number of instructions needed to simulate

the NOP, but also potentially causing architectural events like cache misses (from the

spill and fill code) that dramatically alter the current and voltage profile. These side

effects depend on the number of registers available for use and the properties of the

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 122

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

100

200

300

400
P

e
rf

o
rm

a
n
ce

 O
ve

rh
e
a
d

(w
/o

 e
m

e
rg

e
n
cy

 p
e
n
a
lti

e
s)

NOP injection
Code rescheduling

Baseline

Figure 5.11: Code performance after transformation. The cost for handling emer-
gencies is not shown in this plot to isolate the effect of code transformation on the
run-time performance. We evaluate overall performance after factoring in code per-
formance costs later on, along with penalties for handling emergencies.

original instruction schedule, among other conditions. It is difficult to predict the

current and voltage response activity that will result from injecting new code, so the

new emergencies are not easy to avoid, as we see in the case of LU, Montecarlo, Sor,

and SparseMM.

Additionally, the run-time performance of the original program suffers with the

injection of pseudo-NOP code, as the injected code does not serve the original pro-

gram’s purpose. The left bar for each benchmark in Figure 5.11 shows execution

performance of the program with the injected code. The data indicates that the ef-

fect of simply adding new code to prevent emergencies can be severely detrimental to

performance. In the case of benchmarks Heapsort and Sieve performance degrades

by as much as 300%. Large execution overheads indicate that while a transforma-

tion can be very effective at reducing voltage emergencies (e.g., benchmark Sieve has

fewer than 10 emergencies remaining), the compiler must be sensitive to its run-time

performance implications.

Code rescheduling. A compiler approach that relocates RAW dependencies fol-

lowing the root-cause instruction does not suffer from the severely unpredictable

behavior of injecting code to prevent emergencies. Code rescheduling is superior to

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 123

simple NOP injection for the following reasons. First, it successfully reduces more

emergencies across all the benchmarks (illustrated by the bars on the right in Fig-

ure 5.10). Second, it does so without dramatically increasing the execution time of a

program (as shown in Figure 5.11). Our analysis also shows that it does not introduce

new emergencies, as the compiler does not inject new code that significantly alters

the current and voltage profile.

For instance, consider benchmark FFT. The NOP injection transformation and

the code rescheduling transformation eliminate approximately the same number of

emergencies. However, the effect on performance between the two transformations

is substantially different. The NOP injection transformation causes the original pro-

gram to take twice as long to execute, whereas code rescheduling has a negligible

effect on the original program’s performance. That is because the NOP code wastes

processor cycles, while the rescheduled instructions are real program code that is

simply restructured to prevent emergencies.

By restricting the compiler’s scheduling algorithm to the strict cloning rules de-

scribed in Section 5.3.2, we were able to effectively limit performance loss from in-

jecting new instructions. However, there are side-effects. One of the rules states

that cloning cannot increase the dynamic instruction count of a program. But in

Table 5.1 we see that cloning leads to new instructions. These additional instructions

come from the register allocation pass that takes place after the cloning pass in our

compiler. The register allocator may generate necessary spill and fill compensation

code to accommodate changes to the original code. Therefore, although cloning itself

obeys the rules, there are side effects that lead to an increase in the instruction count.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 124

Benchmark
of Instructions % Change in
Cloned Moved Dynamic Instructions

FFT 7 30 0.0
RayTrace 20 40 -0.24

LU 28 64 0.1
Montecarlo 23 53 5.2

Sor 39 77 2.3
SparseMM 33 67 3.3
Heapsort 37 61 -1.0
Method 2 8 -3.7
Sieve 7 11 0.0

Table 5.1: Only a small fraction of the static code (in the order of tens of instructions)
need modification to eliminate emergencies. Additionally, the changes the compiler
makes has minimal impact on the dynamic instruction count.

But even under such circumstances, the increase is small, in the order of tens of in-

structions. These instruction increases are especially insignificant when considering

that the benchmarks execute hundreds of millions of instructions. In some bench-

marks such as Method and Heapsort, the dynamic instruction count decreases by a

small percentage because the code transformation changes register allocation, leading

to fewer register spills and fills along the specialized paths.

Changes in the run-time performance of the rescheduled code are generally in the

noise for all benchmarks, and the reduction in emergencies averages ∼61%. Reduc-

tions are smaller over benchmarks LU, Sor, and SparseMM (around 30%) because the

compiler could not find enough RAW dependencies that it could relocate to slow the

issue rate at the frequently occurring root-cause locations. Therefore, some emergen-

cies continue to persist. Making code transformations can inadvertently lead to new

emergencies root-causes as well. Figure 5.12 illustrates this breakdown. As we are

careful to not aggressively modify the code surrounding a root-cause, we see that the

percentage of new emergencies introduced is a very small fraction of all emergencies.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 125

FFT RayTrace LU Montecarlo Sor SparseMMHeapsort Method Sieve

100

80

60

40

20

0%
 R

o
o

t−
ca

u
se

 D
is

tr
ib

u
tio

n

 New
 Persistent
 Eliminated

Figure 5.12: Not all emergencies can be eliminated. Some root-causes cannot be fixed
because the compiler cannot find sufficient code to construct RAW dependence chains.
Also, new emergencies can be introduced as a result of making transformations to
existing code.

Ideally, the scheduling algorithm should attempt to create a RAW dependence

chain long enough to block the issue width of the machine. We find that there

is a strong correlation between the length of the RAW dependence chain and how

successfully the compiler can eliminate emergencies. Figure 5.13 plots the average

RAW chain length on the x-axis. The percentage of emergencies eliminated across

the different benchmarks is presented on the y-axis. The simulated machine has an

issue width of 8 instructions, and we find that the number of emergencies eliminated

steadily grows towards 100% as the length of the RAW chain approaches the issue

width of the machine.

In Section 5.3.2, we mentioned that the compiler’s instruction scheduler targeted

three specific points of interest in the CFG for an emergency: the root-cause instruc-

tion, the last write-back instruction, and in the case of a branch misprediction-related

emergency, the first instruction along the speculative path. We made a qualitative

argument that these three points provided good coverage to eliminate emergencies

successfully, but here we quantitatively justify that claim.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 126

1.4 1.6 2.1 4 4.8 5 6 6.1 7
0

20

40

60

80

100

%
 E

m
e

rg
e

n
ci

e
s

E
lim

in
a

te
d

Figure 5.13: There is a correlation between the number of emergencies the compiler
can eliminate and the average length of the dependence chains it creates. The com-
piler can eliminate more emergencies as it creates chain lengths that approach the
machine’s issue width. Our machine is 8-wide.

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
E

m
e

rg
e

n
ci

e
s

R
e

m
o

ve
d

 Root−cause

 Root−cause + Wrong Path

 Root−cause + Wrong Path + Last Writeback

Figure 5.14: This figure justifies the use of three program points for resolving voltage
emergencies. The combination of the root-cause instruction, the wrong path instruc-
tion, and the last writeback instruction, results in the ability to identify and resolve
nearly all of the voltage emergencies encountered.

Assuming all three points are covered as the baseline, Figure 5.14 shows how

effective the compiler is at removing emergencies as we reduce the number of points

the scheduler targets. The graph is normalized to 1, indicating the utmost number of

emergencies we are able eliminate using the code rescheduling algorithm implemented

in the scheduler. This number corresponds to the Code rescheduling bar shown in

Figure 5.10.

The left-most bar in Figure 5.14 shows the effect of targeting only the Root-cause

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 127

instruction. Since higher values mean fewer emergencies, the root-cause instruction

alone is insufficient, and the effectiveness of the scheduler increases as we consider the

Last writeback and Wrong path points. This is especially the case for programs that are

control intensive such as benchmarks RayTrace and Method. Most of the emergencies

in these benchmarks arise because of branch mispredictions, therefore ignoring the

issue rate on the incorrectly speculated path can have a significant impact. However,

by covering the speculative execution path as well, efficiency improves on RayTrace

by 60% and Method by nearly 80%.

Finally, all benchmarks, with the exception of RayTrace and Method, cover 100%

of emergencies when we taken into account the Last writeback point. Our general

consensus is that if the program is highly data intensive with few control flow changes,

then throttling the issue rate at the last writeback instruction has a positive effect.

The benchmark that benefits the most from the Last writeback transformation is Sieve,

where all of emergencies eliminated were the result of focusing on the Last writeback

instruction.

Compiler-Based Transformation Overhead. Our compiler cannot recompile

itself, therefore we incur rollback penalties whenever the compiler is itself executing.

This includes the scenario when the compiler is generating new dynamic code, as well

as when the compiler is transforming existing code to prevent emergencies. Table 5.2

shows the distribution of emergencies between the compiler and generated applica-

tion code. The data strongly indicates that the fraction of emergencies encountered

during compiler execution is less than 1% on average across all benchmarks. Since

the fraction of emergencies is so small, compiler-associated rollback overhead is in-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 128

Benchmark
Number of Emergencies

Runtime Compiler Application Code
FFT 639 431368

RayTrace 16 834753
LU 2 29639

Montecarlo 0 201355
Sor 16 286487

SparseMM 203 203759
Heapsort 299 196915
Method 763 428671
Sieve 0 1407500

Table 5.2: Number of emergencies that arise as the compiler generated application
code is running versus when the compiler is itself running (either for generating newly
requested dynamic code or while transforming existing application code to prevent
emergencies).

significant.

Based on these results, the overhead of run-time code transformation to fix and

eliminate emergencies appears to be insignificant. Figure 5.3 showed that the number

of static emergency-prone program locations (root-cause instructions) is fewer than

a hundred. Therefore, our compiler is rarely invoked during execution to transform

the code. Table 5.3 substantiates this claim by demonstrating that the percentage of

execution time spent running generated application code is substantially larger than

the time spent in the compiler executing the rescheduling algorithm.

Full-System Performance Evaluation. Reducing operating voltage margins

allows for frequency improvements and/or improved energy efficiency. However, there

are fail-safe mechanism penalties associated with handling voltage emergencies at

tighter margins. In this section, we demonstrate that our dynamic compilation strat-

egy complements general-purpose checkpoint-recovery for voltage emergencies, en-

abling very aggressive operating margins in the processor. Performance gains for our

collaborative approach are within four percentage points of an oracle-based throttling

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 129

Benchmark
% of Execution Time

Runtime Compiler Application Code
FFT 0.087 99.913

RayTrace 0.151 99.849
LU 0.082 99.918

Montecarlo 0.010 99.990
Sor 0.020 99.980

SparseMM 0.024 99.976
Heapsort 0.021 99.979
Method 0.010 99.990
Sieve 0.001 99.999

Table 5.3: Distribution of execution time spent handling emergencies in the compiler
versus running application code.

scheme. Results are presented in Table 5.4.

Bowman et al. show that removing a 10% operating voltage margin leads to a 15%

improvement in clock frequency [17]. This indicates a 1.5x scaling factor from operat-

ing voltage margin to clock frequency. We assume an aggressive operating margin of

4% in our experiments as compared to a 18% worst-case margin1. Based on the 1.5x

scaling factor, the 4% operating voltage margin we assume corresponds to a 6% loss

in frequency. Similarly, a conservative voltage margin of 18%, sufficient to cover the

worst-case drops, leads to 27% lower frequency. If we take this conservative margin

as the baseline and reduce the 18% margin to 4% while avoiding voltage emergencies,

the resulting ideal clock frequency improvement could be ∼29%. This sets the up-

per bound on frequency gains achievable. We make the simplifying assumption that

frequency improvements directly translate to higher overall system performance.

Fail-safe mechanism. An explicit-checkpointing scheme recovers from an emer-

gency by rolling back execution. The explicit-checkpoint scheme suffers from the

1The worst voltage drop we observe for our power delivery package is 18% as we ran through the Java Grande
benchmark suite.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 130

Scheme CPI Overhead Performance Gain

Fail-safe mechanism 25.0% 3.0%
Fail-safe mechanism with code rescheduling 7.6% 19.8%

Oracle-based throttling 4.0% 23.8%

Table 5.4: Increase in CPI to handle voltage emergencies, and net performance im-
provement after scaling the operating margin and factoring in the overheads. The
upper bound on performance improvement is 29% assuming the margin is scaled from
18% to 4%. These results are the average measured across all benchmarks.

penalty of rolling back useful work done whenever a voltage emergency occurs. The

restart penalty is a direct function of the sensor delay in the system, i.e., the time

required to detect a margin violation. An explicit-checkpoint scheme incurs addi-

tional overhead associated with restoring the registers (assumed to be 8 cycles, for

32 registers with 4 write ports) and memory state (when volatile lines are flushed,

additional misses can occur at the time of rollback).

Assuming a 50-cycle rollback penalty per recovery, an explicit-checkpoint scheme

incurs an average increase of 25% in CPI for the benchmarks we evaluated. Per-

formance gains from scaling the operating margin down to 4% are minor at only

3%. This minimal improvement in performance implies that explicit-checkpointing

by itself cannot handle voltage emergencies successfully at aggressive margins.

Fail-safe mechanism with code rescheduling. While the performance gains using

only explicit-checkpointing are minimal, the gains are larger when the fail-safe mech-

anism is combined with our proposed software counterpart. Of the two compiler

transformations we evaluate the code rescheduling transformation only, since it ap-

peared to be the most promising technique for effectively reducing the number of

emergencies without a detrimental performance impact.

The profiler identifies root-cause instructions as the fail-safe checkpoint scheme

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 131

initiates rollbacks. So there is some amount of rollback penalty associated with ini-

tially discovering root-cause instructions for transformation. Thereafter, however, the

compiler optimizes the root-cause instructions to permanently prevent subsequent oc-

currences of emergencies at the same program location. If the rescheduling algorithm

is ineffective at fixing certain emergency points, rollback penalties may still arise

at those points. Combining explicit checkpointing with compiler assistance reduces

checkpointing overhead substantially, from 25% to 7.6%. This translates to a net

performance gain of ∼20%.

Performance comparison to other schemes. Several researchers have proposed

mechanisms that spread out a sudden increase in current via execution throttling.

Several kinds of throttling have been proposed [26, 34, 44, 43]. For evaluation pur-

poses, we compare the performance of our scheme against a frequency throttling

mechanism that quickly reduces current load. The frequency of the system is halved

whenever throttling is turned on, which results in performance loss.

We compare against an oracle-based throttling scheme, which throttles once per

emergency and always successfully prevents the emergency. As a result, an oracle

scheme does not suffer from rollback costs, nor does it suffer from performance loss due

to throttles that cannot prevent emergencies. Oracle-based throttling enables ∼24%

improvement in performance for tightened margins, which is just four percentage

points better than our scheme. Of course, our scheme represents a practical design.

While an oracle-based scheme always successfully prevents emergencies, it is im-

portant to remember that realistic sensor-based implementations suffer from a tight

feedback loop that involves detecting an imminent emergency and then activating

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 132

the throttling mechanism in a timely manner to avoid the emergency. The detectors

are either current sensors or voltage sensors that trigger when a certain threshold

is crossed, indicating that a violation is likely to occur. Unfortunately, the delay

required to achieve acceptable sensor accuracy inherently limits the effectiveness of

these feedback-loop schemes, and operating margins must remain large enough to

allow time for the loop to respond [31].

In contrast, our collaborative approach does not suffer from the limitations of

sensor-based schemes. It leverages general-purpose checkpointing hardware that is

already shipping in production systems [9, 48] to reduce voltage emergencies. By

doing so, we enable the processor to operate at very aggressive margins that translate

to significant performance improvement.

Although our compiler solution is fine-grained, it is highly thread specific. In

future systems, we require techniques that span multiple threads. Additionally, we

also want our software to scale to multiple cores, dampening voltage swings that arise

due to interactions across cores.

5.4 Operating System Thread Scheduling

As the proliferation of core count per die or chip continues, increasingly one core

will either constructively or destructively interfere with other cores leading to more

or less voltage noise, respectively. In such cases, a software solution bigger than a

compiler becomes necessary. Virtual machine monitors or operating systems become

appealing, since these systems see and control all threads executing on hardware.

They can therefore decide (based on runtime feedback from hardware) if the running

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 133

set of threads are collaborative from a voltage noise perspective or not.

Ideally, scheduling threads for lower number of voltage emergencies leads to better

performance due to fewer rollbacks. In order to schedule intelligently, we introduce

the notion of voltage noise phases. Using these phases behavior changes, a thread

scheduler can co-schedule threads to reduce the number of emergencies.

5.4.1 Voltage Noise Phases

Programs experience differing emergency activity over the course of their execu-

tion. While prior work exists showing that programs go through execution phase

changes, no such behavior has thus far been identified in the context of voltage

noise. Our experimentation reveals that programs also go through voltage noise

phase changes. Emergency phases are periods of execution during which the average

amount of voltage noise is significantly larger or lower than at other times.

To study voltage noise behavior, we sample, collect and plot core voltage mea-

surements every 60 seconds in Figure 5.15. Our experimental setup limits us to this

time granularity, and we can measure no finer. Therefore, it is possible that there are

more finer-grained phases that we cannot observe using our setup. Nevertheless, this

timescale still allows us to demonstrate that voltage noise phases exist.

Figure 5.15 is a plot that shows Droops per 1K Clock Cycles assuming a 4% volt-

age margin across three different SPEC CPU2006 programs. This metric is similar

to the metric that designers typically use to study cache performance with respect

to application behavior or its execution time—“Misses per 1000 instructions”. We

explicitly use the term droops instead of emergencies to draw distinction between

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 134

12

10

8

6

4

2

0D
ro

o
p
s

p
e
r

1
K

 C
lo

ck
 C

yc
le

s

160012008004000

Time (s)

(a) 482.sphinx

16

12

8

4

0D
ro

o
p
s

p
e
r

1
K

 C
lo

ck
 C

yc
le

s

6005004003002001000

Time (s)

(b) 416.gamess

14

12

10

8

6

4

2

0D
ro

o
p
s

p
e
r

1
K

 C
lo

ck
 C

yc
le

s

160012008004000

Time (s)

(c) 465.tonto

Figure 5.15: While some programs show no phases in voltage noise like benchmark
482.sphinx, others like 416.gamess and 465.tonto experience simple and more complex
phases, respectively.

measurements and interpretation. Our Intel CoreTM2 Duo processor is built robustly

using a 14% voltage margin, so no real emergencies occur during execution. However,

assuming the system is noise-tolerant, we would expect emergencies at a 4% voltage

margin during execution. We infer the expected emergency count per 1K clock cycles

using this droop metric.

The number of voltage noise phases and the number of voltage emergencies we

observe varies from one program to another. See Figure 5.15. Benchmark 482.sphinx

experiences nearly no phase changes. The average number of “emergencies” is stable

around 10 droops per 1K clock cycles. By contrast, benchmark 416.gamess experi-

ences four phase changes where voltage emergencies vary between 10 and 14 emer-

gencies per 1K clock cycles transiently. Benchmark 465.tonto goes through more

complicated phase changes in Figure 5.15c, oscillating strongly and more frequently

between 4 and 12 emergencies every 1K cycles.

In Section 3.1 we demonstrated that there is a relationship between voltage noise

and processor stalling activity. We state that processor stalls are indicative of the

number of emergencies a program experiences, showing a strong correlation of 97%.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 135

Extrapolating from that same analysis, we believe it is underlying changes in mi-

croarchitectural activity, caused by program behavioral changes, that are causing

these voltage noise phases.

Another interesting finding that Figure 5.15b and Figure 5.15c reveal is that not

only do programs experience voltage noise phases, but that these phases are recur-

ring. We previously claimed this through our simulation analysis in Section 3.2, but

measurement results here validate our claim. Additionally, these phases are over the

course of full program execution. Such recurring behavior is useful for amortizing the

cost of making decisions at the software layer.

5.4.2 Phase Scheduling

Scheduling programs with different voltage noise phases or characteristics together

on a multi-core system can lead to either an increase or decrease in emergencies. It is

important to minimize emergencies in a multi-core system, since one power plane is

shared across multiple cores and a droop anywhere on a common power plane forces

recovery across all connected cores. Therefore, one misbehaving thread can penalize

other running threads, severely degrading overall system performance.

We setup a sliding window experiment to evaluate the impact of co-scheduling

different voltage noise phases together. Figure 5.16 illustrates this setup. It resembles

convolving two execution windows together. But more precisely, in this experimental

setup one program is tied to Core 0. This program called Prog X on Core 0, is run

once until it completes execution. During the course of its execution, we spawn a

second program onto Core 1 called Prog Y. However, we do not let this program run

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 136









  



















 






Figure 5.16: Experimental setup showing how we evaluate the impact of co-scheduling
different phases together. We tether one program to Core 0. It runs to completion
during the experiment. Then every 60 seconds we launch another program onto the
second core. But we terminate this program after 60 seconds and repeat this with
another instantiation. At the end of every run we collect our voltage measurements.

to completion. Instead, we prematurely terminate it after 60 seconds, launching it

multiple times (Run 1, Run 2, ..., Run N in Figure 5.16). In this way, we capture

the interaction of the first 60 seconds of program Prog Y as program Prog X is going

through different voltage noise phases (A, B, C and D in Figure 5.16). To quantify the

effects on voltage noise, we take measurements at the end of each Prog Y instance.

We only have two cores on our system, so Prog X and Prog Y together maximize the

running thread count, keeping all cores busy.

We demonstrate that co-scheduling impacts voltage emergency count in Fig-

ure 5.17 using benchmark 473.astar. Running by itself benchmark 473.astar does

not exhibit much variance in emergencies other than towards the end of execution.

The benchmark gets briefly noisier around marker C in Figure 5.17a. During this

process the second core is idling.

However, we observe destructive interference leading to more emergencies as we

convolve a 60-second execution window of one 473.astar instance running on Core

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 137

(a) Single-core noise profile of benchmark
473.astar. The second core is idling, al-
lowing us to study the noise characteris-
tics of the program in isolation.

(b) Noise profile of co-scheduled threads.
Two instances of 473.astar are running
together, as per the experimental setup
illustrated in Figure 5.16.

Figure 5.17: Voltage noise profiles with and without co-scheduling of benchmark
473.astar.

0 with another 473.astar instance running on Core 1. See Figure 5.17b. When

473.astar is running by itself and it enters the execution region around marker B

(in Figure 5.17a), the benchmark goes through microarchitectural activity changes.

When this region is convolved with the first 60 seconds of another instance of the same

program, emergencies quadruple. Emergency counts goes up from around 8 droops

per 1K cycles to 24 droops per 1K cycles during co-scheduling. See Figure 5.17b.

While we noted destructive interference, it is also important to note the presence of

constructive smoothing of voltage noise. Between the start of execution and marker A,

the number of emergencies is the same across both graphs. Compare the y-axis values

around region B across Figure 5.17a and Figure 5.17b, which represent single core and

multi-core emergency activity respectively. Despite both cores running actively, the

data indicates that the threads are not interfering and causing more emergencies.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 138

Figure 5.18: Boxplot showing the variance in emergencies (or droops) as each program
on x-axis is co-scheduled with every other program shown on the same axis.

We expanded our analysis to the entire SPEC CPU2006 benchmark suite, finding

that the same constructive and destructive interference behavior exists over other

schedules as well. We present this analysis using a box plot in Figure 5.18. The

figure illustrates the range of emergencies we observe as each program is co-scheduled

with every other program on the x-axis. The blue triangles in the figure correspond

to emergency counts as the benchmark is running with itself. These blue triangle are

a useful baseline for comparing schedules.

In some cases co-scheduling a program with itself results in the lowest number

of emergencies. We find that such is the case with benchmarks like cactusADM,

h264ref, hmmer, namd, wrf and zeusmp. However, scheduling these programs with

any other program causes emergencies to increase. In the extreme cases benchmarks

cactusADM and zeusmp experience a 2.5x increase in emergencies.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 139

5.4.3 Scheduling for Noise versus Performance

Determining which set of programs to co-schedule, or run together, on a multi-core

system for improving system performance is a well studied topic [50, 25, 38, 37, 56,

23, 22]. Prior scheduling for performance work shows that it is possible to improve

the aggregate throughput and performance of all running workloads by reducing stalls

(like those due to cache misses). This is done by exploiting different program and

microarchitectural execution characteristics.

A similar extension is possible allowing the operating system thread scheduler to

pair threads together to reduce the number of emergencies. Voltage swings occur

primarily because of fluctuations in activity due to stalls (see Section 3.1). Although

scheduling for performance includes eliminating stalls, that same metric does not nec-

essarily guarantee fewer emergencies. The operating system must explicitly schedule

for voltage noise.

Co-scheduling threads to reduce voltage emergencies differs from scheduling for

performance. In order to prove this point we evaluate different operating system

scheduling policies, measuring emergencies over the course of a batch job schedule

consisting of 50 jobs. The job pool consists of randomly chosen SPEC CPU2006

benchmarks. Some programs may be repeatedly selected to construct the job pool,

since there are only 29 CPU2006 programs. For this selected set of programs, we

evaluate a range of scheduling policies. We investigate random selection (Random)

and target maximum performance (IPC). We also schedule for minimal emergencies

(Droops).

We simulate the scheduling policies, rather than evaluate them in real hardware.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 140

Existing hardware does not support dynamic feedback to software regarding voltage

noise. For instance, there is no way to study the effects of a scheduler that dynamically

selects the pool of threads to co-schedule based on run-time voltage emergency feed-

back from hardware. As a consequence, rather than implement the different policies

in a real operating system scheduler, we model the behavior of different scheduling

policies.

Due to the lack of feedback from hardware, scheduling for any metric involving

Droops requires a priori knowledge of emergency activity. Therefore, we do a pre-run

to gather all the data, and subsequently use that data to actually model the policies.

Miscellaneous modeling details are available in Section B.2.3.

In order to identify the difference between scheduling for voltage noise versus

performance, in Figure 5.19 we plot performance in terms of instructions per cycle

(IPC) versus droops we observe over the course of our batch schedule. We measure

IPC using VTune [1]. Both the y- and x-axis of the graph are normalized to SPECrate,

which acts as a baseline. SPECrate assumes two instances of the same program are

running together at the same time. We do this to get rid of inherent IPC differences

between the benchmarks, allowing us to focus in on only the effects of co-scheduling.

Each marker in the graph corresponds to one simulation. We ran a 100 random

simulations.

The four quadrants in Figure 5.19 (Q1 through Q4) help us draw different conclu-

sions. Ideally, we want results in quadrant Q1, which indicates that the scheduling

policy lowers emergencies, in addition to improving performance. Quadrant Q2 is

good, but only from a performance standpoint. Q2 suffers from an increase in emer-

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 141

Figure 5.19: Proof that scheduling for voltage noise is different from scheduling for
performance. Scheduling for performance causes more emergencies, which upon fac-
toring emergency tolerance rollback costs can actually result in performance degra-
dation. Noise-aware schedulers are necessary in our architecture.

gencies. Results in Q3 are bad, since performance degrades and emergencies go up.

Lastly, results in Q4 imply a reduction in emergencies at the expense of some perfor-

mance.

By today’s standards, our random simulation is representative of production op-

erating systems. The POSIX 2010 policies includes simple policies like round-robin

and first-in, first-out that are effectively random in behavior. From observing data in

Figure 5.19 we can conclude that random schedules lead to more voltage emergencies.

Additionally, there are no guarantees about performance.

By comparison, a performance centric scheduler achieves best performance, as ex-

pected. However, such a scheduler is unaware of voltage emergency activity occurring

as a result of its scheduling decisions. In Figure 5.19 the IPC marker is in quadrant

Q2, indicating that on aggregate more emergencies occur than our baseline. Although

improving performance implicitly leads to fewer execution stalls, this data indicates

that reducing stalls alone is insufficient to reduce emergencies in a multi-core system.

Chapter 5: Eliminating Emergencies via Hardware and Software Co-design 142

Interactions across threads (or cores) impact the amount of voltage noise we observe.

Therefore, a noise-aware scheduler is necessary.

Consider the Droops metric, or noise-aware scheduling, whose data point resides in

quadrant Q4. The noise-aware scheduler focuses on emergency activity and is there-

fore able to minimize emergencies across all 50 jobs. It does this without adversely

affecting performance.

A noise-aware scheduler can be adapted to not only reduce emergencies, but

also improve performance. To achieve this we propose a new scheduling metric:

IPC/Droopsn. Droops are weighted by some factor n that determines how costly

emergencies are to tolerate. The value of n is small if recovering from emergencies is

cheap, costing only few tens of clock cycles. Otherwise, n is large. A thread scheduler

can use this value, n, to balance the penalty of tolerating emergencies as it attempts

to maximize performance. The arc of markers in quadrant Q2 of Figure 5.19 illustrate

the range of opportunity over different values of n.

Chapter 6

Conclusion

143

Chapter 6: Conclusion 144

Continuing technology advances amplify the importance of reliability in modern

high-performance processors. Shrinking feature size and diminishing supply voltage

are making circuits ever more sensitive to transient errors, stemming from process,

voltage and thermal variations. A paradigm shift is necessary in our thinking to

continue producing processors that maximize performance under strict dollar and

power budgets in the presence of these variations.

Power-constrained processor design is impacting processor reliability. Techniques

that target power reduction like clock gating, when aggressively applied to constrain

power consumption, are leading to large current swings in the processor. When cou-

pled with the non-zero impedance of a power-delivery subsystem, these current swings

can cause voltage to fluctuate beyond safe operating margins. Such dangerous fluctu-

ations, called voltage emergencies, have traditionally been dealt with by optimizing

for the worst-case voltage flux, allocating sufficiently large voltage margins to avoid

any timing violations.

With continued technology scaling, the voltage noise problem is an increasingly

important design challenge. Prior method of avoiding emergencies altogether in-

curs severe performance penalties. Enabling aggressive operating margins is criti-

cal at the risk of voltage emergencies is important, since worst-case margins cripple

performance-per-watt efficiency in microprocessor designs. The overall goal of this

work is a full system design, implementation and evaluation of a hardware-software

collaborative approach to the voltage noise problem.

We demonstrate our contributions toward this hardware and software combination

that enables aggressive operating voltage margins: we allow voltage emergencies to

Chapter 6: Conclusion 145

occur at the expense of rolling back execution while relying on a feedback-driven

software layer to permanently eliminate recurring emergencies. We base this design

on characterizing emergencies in terms of code behavior, which enables us to predict

them intelligently, and even eliminate them completely. Our collaborative design is a

more holistic technique for handling voltage emergencies, as compared to existing and

prior work in this area. Therefore, our solution allows us to more easily harness the

benefits of improved energy efficiency or performance improvement that aggressive

margins enable.

Rather than proactively avoiding any voltage emergencies from occurring, we ex-

ploit voltage emergency tolerance. By tolerating emergencies we demonstrate that

designing for the absolute worst-case severely penalizes the maximum efficiency we

can extract from our processor chips. Most programs do not need the large volt-

age margins under typical case conditions, like the 14% margin in use by the In-

tel CoreTM2 Duo processor or the 20% margin that the designers of the POWER6

processor put in place. An aggressive 4% margin suffices for the common case. A

noise-tolerant system can handle those rare cases using a fail-safe recovery mecha-

nism, like checkpoint-recovery. An architecture for tolerating emergencies also allows

us to identify leading indicators of activity that induces emergencies. We found a

strong relationship between microarchitectural events and current and voltage fluctu-

ations within the microprocessor. We consider several microarchitectural parameters,

such as the number of entries in the re-order buffer, the instruction fetch queue,

and the load/store queue, along with microarchitectural events like cache misses and

pipeline flushes, showing that it is a confluence of stalling activity that induces emer-

Chapter 6: Conclusion 146

gencies. We demonstrate a means of capturing the interleaving of program path with

microarchitectural events that generates a representative snapshot of emergency ac-

tivity. These voltage emergency signatures reflect corresponding dynamic current and

voltage activity resulting from program interactions with the underlying microarchi-

tecture leading to emergencies.

Tolerating emergencies is prohibitively expensive, therefore we invented the volt-

age emergency predictor as a mechanism for emergency avoidance. Our avoidance

mechanism uses voltage emergency signatures to anticipate emergencies and proac-

tively avoid them via throttling, while relying on the general-purpose checkpoint-

recovery logic already available in todays production systems to train itself. Our

signature-based voltage emergency predictor operates independently of sensor delays,

package characteristics, and microarchitecture details, and it enables operation at

aggressive voltage margins without compromising correctness. Instead of using a

conservative 14% voltage margin, the predictor improves performance by 13.5% at an

aggressive 4% voltage margin, which is very competitive to the 14.2% improvement we

can achieve using an idealized oracle-based throttling mechanism at the same setting.

Having shown that voltage emergencies are recurring using emergency signatures,

and thus predictable, we extend our work further to use software for voltage emergency

elimination. In our collaborative architecture, software reduces hardware penalties

to either tolerate or avoid voltage emergencies by permanently fixing code regions

responsible for those emergencies. Additionally, since we found that co-scheduling of

threads impacts the number of emergencies at run-time, we propose and demonstrate

novel operating system scheduling policies that specifically reduce voltage emergencies

Chapter 6: Conclusion 147

based on feedback from hardware.

Since hardware always offers a fail-safe route, software uses dynamic feedback from

hardware to decide where, when and how to optimize. We show that through code

transformation techniques a dynamic compiler eliminates over 60% of all emergencies,

and therefore dramatical reduces the recurring burden on hardware. Similarly, our

noise-aware thread scheduling policy demonstrates that co-scheduling threads in a

multi-core environment can mitigate global checkpoint recovery overheads.

Optimizing away voltage emergencies is analogous to removing cache misses or

branch mispredictions to achieve better performance or lower power consumption.

Considering the impact of voltage noise on processor efficiency, aggressive operating

voltage margins are inevitable. As feature size shrinking continues reliability prob-

lems like voltage emergencies will continue to emerge more forcefully, requiring us to

rethink traditional processor design involving software as an essential fabric in the

production of future processors.

Going forward, building robust microprocessors that deliver maximum perfor-

mance under strict power and cost budgets is going to become ever more important

in the presence of variations. We hope that the three principles we introduce in this

thesis: tolerance, avoidance and elimination act as guiding principles for building

resilient systems in the future.

Appendix A

Measuring Voltage Noise in

Production Processors

Contents
A.1 Measurement and Validation 149

A.1.1 Using Off-the-shelf Components 149

A.1.2 Comparing Impedance . 152

A.2 Determining the Worst-case Voltage Margin 154

148

Appendix A: Measuring Voltage Noise in Production Processors 149

A.1 Measurement and Validation

Power supply design requires robust analysis and engineering effort to prevent

transient voltage droops. Such voltage noise can cause the processor to malfunction,

due to slower operating circuits. Consequently, processor designers and motherboard

regulator engineers use custom industrial toolkits to carefully measure, test and val-

idate voltage variation with a microprocessor given a specific test-bed (or mother-

board).

Current processor to platform verification and validation is done using electronic

loads called Voltage Transient Test (VTT) tools [2]. These tools allow voltage droop

characterization in the time domain series. These test environments enable char-

acterization of noise phenomena like the resonance under manual external stimuli.

However, they typically require additional hardware that is custom designed, and as

such is not publicly available for academic use.

A.1.1 Using Off-the-shelf Components

VTT tools are impractical for our experimentation and measurement purposes.

First, VTT rely on external stimuli. Generally designers use worst-case peak to peak

current swings to investigate platform voltage noise characteristics. Unfortunately,

such current swings are not representative of actual program activity. By comparison,

we want to characterize and study voltage droop in response to program-specific

current draw activity. This is important to us since we are interested in studying the

typical case voltage swing because of program activity. Therefore, we must be able

to observe processor voltage uninstrusively as it is running in a typical environment.

Appendix A: Measuring Voltage Noise in Production Processors 150

We discovered a new approach of measuring processor voltage in a production

setup using off-the-shelf components. The setup is illustrated in Figure A.1, going

from (a) through (d) in a sequential process. The specifics of the host system and

equipment are as follows: we measure core supply voltage fluctuations using a Giga-

byte GA-945GM-S2 motherboard that exposes processor package pins corresponding

to core VCCsense and VSSsense. These pins provide an isolated low impedance con-

nection to the supply voltage, VCC and VSS power plane, within the core. To ensure

we do not introduce measurement error and that we maintain high signal fidelity, we

use a InifiniiMax 1.5GHz 1130A differential probe to sense voltage. A DSA91304A

Infiniium oscilloscope gathers probe readings at a high frequency. We configure the

scope to take one reading per clock tick, allowing us to closely relate program activity

to voltage fluctuations. A host system gathers these scope measurements remotely

over the network.

The specific processor we use is a Intel R� CoreTM2 Duo Desktop Processor E6300

and its specification number is SL9SA. This is a dual core processor, comprising of

two cores on a single die. Although our experiments are reserved to this one proces-

sor, the measurement methodology is extensible to any processor the motherboard

supports. The motherboard supplies power to both processing units using a single

voltage regulator module, therefore any transient voltage droop affects both cores.

The benefits of our setup are that we can measure voltage fluctuations within the

processor without requiring any special experimental toolkit. Even more importantly,

we can now run entire suites of real programs to completion, rather than simulation

and observing activity only over few millions of instructions. Moreover, most simu-

Appendix A: Measuring Voltage Noise in Production Processors 151

(a) Intel provides V CCsense

and V SSsense pins that allow
us to sense silicon voltage and
ground, respectively, using
the processor’s low impedance
land pins.

(b) To ensure high signal
fidelity and prevent mea-
surement induced noise, we
measure voltage with ultra
low loading using the Inifini-
iMax 1.5GHz 1130A differen-
tial probe.

(c) We measure and collect
the sensed voltage data from
the differential probes using
an Agilent DSA91304A Infini-
ium oscilloscope.

(d) Gathering data using an
external system that streams
measurements from the oscil-
loscope during execution.

Figure A.1: Setup illustrating how we sense and measure voltage fluctuations within
the processor during execution time.

lators can only support a limited set of programs, even further constraining robust

evaluation and characterization of voltage noise.

Appendix A: Measuring Voltage Noise in Production Processors 152

(a) Measured. (b) Intel impedance data [6].

Figure A.2: Validating our measurements by comparing impedance we derive from
our experimental setup to Intel’s published results.

A.1.2 Comparing Impedance

We validated our experimental setup by constructing the impedance profile of

our platform and comparing it with Intel’s published data. Figure A.2a corresponds

to the impedance profile we constructed on our system using a technique previously

described in literature [11]. However, we make a minor modification to this prior

technique which we will describe later. Figure A.2b corresponds to Intel data. We

extracted this figure from an Intel voltage regulator manual corresponding to dual

core processor designs [6]. We edited the original graph with markers and labels to

present our arguments clearly.

There are two important validation points in our graph. First, impedance peaks

at around 100MHz, which matches with prior results describing typical power delivery

network characteristics [30, 12, 53, 27]. Second, our data matches Intel CoreTM2 Duo

data even more closely between the 1MHz and 10MHz. The small graph embedded

within Figure A.2a corresponds to Measured results in Figure A.2b for a Chip with all

Appendix A: Measuring Voltage Noise in Production Processors 153

caps. Other data is unimportant and irrelevant for our purposes.

In the beginning of this section we mentioned making a slight alteration to an

already existing methodology that we used to construct the relative impedance of

our system. In prior work, the authors need to create a square pulse train of current

activity in order to measure the voltage droop response of the platform at a certain

frequency. So they drive the clock tree of the processor using an external clock signal

generator at the required frequency. They claim this creates the representative current

stimulus necessary within the processor, at which point they proceed to estimate the

voltage droop. This process, repeated over a range of frequencies, eventually allows

them to construct the impedance profile we see in Figure A.2b.

In our effort, we do not rely on an external source to create the current stimulus,

rather we use software. In this way we can use a production setup for our measure-

ments of on-die voltage. We constructed a user-level program that alternates between

high power and low power instruction sequences repeatedly in a loop. Instructions

for the high power sequence were from CPUBurn [40]. The lower power sequence is

made up of no-operation instructions. The duty cycle for alternating between these

two extreme power consumption paths is a command line argument to our program.

Modulating activity in this way allows us to create current stimuli with varying fre-

quencies within the processor, similar to driving the clock tree, but without requiring

a custom and proprietary hardware setup.

Appendix A: Measuring Voltage Noise in Production Processors 154

A.2 Determining the Worst-case Voltage Margin

We can determine the voltage margin of a processor at a certain frequency by un-

dervolting the core’s nominal supply voltage. Reducing the supply voltage slows down

circuit operation speed. Consequently, peak operational frequency of the processor

logic should drop. Otherwise, the clock of the processor is ticking much faster than

the rate at which processor logic is capable of operating at. Therefore, undervolting

theoretically should force the processor into functional errors. But in production set-

tings this does not happen immediately, as there are voltage margins or guardbands

protecting against transient worst-case voltage droops.

Nevertheless, at some point as we continue to lower voltage the processor will run

into functional errors, causing the system to hang or in effect “crash”. At this voltage

our processor is unable to meet timing constraints necessary to operate correctly at

the current frequency setting. Circuits operation has finally become slow enough to

reveal the minimum voltage necessary to ensure correctness of execution. Therefore,

we have just forced our processor into a voltage emergency. The difference between

the original nominal voltage setting and this current voltage setting is the amount of

guardband in place to tolerate those transient voltage swings.

We did this analysis for our Intel CoreTM2 Duo processor and found the worst-case

voltage margin to be 14%. Determining the margin this way requires motherboard

support. Most motherboards do not allow undervolting. Therefore, we specifically

used the Gigabyte 965P-DS3 motherboard for this experiment. This motherboard

is publicly available for purchase and it allows us to undervolt the processor very

aggressively, well below the processor’s minimum operating voltage margin.

Appendix B

Framework for Evaluating New

Techniques to Lower Voltage Noise

Contents
B.1 Hardware Simulators . 158

B.1.1 Processor Microarchitecture 158

B.1.2 Power Consumption Model 161

B.1.3 Power Delivery Subsystem 162

B.2 Software Infrastructure . 163

B.2.1 Benchmarks . 163

B.2.2 Compiler . 164

B.2.3 Operating System Thread Scheduler 164

155

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 156

Simulation and modeling frameworks are essential to any study. This is especially

true when we are working on hardware related issues, such as voltage noise. Produc-

tion hardware systems are highly optimized and proprietary, leaving little room for

introspection. We need a framework that allows us to carefully study and understand

a problem in great detail. And as we better understand the problem, the frame-

work should allow us to evaluate the effect of novel solutions we propose to solve the

problem. To this end, in this chapter we explain how we model, study, and evaluate

solutions to voltage noise and provide specifics about the tools we use.

Our solution involves co-designing hardware and software to mitigate voltage

noise. The hardware tolerates emergencies and avoids emergencies intelligently when

possible while software attempts to eliminate them altogether. Therefore, we require

both hardware and software components. The hardware components include a mi-

croarchitectural simulator, a power consumption model and a system that models the

power delivery subsystem. All of these are necessary to model voltage noise. The mi-

croarchitectural simulator also allows us to investigate new hardware-based solutions.

The software components include the programs we are studying and a run-time layer

that allows us to investigate new techniques that can eliminate voltage emergencies.

Figure B.1 illustrates each of the components in our experimental framework,

showing information flow from one component to another. The Processor Microarchi-

tecture component models a specific processor implementation. The Power Consump-

tion Model component tracks the simulated microarchitecture’s activity to determine

how much current the processor is drawing each cycle. The Power Delivery Subsys-

tem component then uses this cycle by cycle current information to compute the

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 157

instantaneous voltage by convolving it with the impulse response characteristics of

the power delivery network it is modeling. There are sensors within the microarchi-

tecture simulator that monitor voltage to detect voltage emergencies. The microar-

chitectural simulator also includes the checkpoint-recovery mechanism necessary to

tolerate emergencies (Chapter 3). The simulator also serves as the basis for inves-

tigating different avoidance mechanisms (Chapter 4). When the sensors detect an

emergency, the microarchitecture simulator invokes software callbacks that notify the

Run-time System of the emergency (Chapter 5). The run-time system then smoothes

or transforms the code corresponding to the running Benchmark. This is done as the

program is executing. In the case of thread scheduling, we do not rely on any of the

Hardware Simulators. Multiple Benchmarks (one per core) are run natively on the real

hardware. That is a different experimental setup. Please refer to Appendix A for

those hardware setup details, including how we measure voltage noise in a real chip.

Operating system thread scheduler details follow in this section.

We investigate our hardware and software co-design solutions using simulations

of a representative superscalar microprocessor in which voltage noise fluctuations be-

yond 4 percent of nominal voltage are treated as voltage emergencies. Our modified

8-way superscalar x86 SimpleScalar gathers detailed cycle-accurate current profiles

using Wattch [18]. Voltage variations are calculated by convolving the simulated

current profiles with an impulse response of the power delivery subsystem [43, 34].

We use a power delivery subsystem model based on the characteristics of the Pen-

tium 4 package [11], which exhibits a mid-frequency resonance at 100MHz with a

peak impedance of 5mΩ, assuming peak current swings between 16A and 50A.

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 158

Figure B.1: Simulation framework for studying new voltage noise techniques.

B.1 Hardware Simulators

In this section, we provide details for each of the hardware components in Fig-

ure B.1.

B.1.1 Processor Microarchitecture

We study voltage noise assuming an out-of-order superscalar processor. The sim-

ulator we use is a x86 version of SimpleScalar [20]. We are grateful to Brad Calder’s

research group from the University of California at San Diego for this infrastructure.

Modifications. We made several extensions to the simulator. These extensions

allow the simulator to (1) fast-forward execution more efficiently to study only the

interesting parts of a program, (2) more robustly support a wide variety of programs

and (3) provide voltage noise feedback to the software at run-time.

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 159

Forwarding. Fast-forwarding execution in simulation frameworks is very impor-

tant to quickly focus in on only the interesting parts of a program. This is key since

simulating the microarchitecture makes full program analysis impossible. Therefore,

being able to get to the interesting parts of a program can dramatically speed up

experimentation. Typically, simulators use compressed trace files or checkpoints that

allow very efficient fast-forwarding. However, this limits the breadth of programs we

can study, since any program we wish to study requires we have these checkpointing

files.

To allow efficient fast-forwarding without the need for checkpoint files, we replaced

the simulator code for fetching instructions with a Pin Tool [3]. Pin is a just-in-time

(JIT) compiler that allows us to run the program at nearly full speed on the baremetal

hardware, but with the ability to interject execution as necessary. We leverage this

capability to fast-forward execution more efficiently in the simulator.

While the program is running through parts of a program that are of no interest, we

fast-forward execution by bypassing the simulator. The program is run directly on the

underlying hardware. Therefore, the program is fast-forwarding at the speed of native

execution. However, we regain control whenever the program reaches an interesting

point. From that point forward, we redirect every instruction the program is executing

into the microarchitecture simulator. We achieve this by writing a Pin Tool that tracks

the dynamic control flow path of a program, which at every instruction boundary feeds

the simulator with the bytes corresponding to that instruction, so that the simulator

itself can execute the instruction within its virtual infrastructure.

However, feeding instructions into the simulator via a Pin Tool proves challenging

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 160

because of branch speculation. Pin allows a tool to observe only the true or committed

dynamic path of a program. It cannot trace instructions down the speculative path

because of branch mispredictions. But this is an important aspect of execution that

affects voltage noise. Therefore, it is important we allow our simulator to speculatively

execute instructions and capture those effects on voltage noise.

We allow speculative execution in our simulator despite a non-speculative in-

struction fetch engine by stalling the Pin instruction feeder whenever the simulator’s

branch predictor predicts an outcome that does not align with the true program

path. Pin knows the program’s true path before executing the branch instruction,

since the branch direction is known by looking at values present in the condition code

register. While Pin is stalled at the mispredicted branch, the simulator continues ex-

ecuting instructions speculatively starting from the first instruction along the wrong

path. Eventually the simulator realizes that it mispredicted the branch and flushes

its pipeline. At this point, execution resumes down the correct path of the program,

and we resume instruction feeding via Pin. Since the simulator decodes instructions

by itself, its instruction set architecture decoder must be robust.

Robustness. To make the simulator more robust, we replaced the simulator’s

native instruction encoder and decoder. The original encoder and decoder could not

handle all instruction types. So instead we use XED [4], which is a software library

for encoding and decoding x86 (IA-32 instruction set and Intel 64 instruction set)

instructions. XED is more up to date and supports the x86 instruction set architecture

(ISA) far more robustly. While this allows us to run many more instruction types

through the simulator, corresponding extensions are also necessary to the simulator’s

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 161

Clock Rate 3.0 GHz RAS 64 Entries

Inst. Window 128-ROB, 64-LSQ Branch Penalty 10 cycles

Functional 8 Int ALU, 4 FP ALU, Branch Predictor 64-KB bimodal gshare/chooser

Units 2 Int Mul/Div, 2 FP Mul/Div BTB 1K Entries

Fetch Width 8 Instructions Decode Width 8 Instructions

L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way

L2 I/D-Cache 2MB 4-way, 16 cycle latency Main Memory 300 cycle latency

Table B.1: Architecture parameters for SimpleScalar.

x86 microcode engine. These extensions all put together allow us to run the whole

suite of CPU2006 benchmarks more robustly on the simulator.

Feedback. Our work involves hardware and software co-design to mitigate volt-

age noise. For this purpose, we extended the simulator with support for callbacks.

These hooks allow the software to register for events occurring within the simulated

microarchitecture. For instance, the software can register a function that the microar-

chitectural simulator calls whenever an emergency occurs. In this way we evaluate

what information hardware should provide the Run-time System layer to perform volt-

age smoothing. Moreover, the feedback loop between the hardware and software layers

allows us to evaluate the effectiveness of voltage smoothing as the program is running,

thus creating a dynamic feedback-driven system.

Configuration. We configure the simulator to be representative of a traditional

superscalar processor. Table B.1 details the set of configuration parameters we use

for all experiments discussed in this work.

B.1.2 Power Consumption Model

We use Wattch [18] to model core power consumption. Each cycle the power con-

sumption model generates active current draw based upon microarchitectural switch-

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 162

ing activity that it observes within the simulator. We use the default set of configu-

ration parameters.

B.1.3 Power Delivery Subsystem

A power delivery package model computes voltage variations by convolving the

simulated current profiles from the power consumption model above with an impulse

response of the power delivery subsystem [43, 34]. In parts of this work we evaluate

three different power delivery subsystem package models. Details here pertain to each

one of those packages. These models have been used and studied extensively [27, 28,

30]. The packages we use are labeled Pkg 1, Pkg 2 and Pkg 3 and their details are

shown in Table B.2. Our baseline package for all experiments is Pkg 1 unless stated

as otherwise.

Quality factor (Q) is the ratio of the resonant frequency to the rate at which

the package dissipates its energy. A larger Q gives rise to larger voltage swings

for currents oscillating within the resonance band of frequencies. Applications with

current fluctuations in the resonance band therefore suffer more from inductive noise

with a high-Q package.

Pkg 1 closely resembles characteristics of the Pentium 4 package [32]. Pkg 2 is

representative of the package used in an earlier study [34], and its parameters are

based on the Alpha 21264/21364 package. For comparisons, we also include Pkg 3,

which represents a bad package with very large quality factor.

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 163

Package
Peak Impedance Current Quality Resonance

Comment
(mOhm) (A) Factor Cycles

Pkg 1 5 16–50 3 30 Pentium 4 [11]

Pkg 2 2 30–70 2 60 Used in [34]

Pkg 3 17 16–50 6 30 Worst package

Table B.2: Characteristics of the power delivery subsystem packages we use in our
study. By default and unless stated as otherwise, we model voltage noise using Pkg 1.

B.2 Software Infrastructure

In this section, we explain details pertaining to the software pieces of our exper-

imental framework. We explain the compiler tool-chain that we use to study code

transformation techniques, the benchmarks we use and also how we model the be-

havior of an operating system thread scheduler.

B.2.1 Benchmarks

We use a combination of C, C++, Fortran and C# benchmarks. With the ex-

ception of C# benchmarks, all programs come from the SPEC CPU2006 benchmark

suite [5]. These benchmarks were linked statically, and compiled using gcc 4.0 at the

O3 optimization level.

For evaluating compiler-based voltage emergency elimination techniques (Sec-

tion 5.3), we use the C# benchmarks from the Java Grande benchmark suite [19].

Table B.3 presents a summary description of each of the benchmarks. While the

programs run for an extended period of time, on the order of billions of instructions,

we shorten their execution time to approximately 150 million instructions because of

the hardware simulation overhead exhibited by SimpleScalar.

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 164

Benchmark Description

FFT Performs a one-dimensional forward transform of N different complex numbers
RayTrace Measures the performance of a 3D ray tracer on a scene containing 64 spheres

LU Linear system solver that is based on Linpack
Montecarlo Financial simulation using MonteCarlo techniques

Sor Performs successive over-relaxation over a grid
SparseMM Matrix-vector multiplication using an unstructured sparse matrix
Heapsort Sorts an array of integers using a heap sort algorithm
Method Determines virtual machine method call overheads
Sieve Algorithm for finding the prime numbers in a given interval

Table B.3: Descriptions of C# benchmarks.

B.2.2 Compiler

We use the ILDJIT [21] CIL compiler as our framework for optimizing emergencies

at run time. The compiler dynamically generates native x86 code from CIL byte code,

which it then executes directly on the simulator. The compiler has access to metadata

such as the complete control flow graph and data flow graph, all of which is useful

for optimizing code at runtime.

Modifications. We extended the native ILDJIT compiler to include the code

injection and scheduling algorithms described in chapters earlier on.

B.2.3 Operating System Thread Scheduler

Scheduling threads intelligently reduces voltage noise. We demonstrate this through

our evaluation of different scheduling policies in Chapter 5.4, but defer details to this

section for maintaining clarity of thought.

We evaluate scheduling effects on voltage noise in two phases: a profiling phase

and an evaluation phase. During the profile phase we gather all the data necessary to

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 165

simulate policies, and during the evaluation phase we use metrics of interest to draw

conclusions. The latter is done offline, as that provides us with flexibility to do more

thorough and comprehensive analysis than doing it online. Simulating scheduling

policies offline isolates the effects of co-scheduling certain threads together. Results

are reproducible and we can easily evaluate the impact of the different scheduling

policies on voltage noise.

Profiling Phase. For the purpose of our thread scheduling experiments, we pre-

run all combinations of programs together; programs are our experimental granularity

of threads. Sweeping this combination allows us to construct a matrix of data con-

taining all the necessary information that we subsequently use to evaluate different

schedules.

Evaluation Phase. We model a batch processing environment. The scheduler

receives a queue of jobs that must all be run to completion. This queue consists of a

large pool of threads from which the scheduler must select the next set of jobs to run

each interval. The thread scheduling experiment completes when all threads finish

executing. Results (overall IPC, or average number of emergencies per 1K cycles etc.)

are analyzed at the end of an experiment.

Every wakeup call, or thread scheduling interval, the scheduler schedules n threads

to run concurrently on our n-core system. The scheduling policy determines which set

of threads are chosen for running together. Some scheduling policies do not require

information from the profiling phase. For example, standard 2010 POSIX policies

include round-robin or first-in, first-out. In our setup, these policies boil down to

randomly picking a combination of threads from the pool and running them to com-

Appendix B: Framework for Evaluating New Techniques to Lower Voltage Noise 166

pletion. Some other policies require information from the profiling run. One such

example could be enforcing a policy that requires the operating system to schedule

for the least number of emergencies. The scheduler knows a priori from the profiling

phase which set of threads that if scheduled together result in the least number of

emergencies. It then schedules those threads together. At the end of a scheduling in-

terval, the threads are removed from the scheduling queue if the threads have finished

execution. This process repeats each interval.

Our thread scheduling interval is every 60 seconds. We justify this long scheduling

interval using the cost and sensitivity of capturing voltage noise measurements. The

experimental harness for measuring voltage noise is described in the previous chapter

(see Appendix A). As per that setup, we cannot gather voltage measurements at more

representative scheduling intervals like 100 milliseconds. Such fine-grained polling of

data causes a lot of measurement noise, since the host system is both running the

threads, as well as doing measurements. Both these tasks must be done on the same

platform to synchronize when measurements begin and end and when the program

calls the main and exit functions, respectively. We find that measuring and collecting

data more frequently than 60 seconds leads to an “observer effect”. However, we find

no such measurement noise at 60 second intervals.

Bibliography

[1] http://software.intel.com/en-us/intel-vtune/.

[2] http://www.cascadesystems.net/lga775.htm.

[3] http://www.pintool.org/.

[4] http://www.pintool.org/docs/24110/xed/html/.

[5] http://www.spec.org/cpu2006/.

[6] Voltage regulator-down (vrd) 11.0. Processor Power Delivery Design Guidelines
For Desktop LGA775 Socket, November 2006.

[7] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive Incremental
Checkpointing for Massively Parallel Systems. In International Conference on
Supercomputing ’04, 2004.

[8] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Prentice Hall, 2006.

[9] H. Ando et al. A 1.3 ghz fifth-generation sparc64 microprocessor. In Proceedings
of Design Automation Conference, 2003.

[10] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta,
T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Ya-
mashita, and H. Sugiyama. A 1.3ghz fifth generation SPARC64 microprocessor.
IEEE Journal of Solid-State Circuits, 38, 2003.

[11] K. Aygun, M. J. Hill, K. Eilert, R. Radhakrishnan, and A. Levin. Power delivery
for high-performance microprocessors. Intel Technology Journal, 9, November
2005.

[12] K. Aygun, M.J. Hill, K.D. Ellert, and K. Radhakrishnan. Measurement-to-
modeling correlation of the power delivery network impedance of a microproces-
sor system. In Electrical Performance of Electronic Packaging, 2004. IEEE 13th
Topical Meeting on, pages 221 – 224, oct. 2004.

167

Bibliography 168

[13] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. In Programming Language Design and
Implementation, pages 1–12, 2000.

[14] Luiz A. Barroso. The price of performance: An economic case for chip multipro-
cessing. Queue, ACM, 2005.

[15] Luiz A. Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The
Google cluster architecture. Micro, IEEE, 2003.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques, October 2008.

[17] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. Lee, C. B. Wilkerson, S-L Lu,
T. Karnik, and V. De. Energy-efficient and metastability-immune timing-error
detection and instruction replay-based recovery circuits for dynamic variation
tolerance. In International Solid State Circuits Conference, 2008.

[18] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. In 27th Annual International Symposium
on Computer Architecture (ISCA-27), 2000.

[19] Mark Bull, Lorna Smith, Martin Westhead, David Henty, and Robert Davey.
Benchmarking java grande applications. In The Practical Applications of Java,
2000.

[20] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors:
the simplescalar tool set. Technical report, 1996.

[21] Simone Campanoni, Giovanni Agosta, Stefano Crespi-Reghizzi, and Andrea Di
Biagio. A highly flexible, parallel virtual machine: design and experience of ildjit.
Softw., Pract. Exper., 40(2):177–207, 2010.

[22] Francisco J. Cazorla, Peter M. W. Knijnenburg, Rizos Sakellariou, Enrique Fer-
nandez, Alex Ramirez, and Mateo Valero. Predictable performance in smt pro-
cessors: Synergy between the os and smts. IEEE Trans. Comput., 55(7):785–799,
2006.

[23] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In HPCA ’05:
Proceedings of the 11th International Symposium on High-Performance Com-
puter Architecture, pages 340–351, Washington, DC, USA, 2005. IEEE Computer
Society.

Bibliography 169

[24] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria Bertacco.
Software-based online detection of hardware defects: Mechanisms, architectural
support, and evaluation. In 40th International Symposium on Microarchitecture
(MICRO-40), 2007.

[25] Alexandra Fedorova. Operating system scheduling for chip multithreaded proces-
sors. PhD thesis, Cambridge, MA, USA, 2006. Adviser-Seltzer, Margo I.

[26] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural simulation and
control of di/dt-induced power supply voltage variation. In Int’l Symposium on
High-Performance Computer Architecture, 2002.

[27] M. S. Gupta, J. L. Oatley, R. Joseph, G-Y Wei, and D. Brooks. Understand-
ing voltage variations in chip multiprocessors using a distributed power-delivery
network. In Design, Automation and Testing in Europe, (DATE), 2007.

[28] M. S. Gupta, K. Rangan, M. D. Smith, G-Y Wei, and D. Brooks. Towards a Soft-
ware Approach to Mitigate Voltage Emergencies. In International Symposium
on Low Power Electronics and Design, (ISLPED ’07), 2007.

[29] Meeta S. Gupta, Vijay J. Reddi, Michael D. Smith, Gu-Yeon Wei, and David M.
Brooks. An event-guided approach to handling inductive noise in processors. In
DATE, 2009.

[30] Meeta Sharma Gupta, Krishna Rangan, Michael D. Smith, Gu-Yeon Wei, and
David M. Brooks. DeCoR: A Delayed Commit and Rollback Mechanism for
Handling Inductive Noise in Processors. In HPCA ’08, 2008.

[31] Meeta Sharma Gupta, Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei, and
David Brooks. DeCoR: A delayed commit and rollback mechanism for handling
inductive noise in processors. In HPCA-14, 2008.

[32] Intel. Intel Pentium 4 processor in the 423 pin/package /Intel 850 chipset plat-
form, February 2002.

[33] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie. Comparison of
split-versus connected-core supplies in the POWER6 microprocessor. In Inter-
national Solid State Circuits Conference 2007, February 2007.

[34] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate voltage
emergencies in high performance processors. In HPCA, 2003.

[35] W. Kim, M. S. Gupta, G-Y Wei, and D. Brooks. System level analysis of fast, per-
core DVFS using on-chip switching regulators. In 14th International Symposium
on High-Performance Computer Architecture (HPCA-14), 2007.

Bibliography 170

[36] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Checkpointed early
load retirement. In HPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, 2005.

[37] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Us-
ing os observations to improve performance in multicore systems. IEEE Micro,
28(3):54–66, 2008.

[38] Jason Mars, Neil Vachharajani, Mary Lou Soffa, and Robert Hundt. Contention
aware execution: Online contention detection and response. In CGO ’10: Pro-
ceedings of the 2010 International Symposium on Code Generation and Opti-
mization, Toronto, Canada, April 2010.

[39] J. F. Mart́ınez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry:
Checkpointed early resource recycling in out-of-order microprocessors. In 35th
International Symposium on Microarchitecture (MICRO-35), November 2002.

[40] Michael Mienik. Cpu burn-in homepage.

[41] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously Recording
Program Execution for Deterministic Replay Debugging. In ISCA ’05: Proceed-
ings of the 32nd Annual International Symposium on Computer Architecture,
pages 284–295, 2005.

[42] Satish Narayanasamy, Bruce Carneal, and Brad Calder. Patching processor de-
sign errors. In ICCD, 2006.

[43] Michael Powell and T. N. Vijaykumar. Exploiting resonant behavior to reduce
inductive noise. In ISCA, June 2004.

[44] Michael D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori current
ramping: architectural techniques to reduce high-frequency inductive noise. In
Int’l Symposium on Low Power Electronics and Design, 2003.

[45] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, second edition, 2003.

[46] Smruti Sarangi, Satish Narayanasamy, Bruce Carneal, Abhishek Tiwari, Brad
Calder, and Josep Torrellas. Patching processor design errors with programmable
hardware. IEEE Micro, 2007.

[47] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin. Ultra
Low-Cost Defect Protection for Microprocessor Pipelines. ASPLOS-XII, pages
73–82, 2006.

[48] Slegel et al. IBM’s S/390 G5 microprocessor design. Micro, IEEE, 1999.

Bibliography 171

[49] Larry Smith, Raymond Anderson, Doug Forehand, Tom Pelc, and Tanmoy Roy.
Power distribution system design methodology and capacitor selection for mod-
ern cmos technology”. 1999.

[50] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous
mutlithreading processor. SIGPLAN Not., 35(11):234–244, 2000.

[51] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast Check-
point/Recovery to Support Kilo-instruction Speculation and Hardware Fault Tol-
erance. Computing science technical report, University of Wisconsin-Madison,
2000.

[52] Ilya Wagner, Valeria Bertacco, and Todd Austin. Shielding against design flaws
with field repairable control logic. In IEEE/ACM Design Automation Confer-
ence, 2006.

[53] A. Waizman. Cpu power supply impedance profile measurement using fft and
clock gating. In Electrical Performance of Electronic Packaging, 2003, pages 29
– 32, oct. 2003.

[54] N. J. Wang and S. J. Patel. ReStore: Symptom-Based Soft Error Detection in
Microprocessors. IEEE Trans. Dependable Secur. Comput., 3(3):188–201, 2006.

[55] Wei Zhao and Yu Cao. Predictive technology model for sub-45nm early design
exploration. ACM JETC.

[56] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing
shared resource contention in multicore processors via scheduling. In Proceedings
of the Architectural support for programming languages and operating systems,
pages 129–142, New York, NY, USA, 2010. ACM.

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Citations to Previously Published Work
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Challenges Facing Reliable Processor Design
	1.2 Abstracting Circuit-level Challenges to Architecture
	1.3 Extending Processor Efficiency Using Software
	1.4 Contributions
	1.5 Impact

	2 Voltage Noise: Why It's Bad and What to Do About It
	2.1 Voltage Noise
	2.2 Why It's Bad
	2.2.1 Worst-case Design Penalties
	2.2.2 Area and Cost Implications
	2.2.3 Limitations of Prior Work

	2.3 What To Do About It
	2.3.1 Tolerance
	2.3.2 Avoidance
	2.3.3 Elimination

	3 Tolerating Voltage Noise to Learn Activity Leading to Emergencies
	3.1 Characterizing Voltage Droops and Overshoots
	3.1.1 Changes in Current
	3.1.2 Effect of Stalls
	3.1.3 Workload Differences

	3.2 Exploiting Recurring Activity as Voltage Emergency Signatures
	3.2.1 Contextual Information
	3.2.2 Microarchitectural Events and Program Control Flow Interleaving
	3.2.3 Repeatability and Stability

	3.3 Capturing Voltage Emergency Signatures
	3.3.1 Emergency Detection
	3.3.2 Fail-safe Recovery Mechanism
	3.3.3 Activity History Tracking

	3.4 Semantics of Voltage Emergency Signatures
	3.4.1 Contents
	3.4.2 Size
	3.4.3 Coverage

	3.5 Accuracy of Voltage Emergency Signatures
	3.5.1 Robustness
	3.5.2 Retargetability
	3.5.3 Lead time

	4 Avoiding Emergencies Using Voltage Emergency Signatures
	4.1 Signature-based Throttling to Prevent Emergencies
	4.1.1 Voltage Emergency Predictor
	4.1.2 Feedback Mechanism
	4.1.3 Throttling Actuator

	4.2 Efficiency Comparison to Prior Work
	4.2.1 Predictors
	4.2.2 Sensor-based Schemes
	4.2.3 Checkpoint-recovery

	4.3 Implementing a Voltage Emergency Predictor
	4.3.1 Content Addressable Memory (CAM)
	4.3.2 Bloom filter
	4.3.3 CAM Bloom filter

	5 Eliminating Emergencies via Hardware and Software Co-design
	5.1 From Emergencies to Error-prone Code
	5.1.1 Problematic Loops
	5.1.2 Emergency Hotspots
	5.1.3 Inter-thread Interference

	5.2 A Collaborative Architecture
	5.2.1 Emergency Tolerance
	5.2.2 Hardware Feedback to Software
	5.2.3 Software Layer

	5.3 Compiler Code Transformations
	5.3.1 No Operation Injection
	5.3.2 Code Rescheduling
	5.3.3 Efficiency Comparison to Hardware-based Schemes

	5.4 Operating System Thread Scheduling
	5.4.1 Voltage Noise Phases
	5.4.2 Phase Scheduling
	5.4.3 Scheduling for Noise versus Performance

	6 Conclusion
	A Measuring Voltage Noise in Production Processors
	A.1 Measurement and Validation
	A.1.1 Using Off-the-shelf Components
	A.1.2 Comparing Impedance

	A.2 Determining the Worst-case Voltage Margin

	B Framework for Evaluating New Techniques to Lower Voltage Noise
	B.1 Hardware Simulators
	B.1.1 Processor Microarchitecture
	B.1.2 Power Consumption Model
	B.1.3 Power Delivery Subsystem

	B.2 Software Infrastructure
	B.2.1 Benchmarks
	B.2.2 Compiler
	B.2.3 Operating System Thread Scheduler

	Bibliography

