
 

THEME ARTICLE: Automotive Computing 

Domain-Specific 
Approximation for Object 
Detection 

There is growing interest in object detection in 

advanced driver assistance systems and 

autonomous robots and vehicles. To enable such 

innovative systems, we need faster object detection. 

In this article, we investigate the trade-off between 

accuracy and speed with domain-specific 

approximations (DSAs) for two state-of-the-art deep 

learning-based object detection meta-architectures. 

We study the effectiveness of applying 

approximation both statically and dynamically to 

understand their potential and applicability. By 

conducting experiments on the ImageNet VID 

dataset, we show that DSA has great potential to 

improve the speed of the system without 

deteriorating the accuracy of object detectors. To 

this end, we present our insights on harvesting DSA and devise a proof-of-concept 

runtime, AutoFocus, that exploits dynamic DSA. 

With rapid progress being made in the field of computer vision and machine learning, there is 
growing interest in the practical deployment of intelligent algorithms in systems, such as autono-
mous vehicles, autonomous robots, and advanced driver assistance systems. For many of these 
“intelligent” systems, detection is one of the fundamental algorithms involved in developing 
end-to-end applications. Detection can lead to obstacle recognition, avoidance, and navigation. 
As a result, detection is becoming an important algorithm for developing cognitive visual agents. 

Thus far, the majority of effort on object detection has been focused on achieving high accuracy. 
However, from a system’s perspective, object detection speed also matters. For instance, how 
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fast an autonomous car or drone can move depends on how fast the detection algorithms run on 
the underlying hardware and software substrate. Moreover, to build robust, intelligent agents, 
there will likely be more than one cognitive algorithm running on the system at the same time. 

Therefore, the throughput of the system ought to be one of the top concerns for system designers 
in the near future. In our experiments, modern deep learning-based object detectors, without 
modification, could only provide up to 2 frames per second (FPS) on NVIDIA’s Tegra X1 with 
640x480 images. Typical real-time performance requires close to 30 FPS. We need faster hard-
ware to ensure real-time performance while several tasks are running simultaneously and to cope 
with future high-resolution (such as 2048x1024) images. Alternatively, we need software tech-
niques that can improve performance and energy efficiency on existing hardware. 

In this article, we determine that category-awareness introduces new opportunities for domain-
specific approximation (DSA) to augment hardware and software advancements. Some catego-
ries are almost always larger than others (for example, trains are usually larger than motorcy-
cles), which results in different sensitivity toward approximation techniques. We explore the 
speed and accuracy trade-offs brought by two software-driven DSA optimization techniques: im-
age size and the number of region proposals. Both of these techniques affect speed and accu-
racy.1 Image size affects how much detail is covered within the receptive field of view—the 
region used to classify objects. Small images have more information crowded into a fixed-size 
receptive field; thus, there are fewer regions that need examination, resulting in less accuracy but 
faster detection. Region proposals are the regions that are likely to contain objects. In object de-
tection, algorithms that propose object regions often act as a filter that let regions with high prob-
ability of containing objects pass through them for further processing (classifying where and 
what the object is within that region). Hence, reducing the number of region proposals reduces 
the total candidate regions that need examination, resulting in less accuracy but faster detection. 

We analyze category-aware DSA along two settings: static and dynamic. In the static case, we 
use one approximation configuration for each category. An approximation configuration refers to 
a tuple involving an image size and a region-proposal size. We determine this tuple using offline 
profiling. In the dynamic case, we select an approximation configuration per image, albeit still 
within a category. We approximate the input frame dynamically by extracting useful features 
from previous frames and rely on a linear model to infer the next approximation configuration.  

In both cases, our results indicate that category-awareness is promising in terms of speed im-
provement compared to the category-oblivious DSA discussed in prior work.1 In an oracle 
scheme, category-aware static and dynamic DSA achieve 3.7× and 7.5× speedup without accu-
racy degradation for a certain object category. We also discuss the limitations and challenges of 
implementing both static and dynamic DSA in a runtime and provide our insights on harnessing 
the potential of both static and dynamic DSA. The runtime we design approximates the input 
frame on the fly by extracting useful features from previously seen frames and uses a linear 
model to infer the next setting. Our results show up to 51- and 211-percent speed improvement 
with 22- and 41-percent accuracy degradation for Faster R-CNN and R-FCN, respectively. 

Our findings suggest that future system designers of cognitive visual agents can improve their 
speed and energy-efficiency by using knowledge of what target object categories matter most. 
For example, an autonomous vehicle’s system designer might want the vehicle’s object detec-
tor(s) to work well on several crucial categories, such as pedestrians, bicyclists, and cars. One 
way to improve the speed of such a system would be to try to find the image size that has the 
fastest speed but does not compromise accuracy across the three categories and deploy the sys-
tem with the optimized image size. Alternatively, the designer could optimize the image size of 
the target categories and dynamically choose the corresponding image size when those objects 
show up in their perspective or field of view, leading to better performance. 

In summary, our contributions are as follows: 

• We investigate DSA and characterize the effectiveness of category-awareness. 
• We conduct a limit study to understand the benefit of applying approximation in a per-

frame manner with category-awareness (category-aware dynamic DSA). 
• We present the challenges of harnessing DSA and a proof-of-concept runtime. 
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EXPERIMENTAL SETUP 
We conduct our analysis and optimization on two modern meta-architectures, Faster R-CNN2 
and R-FCN3, for deep learning-based object detection on a state-of-the-art embedded system. 

Object Detectors 
The feature extractors we use are the ones that come with the repository of the object detector, 
and the weights we use are the weights that were pre-trained on the PASCAL VOC dataset4 by 
the original authors. We use the ZF network5 for Faster R-CNN and ResNet-506 for R-FCN. 

We also considered including both the SSD7 and YOLO8 network in our study. However, neither 
of them is amenable to input image scaling. The network demands a fixed size input. Both of 
them scale the image into a fixed size regardless of the original image size, and it performs 
poorly if the image resolution is large and contains a lot of small objects. As the camera resolu-
tions continue to grow larger, we envision more and more applications will be based on more 
flexible meta-architectures, such as Faster R-CNN and R-FCN. 

Dataset and Metric 
Dataset. We picked 40 videos from ImageNet Object Detection from Videos (VID) task dataset 
for each of the categories we studied and divided them into 20 training videos and 20 testing vid-
eos. Specifically, among the categories that overlapped with the PASCAL VOC dataset, we ran-
domly picked eight categories for our analysis, which include the following: airplane, bus, car, 
dog, horse, motorcycle, sheep, and train. Notice that we picked categories that overlapped with 
the PASCAL VOC dataset, so that we could use the pre-trained models provided by authors 
without re-training. 

Metric. As in most of the object-detection evaluation, we counted on average precision or mean 
average precision to evaluate the accuracy of the object detector. We leveraged the MS-COCO 
toolkit9 and modified it to calculate per-image average precision to determine the optimal ap-
proximation configuration in a per-image granularity. 

Platform 
Hardware. We conducted all of our experiments on the SoC Tegra X1, which, at the time of this 
writing, is a state-of-the-art embedded SoC that has a Maxwell GPU with 256 CUDA-core and a 
quad-core ARM A57 CPU. Unless stated otherwise, the frequency of the CPU and GPU are kept 
constant at the highest speed (1912.5 MHz for the CPU and 998.4 MHz for the GPU). 

Software. We used CUDA 7.0 and cuDNN 4 for GPGPU processing. We used the Caffe10 deep-
learning framework to power all the algorithms we studied. 

DSA 
In this section, we first describe related work in DSA and the terms used throughout the paper. 
Then, we analyze the effectiveness of category-aware static and dynamic DSA. Though we focus 
on performance, our results can also be applied to improving energy efficiency. 

State-of-the-Art 
Approximation has been discussed in many recent works.11–13 However, DSA is still an emerg-
ing concept14 and bound to specific domains.15 For object detection, the most relevant work is by 
Huang et al.1 and discusses trade-offs between speed and accuracy for different image sizes, the 
number of region proposals, and feature extractors in the object detectors. 
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Our article focuses on category-aware static and dynamic DSA. We suggest that category-aware-
ness introduces more opportunities in DSA than category-oblivious DSA.1 Additionally, we in-
vestigate the applicability of harnessing those opportunities with both static and dynamic DSA. 

Terminology and Definitions 
Downsampling. To set a proper baseline, we first scale every image in the dataset to a fixed 
height of 480 pixels. For approximating the image size, we evaluate 11 different downsampling 
levels, starting from 480 pixels. At each level, we downsample the image by 40 pixels, progres-
sively scaling the image all the way down until we reach 80 pixels in height. 

Region Proposal. We choose 300 as the baseline. Both Faster R-CNN and R-FCN use the same 
value by default. Also, we explore a different number of proposals (300, 200, 100, 50, and 10) as 
a means to reduce processing requirements without impacting accuracy. 

Region of Interest. We define a region of interest (ROI) as the bounding box surrounding the ob-
ject of interest in an image. 

Approximation Configuration. We denote an approximation level as a configuration tuple. For 
example, (160, 50) denotes 160 in image height and 50 region proposals. We denote marginal 
approximation by leaving the other as a hyphen. For example, (360, -) means 360 in image 
height while using the baseline for the number of proposals (300 in our study). 

Safe Approximation. We focus only on approximations that do not deteriorate the average preci-
sion. When we present results for the oracle approximation scheme, we select the approximation 
level that achieves equal or greater average precision compared to the baseline. 

Optimal Approximation. We define this as the fastest configuration (maximum FPS) without ac-
curacy degradation (so it is still considered a safe approximation). 

Category-Aware DSA Opportunity 
Some categories, such as trains (see Figure 1(a)), are almost always larger than other categories, 
such as motorcycles (see Figure 1(b)). What this implies is that, in terms of accuracy, some cate-
gories almost always have lower sensitivity to approximation than others, which motivates us to 
investigate the benefits of bringing category-awareness to the DSA techniques we study.  

 

Figure 1. Inter-category variation encourages category-aware DSA. 

Performance/Throughput  

Before we analyzed a category’s sensitivity to the DSA techniques, we first investigated the per-
formance/throughput benefit brought by the techniques. Figure 2 shows an evaluation of how the 
number of FPS (performance/throughput) is affected by the two techniques. First, we found that 
for Faster R-CNN, due to the fully connected layers applied to each of the region proposals, its 
speed is related to proposal scaling. For R-FCN, it is somewhat invariant to proposal scaling be-
cause the computation after ROI-pooling layer is small compared to the convolution layers be-
fore ROI-pooling. Second, both meta-architectures are sensitive to image scaling. Due to R-
FCN’s fully convolutional design, it is more sensitive than Faster R-CNN. By jointly investigat-
ing both techniques, we found that Faster R-CNN can have better speed gain leveraging image 
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scaling when the number of proposals is small. This is reasonable because fully connected layers 
for each proposal imposes some computation overhead, and it is invariant to image size. 

 

Figure 2. Throughput in FPS for object detection algorithms under two kinds of DSA techniques.  

Similar approximation strategies have been explored in the past, but in a more limited capacity. 
Huang et al.1 investigate what knobs generally affect the speed and accuracy of the object detec-
tors, while our analysis focuses more on image scaling and proposal scaling and is more compre-
hensive and insightful in the following manner. First, we analyze image sizes at a finer 
granularity, from 80 pixels to 480 pixels in height with a 40-pixel step. Second, our evaluation 
considers both techniques jointly, which introduces more approximation configurations with 
similar performance improvement for architectures that are sensitive to both techniques (Faster 
R-CNN). For example, Figure 2(b) shows that approximation configurations (80, 300), (160, 50), 
and (240, 10) share similar performance improvement, which enables the system to optimize for 
accuracy under the same performance improvement. 

In terms of accuracy, Figure 3 indicates that Faster R-CNN is more sensitive to region proposal 
scaling compared to R-FCN. Moreover, R-FCN has a sharper boundary compared to Faster R-
CNN, which suggests that Faster R-CNN is more robust when it comes to the two DSA tech-
niques. Interestingly, a different category has different sensitivity toward both DSA techniques. 
Airplane (Figure 3(a)) has more “safe approximation” configurations than train (Figure 3(b)), 
which has more safe approximation configurations than motorcycle (Figure 3(c)).  

Inter-Category Variance 

Given the performance improvement motivation of the two DSA techniques, we next analyzed 
the accuracy of the object detector for each category we studied. We refer to this study as “inter-
category variance” because here we are focused on the variance that stems from differences 
across categories, and not within different images that all correspond to the same category. 

One of the reasons behind the variance is intuitive: that the larger the object, the smaller an ap-
proximation can go without accuracy degradation. In our results, the average object size in pixels 
in the dataset we use for airplane, train, and motorcycle are 107k, 126k, and 38k, respectively. 

However, inter-category variation is not solely due to the size of the objects; it is also due to the 
noise in the background (for example, the background for the airplane class has less noise than 
others) and the fact that some categories are harder for the object detector than others.16 This im-
plies that the hard classes are more sensitive to information loss (approximation). The variation 
of the safe approximation across category encourages category-awareness for even faster system 
design. 
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Figure 3. Normalized average precision of Faster R-CNN (top row) and R-FCN (bottom row) for 
three selected categories under two kinds of DSA techniques.  

Intra-Category Variance  

Beyond the benefit introduced by category-awareness, we observe that there is even greater in-
tra-category variance for DSA techniques to exploit on a per-frame basis in an input stream. 

In a dynamic input stream (a video, for example), the optimal approximation can change contin-
uously. Objects in a dynamic input stream are constantly changing in perspective size (objects 
are sometimes near and large, and at other times small and far). Figure 4 shows a train passing 
by from left to right. As time goes by, the train gets larger; the level of safe approximation can 
become more aggressive over time. Therefore, dynamically picking an approximation configura-
tion can sometimes be better than statically picking a one-time fixed DSA configuration. 

 

Figure 4. Intra-category variation encourages dynamic DSA. 

To motivate “dynamic DSA,” Figure 5 shows the relationship between the portion of images of 
the training data that are approximated optimally and the corresponding number of approxima-
tion configurations considered for the eight categories that we mentioned previously. For exam-
ple, we need 18 unique approximation configurations, as shown in Figure 5(a), to optimally 
approximate 95 percent of the airplane images from the training dataset. 

The analysis hints at whether a category is worthy of dynamic DSA. With static DSA, the system 
applies only one approximation configuration for the entirety of each category. However, for the 
most extreme case, such as the dog category in Figure 5(b), we require 25 approximation config-
urations to optimally approximate 95 percent of the dogs. This means that static DSA loses sig-
nificant opportunity to improve performance. On the other hand, categories such as sheep require 
the least number of approximation configurations to achieve 95 percent coverage, which might 
have better performance with static DSA. 
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Dynamic DSA can speed up Faster R-CNN by up to 7.5x and R-FCN up to 7x without accuracy 
loss for some categories. So, if we can model the optimal approximation correctly with a simple 
model, there is an opportunity to speed up object detection-based systems significantly. 

 

Figure 5. The relationship between the portion of images of the training data that are approximated 
optimally, and the corresponding number of approximation configurations considered. 

DSA CHALLENGES TOWARD IMPLEMENTATION 
Our study shows promise in category-aware DSA for object detectors. However, there are chal-
lenges that remain to be resolved to harness the benefits. Here, we first illustrate the challenges 
for implementing category-aware DSA and then provide our insights and implementation.  

Challenges 
We identify two major challenges that we believe to be the key to unlocking the potential for cat-
egory-aware DSA. 

Prior Knowledge. Category-awareness exposes extra “slack” for DSA techniques to exploit. 
However, without performing object detection in the first place, it is unclear how the system can 
obtain the information regarding the category of the object to determine the approximation con-
figuration. So, a key challenge is how to approximate the category information to begin with. 

Dynamism Modeling. To further harness dynamic DSA, it is essential to understand what causes 
different optimal approximation configurations. It is critical to understand what the good features 
are to predict the optimal approximation. Moreover, to benefit from speed improvement, the 
model for inferencing optimal approximation should be low-overhead. 
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Implementation 
We implement dynamic DSA on streaming inputs, which is common in autonomous agents. In 
the streaming input case, there is temporal consistency (the difference between any two consecu-
tive frames is small), which we can leverage to overcome the aforementioned challenges. 

Prior Knowledge. With temporal consistency, we can resolve the first challenge approximately 
in the sense that we regard the category of the objects in the current frame to be the output of the 
object detector from the previous frames. Notice that by approximating the prior knowledge this 
way, we introduce two new problems. 1) How many incoming frames can we assume to be the 
same as the current frame? 2) How much can we believe in the output of the object detector? For 
the first problem, we try one, three, and five frames and find three to be better than the others in 
the dataset we use. For the second problem, we count on the output probability (the output of the 
softmax layer) to tell if we can trust the ROIs. We set a threshold to 0.6 in our implementation. 

Dynamism Modeling. We assume the approximation decision is correlated to the size and the 
number of objects in the frame. Intuitively, when the object is large, we might be able to 
downsample it more than when it is small. On the other hand, the number of objects affect occlu-
sion. If there are more objects in the frame, it is more likely that there will be a lot of overlap-
ping. Additionally, given a fixed-size input, the more objects there are in the frame, the smaller 
those objects can be. Hence, we build an ordered four polynomial regressor with the height and 
width of both the smallest and largest ROI in the frame and the number of ROIs in the frame. 

Evaluation 

We refer to our runtime system implementation as AutoFocus. We first evaluate the overhead 
introduced by AutoFocus. According to our measurements, on average, the inferencing approxi-
mation configuration using the ordered four polynomial regressor takes 3.2 ms, which is only 0.6 
percent of the original Faster R-CNN object detector’s performance overhead. 

We compare AutoFocus against static DSA with prior knowledge and category-oblivious DSA 
(from prior work). To obtain results for the static DSA with prior knowledge, we obtain the opti-
mal configuration for each category on the training set and use that configuration on the test set, 
given that we know the category in advance. For AutoFocus, we train the polynomial model on 
the training set and apply the model on the test set. Figure 6 shows our evaluation for category-
oblivious DSA, static DSA, and AutoFocus. We first focus on the benefits brought by static DSA 
compared to category-oblivious DSA. For categories like buses, cars, and motorcycles, static 
DSA improves the speed by 20 percent on average with merely 3 percent accuracy degradation, 
which exhibits the good part of static DSA. On the other hand, for categories like airplanes and 
dogs, there is a large margin in speed improvement (60 percent) with relatively larger accuracy 
degradation (22 percent) on average for Faster R-CNN. In general, static DSA introduces a large 
performance benefit with little accuracy degradation. However, as stated previously, it requires 
prior category knowledge. 

For AutoFocus, there is a general trend across categories that AutoFocus brings larger speedup 
improvement but with relatively larger accuracy degradation compared to static DSA. It intro-
duces 51- and 211-percent speed improvement with 22-percent (0.09) and 41-percent (0.22) ac-
curacy (average precision) degradation on average for Faster R-CNN and R-FCN, respectively. 
The primary reason for the accuracy degradation is our runtime’s inefficiency. It is failing to ac-
curately model the intra-category dynamism. As mentioned previously, Faster R-CNN is more 
robust to both DSA techniques, which results in the accuracy degradation difference. However, 
if we compare speedup and accuracy degradation equally, our runtime, on average, still outper-
forms static DSA with prior knowledge. 
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Figure 6. The performance and accuracy comparison among category-oblivious DSA, static DSA, 
and AutoFocus. 

CONCLUSION 
We present a limit study on category-aware static and dynamic DSA. In addition, we present the 
challenges in implementing DSA and present our insights from our proof-of-concept system. 
Our results show that category-aware DSA opens new opportunity for better speed or energy ef-
ficiency and takes a step toward its realization. However, to harness the benefit, we think more 
research effort should better addressed the challenges. In the long run, as visual systems become 
increasingly more intelligent, we believe DSA will offer significant improvements to system de-
signers that are tasked with the trade-offs between performance, power, and accuracy. 
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