
Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan   Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

ISBN: 978-1-60845-637-6

9 781608 456376

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

RED
D

I • G
UPTA

RESILIENT ARCH
ITECTURE DESIG

N FO
R VO

LTAGE VARIATIO
N

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Resilient Architecture Design
for Voltage Variation
Vijay Janapa Reddi, The University of Texas at Austin
Meeta Sharma Gupta, IBM T.J. Watson Research

Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage
fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended,
voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade
processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations
based on program and microarchitectural events can help steer the processor clear of danger, thus
enabling tighter voltage margins that improve performance or lower power consumption. We describe
the problem of voltage variation and the factors that influence this variation during processor design
and operation. We also describe a variety of runtime hardware and software mitigation techniques
that either tolerate, avoid, and/or eliminate voltage violations. We hope processor architects will find
the information useful since tolerance, avoidance, and elimination are generalizable constructs that
can serve as a basis for addressing other reliability challenges as well.

Resilient Architecture
Design for Voltage Variation

Vijay Janapa Reddi
Meeta Sharma Gupta

Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan   Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

ISBN: 978-1-60845-637-6

9 781608 456376

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

RED
D

I • G
UPTA

RESILIENT ARCH
ITECTURE DESIG

N FO
R VO

LTAGE VARIATIO
N

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Resilient Architecture Design
for Voltage Variation
Vijay Janapa Reddi, The University of Texas at Austin
Meeta Sharma Gupta, IBM T.J. Watson Research

Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage
fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended,
voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade
processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations
based on program and microarchitectural events can help steer the processor clear of danger, thus
enabling tighter voltage margins that improve performance or lower power consumption. We describe
the problem of voltage variation and the factors that influence this variation during processor design
and operation. We also describe a variety of runtime hardware and software mitigation techniques
that either tolerate, avoid, and/or eliminate voltage violations. We hope processor architects will find
the information useful since tolerance, avoidance, and elimination are generalizable constructs that
can serve as a basis for addressing other reliability challenges as well.

Resilient Architecture
Design for Voltage Variation

Vijay Janapa Reddi
Meeta Sharma Gupta

Morgan   Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: Mark D. Hill, University of Wisconsin

CM& Morgan   Claypool Publishers&

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com SYNTHESIS LECTURES ON

COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

ISBN: 978-1-60845-637-6

9 781608 456376

90000

Series ISSN: 1935-3235

SYNTHESIS LECTURES ON
COMPUTER ARCHITECTURE

RED
D

I • G
UPTA

RESILIENT ARCH
ITECTURE DESIG

N FO
R VO

LTAGE VARIATIO
N

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

Resilient Architecture Design
for Voltage Variation
Vijay Janapa Reddi, The University of Texas at Austin
Meeta Sharma Gupta, IBM T.J. Watson Research

Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage
fluctuations within the microprocessor, caused by normal workload activity changes. If left unattended,
voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade
processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations
based on program and microarchitectural events can help steer the processor clear of danger, thus
enabling tighter voltage margins that improve performance or lower power consumption. We describe
the problem of voltage variation and the factors that influence this variation during processor design
and operation. We also describe a variety of runtime hardware and software mitigation techniques
that either tolerate, avoid, and/or eliminate voltage violations. We hope processor architects will find
the information useful since tolerance, avoidance, and elimination are generalizable constructs that
can serve as a basis for addressing other reliability challenges as well.

Resilient Architecture
Design for Voltage Variation

Vijay Janapa Reddi
Meeta Sharma Gupta





Resilient Architecture Design
for Voltage Variation





Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Resilient Architecture Design for Voltage Variation
Vijay Janapa Reddi and Meeta Sharma Gupta
2013

Multithreading Architecture
Mario Nemirovsky and Dean M. Tullsen
2013

Performance Analysis and Tuning for General Purpose Graphics Processing Units (GPGPU)
Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu
2012

Automatic Parallelization: An Overview of Fundamental Compiler Techniques
Samuel P. Midkiff
2012

Phase Change Memory: From Devices to Systems
Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran
2011

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011



iv

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009



v

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006



Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Resilient Architecture Design for Voltage Variation

Vijay Janapa Reddi and Meeta Sharma Gupta

www.morganclaypool.com

ISBN: 9781608456376 paperback
ISBN: 9781608456383 ebook

DOI 10.2200/S00486ED1V01Y201303CAC022

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #22
Series Editor: Mark D. Hill, University of Wisconsin, Madison

Series ISSN
Synthesis Lectures on Computer Architecture
Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com


Resilient Architecture Design
for Voltage Variation

Vijay Janapa Reddi
The University of Texas at Austin

Meeta Sharma Gupta
IBM T.J. Watson Research

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #22

CM& cLaypoolMorgan publishers&



ABSTRACT
Shrinking feature size and diminishing supply voltage are making circuits sensitive to supply voltage
fluctuations within the microprocessor, caused by normal workload activity changes. If left unat-
tended,voltage fluctuations can lead to timing violations or even transistor lifetime issues that degrade
processor robustness. Mechanisms that learn to tolerate, avoid, and eliminate voltage fluctuations
based on program and microarchitectural events can help steer the processor clear of danger, thus en-
abling tighter voltage margins that improve performance or lower power consumption. We describe
the problem of voltage variation and the factors that influence this variation during processor design
and operation. We also describe a variety of runtime hardware and software mitigation techniques
that either tolerate, avoid, and/or eliminate voltage violations. We hope processor architects will find
the information useful since tolerance, avoidance, and elimination are generalizable constructs that
can serve as a basis for addressing other reliability challenges as well.

KEYWORDS
voltage noise, voltage smoothing, di

dt
, inductive noise, voltage emergencies, error detec-

tion, error correction, error recovery, transient errors, power supply noise, power delivery
networks



ix

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.1 Parameter Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Worst-Case Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Design for the Typical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Scope of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Modeling Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 A Quick Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Power-Delivery Network (PDN) Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Distributed Grid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Impulse-Response-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Sparse Grid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Understanding the Characteristics of Voltage Variation . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Current Pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 PDN Charactierstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Microarchitectural Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Program Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Traditional Solutions and Emerging Solution Forecast . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Traditional Static Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Voltage Margins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Decoupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Floorplanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Toward Dynamic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



x

4.2.2 Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Allowing and Tolerating Voltage Emergencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Global Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Checkpoint Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Delayed Commit and Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Local Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Predicting and Avoiding Voltage Emergencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Sensor-Based Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Event-Based Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.1 Single-Event Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Signature-Based Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Eliminiating Recurring Voltage Emergencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1 Opportunities and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.1 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Compiler Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Static Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.2 Dynamic Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Thread Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.1 Interthread Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.2 Voltage Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.3 Benefits and Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Future Directions on Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.1 System-Level Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Application-Level Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xi

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Authors’ Biographies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121





xiii

Preface
Over the past decade, designers have grappled with the challenge of building efficient systems with
respect to power, performance, and cost. Of these, power has emerged as a first-order obstacle.
Looking into the future, the next major challenge for us is to build robust and reliable systems
that meet historically established reliability standards without compromising energy-efficiency or
the “price-to-performance” ratio. Unfortunately, operating a system close to an efficient design
point makes the system susceptible to unreliability, whereas allowing large safety margins makes
the system inefficient. Understanding and harnessing this interplay between reliability, power, and
performance is the crucial next step to building sustainable computer systems in the future that meet
next-generation systems requirements.

In the future, we will require better integration and collaboration between hardware and soft-
ware. As technology trends force us to build for typical-case design, error-detection and recovery
mechanisms will become pervasive, and as such, we must identify and develop new machine orga-
nizations that are capable of dynamically detecting and recovering from errors in the field across all
layers of the computing stack, including computer architecture, system software, and applications.
The benefits of such a collaborative computing stack are twofold. First, it eliminates performance and
energy inefficiencies that arise at each layer from maintaining strict abstraction between hardware
and software. Second, it eliminates power and area overheads that arise from the use of circuit- and
microarchitectural-level techniques that mitigate the various sources of errors.

As per this book, the general idea of a resilient processor architecture is to rely on hardware
techniques for fail-safe execution, but, when possible, attempt to optimize away recurring sources
of errors via software techniques. Such an approach avoids recurring hardware penalties that arise
from the hardware’s limited view of execution activity using software which has much more global
knowledge about the processor’s execution activity.

Vijay Janapa Reddi and Meeta Sharma Gupta
May 2013





xv

Acknowledgments
The work described in this book is the result of many researchers’ hard work, insights and creativity.
We owe credit to all of them. In addition, we would like to specifically thank David Brooks and
Gu-Yeon Wei from Harvard University for their numerous creative and insightful research ideas
and discussions on hardware and software co-design for voltage variation. We would also like to
thank Mark Hill from the University of Wisconsin-Madison and Michael Morgan from Morgan &
Claypool for giving us this opportunity to survey and describe state of the art literature on this topic.
With their help, we were fortunate to receive detailed and very useful feedback on an earlier draft
version of the book. We are thankful to the reviewers who provided us with constructive feedback.

Vijay Janapa Reddi and Meeta Sharma Gupta
May 2013





1

C H A P T E R 1

Introduction
Continued advancement of complementary metal-oxide-semiconductor (CMOS) technologies pro-
vides the well-known benefits of device scaling. However, as feature sizes shrink and chip designers
attempt to reduce supply voltage to meet power targets in large multicore systems, parameter vari-
ations are becoming a serious problem. Parameter variations can be broadly classified as device
variations incurred due to imperfections in the manufacturing process and environmental variations
due to fluctuations in on-die temperature and supply voltage. Collectively, these parameter variations
greatly affect the speed of circuits in a chip; delay paths may slow down or speed up due to these
variations. The traditional approach to dealing with parameter variations has been to overdesign the
processor based on the most pessimistic operating conditions to allow for worst-case variations. As
the gap between nominal and worst-case operating conditions in modern microprocessor designs
grows, the inefficiencies of worst-case design are too large to ignore. Recognizing the inefficiencies
in such a design style, researchers have begun to propose architecture-level solutions that address
worst-case conditions.

In this chapter, we first introduce the problem of parameter variations. We begin by giving
a broad but brief overview of the various fundamental issues to set the context for the reader. We
explain process, thermal, and voltage variations and quantify their impact on the worst-case design
margin for processor robustness, which motivates us to consider processor designs for the typical case
mode of operation. Given the large breadth of work, it is not feasible to comprehensively address all
parameter variation solutions in one book. Therefore, we narrow the scope of our discussion in this
book to voltage variation,which is seen as a major impediment to building robust and energy-efficient
systems in the future.

1.1 PARAMETER VARIATIONS

Parameter variations began to pose a major design challenge for CPU designers in technologies
starting from the 65 nm process [15]. These parameter variations can be broadly classified into
two categories: static variations and dynamic variations (Figure 1.1). Static variations or process
variations are caused by the inability to precisely control the fabrication process at small-feature
technologies. It is a combination of systematic effects [14] (e.g., lithographic lens aberrations) and
random effects [91] (e.g., dopant density fluctuations). On the other hand, dynamic variations are
caused by the applications’ runtime characteristics and can be further classified into voltage variations
and temperature variations. Voltage variations can be caused by IR drops (i.e., product of current I
passing through resistance R) in the supply distribution network. Alternatively, voltage variations



2 1. INTRODUCTION

Figure 1.1: Parameter Variations. Illustration of the different types of variations: process, voltage, and
temperature variations.

are also caused by Ldi
dt

noise (i.e., product of inductance and the rate of change of the current flowing
through it over time) under varying load conditions. Temperature variation is caused by spatially-
and temporally-varying factors. Parameter variations affect the worst-case delay of critical paths and
hence, directly affect performance and power. Variations also introduce spread in path delays across
a chip both spatially (across different units in a chip) and temporally (as workload behavior causes
voltage and temperature to fluctuate). All of these variations are becoming more severe and harder
to tolerate as technology scales to smaller feature sizes.

Designers typically account for parameter variations by inserting conservative margins that
guard against worst-case variation characteristics to guarantee the system’s functional correctness
under all operating conditions. The size of these timing margins depends on how designers account
for the impact of variations. Conservatively, designers may treat each source of variation indepen-
dently and determine worst-case margins by simply summing the required margin for each source
separately. This conservative approach ignores important interactions that can exacerbate variation
effects. For instance, there are substantial amounts of spatial, temporal, and application-level slack
designers can(not) exploit. Spatial slack occurs when variations delay different units of a processor by
different amounts.Temporal slack is exposed due to the runtime behavior of workloads. Application-
level slack emerges because of differences among workloads. On the basis of experimental data, we
will discuss these various forms of slack further in the following paragraphs.

Spatial Slack Systematic variation in process parameters, such as threshold voltage, gate length, and
oxide thickness, create differences across the core. Different software phases load different functional
units to a greater or lesser degree.For example, the fixed-point unit (FXU) in the simulated POWER6
processor has both high power density and high activity fluctuations, leading to larger temperature
spikes and deeper voltage droops than those of the floating-point unit (FPU).



1.1. PARAMETER VARIATIONS 3

Chips

R
e

la
ti
v
e

 D
e

la
y

10 20 30 40 50 60 70 80 90 100

0.9

1

1.1

1.2

1.3

1.4

V=1.15V,T=80C0.13

V=0.9V,T=100C

0.24

(a) Spatial: Spread of worst-case delay between dif-
ferent units. Bottom: spread due to process varia-
tions alone. Top: increased spatial spread at worst-
case conditions.

0 20 40 60 80 100

0.9

1

1.1

1.2

1.3

1.4

R
e

la
ti
v
e

 D
e

la
y

Chips

Worst−case Design Margins

Max Runtime Delay

Avg. Runtime Delay

Min Runtime Delay

(b) Temporal: Spread of delay due to run-time be-
havior. The maximum, average, and minimum delay
over all 16 benchmarks and 5 units per chip (a total
of 80 points/chip).

Figure 1.2: Spatial and Temporal Slack. Differences across processor units and between application
phases the designers can exploit.

Figure 1.1 shows the difference between the worst-case circuit delay for different units under
two different operating conditions, a nominal operating condition of 1.15 V at 80◦C and a worst-case
design point of 0.9 V and 100◦C. Under nominal operating conditions a maximum slack of 13%
relative delay is available. The slack increases to 24% when the operating conditions are based on
the worst-case design points (though for a different chip). Variation in process parameters changes
the voltage-delay or temperature-delay relationships of circuits, widening the gap between units as
conditions worsen.

Temporal Slack Figure 1.1 shows the maximum run-time delay across the SPEC CPU2006 pro-
gram suite for 100 simulated chips (generated with process variations as described in Chapter 2),
along with the delay for worst-case design margins (V=0.9V, T=100C). There is a slack of 10%
for nearly every chip between the worst-case delay and the maximum runtime delay. The average
run-time delay shows an even greater amount of temporal slack. It is approximately 20% across 100
different chips.

Application-Level Slack Unlike process variations, voltage and temperature variations are closely
coupled to workload characteristics, which vary from application to application and from phase to
phase within an application. Figure 1.1 plots the variation of delay across major units for different
programs. Within a program, the units have different delay profiles and the relative order of units
differs between programs. Figure 1.1 shows the variation of omne, a SPEC CPU2006 program,



4 1. INTRODUCTION

0 5 10 15
1

1.1

1.2

1.3

1.4

Benchmarks

W
o

rs
t 
R

u
n

ti
m

e
 D

e
la

y

IFU IDU FXU FPU LSU

(a) Across Benchmarks

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

Chips

W
o

rs
t 
R

u
n

ti
m

e
 D

e
la

y

IFU IDU FXU FPU LSU

(b) Across Chips

Figure 1.3: Worst runtime circuit delay variations. (a) Different applications for a single chip and
(b) Running the SPEC CPU2006 program omne with different chips.

across different chips. The load-store unit (LSU) has the worst behavior for a majority of the chips,
owing to large swings in activity followed by long stall periods. The variation in the relative order of
units between different chips is primarily the result of within-die process variations.

In summary, it is important to consider process-voltage-temperature (PVT) variations in
combination and not as independent entities. Moreover, it is important to consider both spatial and
temporal differences across the processor die, along with within and across applications behavior.
Section 1.2 discusses this issue and motivates the need for design solutions that consider all sources
of variation simultaneously. Section 1.3 motivates the need for solutions to accommodate the large
gap between worst-case and nominal operating conditions.

1.2 WORST-CASE DESIGN

All sources of parameter variation lead to timing overhead and uncertainty, but each kind of variation
has different characteristics.Process variations,which result from imperfections in the manufacturing
process, are potentially large variations in device features such as the threshold voltage and gate length
of fabricated transistors, with both systematic and random components.Voltage variations are closely
related to workload-dependent activity fluctuations on the order of tens to hundreds of cycles.These
fluctuations cause dips in the power-supply distribution network owing to the interaction of the
activity patterns and parasitics of the supply network. Similarly, although at a much coarser time
scale, variations in activity also induce temperature differences across the chip.

Figure 1.4 illustrates the timing margins required when considering isolated and combined
sources of variations. These timing margins are set by the worst-case delay path within a chip. The



1.2. WORST-CASE DESIGN 5

Process(P) Voltage(V) Temp(T) PVT−stacked PVT−combined
0

5

10

15

20

25

30

35

Variations

T
im

in
g

 M
a

rg
in

s
(%

)

Figure 1.4: Impact of PVT Variations on Timing Margins. Simple stacking leads to a larger mean and
smaller spread in required timing margins as compared to the combined effect.

process parameters, gate length, threshold voltage, nominal supply voltage (Vnom = 1.15V), and
nominal temperature (Tnom = 80 ◦C) are based on a 65 nm technology node and ITRS specifi-
cations [47]. The first three bars (process, voltage, and temperature) represent the timing margins
required for each of the variations when considered in isolation. We evaluate process variation across
a batch of 100 chips by modeling and simulating both systematic and random effects.

The bars represent the mean timing margin across 100 chips. The error bars represent the
maximum and minimum timing margins observed across the 100 chips. Voltage variations are
evaluated by running the suite of programs on a nominal chip with no process variation and at Tnom.
The bar represents the mean of the worst-case timing margin required for the suite of programs
considered, indicating a 15% timing margin required for handling voltage variations. Temperature
variations are evaluated by determining the timing margins required for a chip with no process
variation and at a temperature of 100 ◦C operating at Vnom. Temperature variations require 5%
margins to ensure correctness in case of worst-case temperature across the core.

Simply stacking the individual margins together (PVT-stacked) results in a simple, but conser-
vative, approach to setting worst-case timing margins. In contrast, the figure also shows the resulting
timing margins from simulating all sources of variations together. When PVT variation effects are
combined (PVT-combined), the average margin required is reduced, but the spread between max-
imum and minimum margins is increased. This larger spread in margins primarily results from the
interaction between voltage and process variations. Faster chips, consisting of transistors with lower



6 1. INTRODUCTION

threshold voltages, are less sensitive to voltage droops (sudden drops in voltage) and can operate
with tighter margins. On the other hand, the transistors with higher threshold voltages in slower
chips are more sensitive to voltage droop and require larger margins. Hence, the spread between
maximum and minimum margins increases.The reduction in the average margin can be attributed to
runtime temperatures, typically being lower than applying a worst-case 100 ◦C penalty. The slowest
chip, with the highest threshold voltages across the chip, exhibits lower leakage power to ameliorate
thermal effects and slightly reduce the maximum required margin.

Binning Given that simply stacking margins misses important interactions found by considering
PVT variations together, designers devise solutions that address all sources of variations in combina-
tion and not as individual, orthogonal components.A typical outcome of this process is the functional
operating frequency of the chip. Speed grading (or binning) is used to determine the maximum func-
tional operating frequency of a chip. Speed-grading or binning is an industry standard approach that
refers to the process used by manufactures to determine the maximum functional operating frequency
of a chip, so that it can be offered to customers at various appropriate speed-grades. Typically, all
chip manufacturer offers chip at a range of different clock frequencies. Assuming the range of clock
frequencies across 600, 733, 800, 867, 933 MHz and 1 GHz, two chips at 975 MHz and 991 MHz
will be speed-(down)graded into the 933 Mhz lot. Similarly, speed grading will bin a 1067 MHz or
1022 MHz chip into the 1 GHz lot. It is the statistical nature of variation from chip to chip and lot
to lot that primarily lead to the wide variation in operational frequencies.

Manufacturers use functional test patterns to determine the various speed grades. A set of
functional test patterns is developed over the course of design development and productization using
a variety of methods.For example,designers hand-generate custom functional tests that are guided by
critical timing paths. Some test cases are automatically generated on the basis of timing verification
tests while others are extracted from application programs to represent real-world execution scenarios.
During the initial stages, there are also exercises that involve “speed-path hunting.” It is a tedious
but important step.

It is important to note that conventional uniprocessor binning strategies, which sort chips
according to the maximum operating frequency, may apply inadequately toward multicore processors
because within-die variations are becoming significant. Applying the minimum of the maximum safe
operating frequencies for various cores of a chip multiprocessor (CMP), which is commonly referred
to as the min-max metric, tends to severely penalize CMP cores that could otherwise sustain higher
clock frequencies by themselves. A real-life example of frequency variation in silicon was observed
in an 80-core Intel test chip [25]. At a supply voltage of 1.2 V, there was a 28% variation between the
fastest core’s frequency of 7.3 GHz and slowest core’s frequency of 5.7 GHz. The gap grew at lower
voltages to 59% when the nominal voltage was set to 0.8V. Thus, min-max sacrifices substantial
performance to achieve simplicity by running all cores at the frequency of the slowest core.



1.3. DESIGN FOR THE TYPICAL CASE 7

Cycles

R
e

la
ti
v
e

 D
e

la
y

(a)

0 100 200 300 400 500
1

1.05

Cycles

R
e

la
ti
v
e

 D
e

la
y

(b)

0 100 200 300 400 500
1

1.05

Figure 1.5: Performance Loss due to Timing Margins. The figure depicts an example highlighting
the performance loss incurred by providing timing margins (bottom) compared to ideal cycle-by-cycle
frequency tracking (top).

1.3 DESIGN FOR THE TYPICAL CASE
Conservative designs operate at the worst-case timing margin, ensuring robustness, but with per-
formance loss due to lower processor frequency. Because worst-case conditions can be severe, but
infrequent, operating with conservative worst-case margins is costly.This section explores the widen-
ing gap between nominal and worst-case conditions, assuming that infrequent worst-case scenarios
can be handled by a fail-safe mechanism.

Figure 1.5 shows a snapshot of delay over 500 cycles for SPEC CPU2006 program h2ref
run on a chip with no process or temperature variations. The delay variation is solely attributed to
voltage droops. There are infrequent large droops in voltage causing occasional increases in delay. To
estimate the benefits of design for the nominal case, we consider an ideal cycle-by-cycle frequency
tracking scenario that adjusts clock frequency according to the cycle-by-cycle delay (akin to an
asynchronous design). We illustrate the performance loss of such a system as the area under the
curve in Figure 1.5 (top). We compare such a scenario to one that assumes fixed timing margins and
that handles worst-case conditions with a fail-safe mechanism. A fail-safe mechanism can recover
the system correctly in presence of violations. Figure 1.5 (bottom) illustrates this example, which
applies a timing margin of 5%, but incurs an equivalent fixed-performance penalty plus additional
performance penalties for any margin violations.



8 1. INTRODUCTION

(a) V

0 5 10 15 20 25 30
0

5

10

15

20

25

30

33

%
 P

e
rf

o
rm

a
n

c
e

 L
o

s
s

% Timing Margins

(b) PVT

Figure 1.6: Need for Typical Case Design. Performance loss at various timing margins is depicted for
(a) voltage variations and (b) process-voltage-temperature variations.

Figure 1.6 compares the performance loss of the ideal cycle-by-cycle tracking scheme (rep-
resented by 0% margins) with that of applying fixed timing margins while simulating the entire
program at the 65 nm technology node. Figure 1.6(a) plots the performance loss corresponding to
different timing margins in the presence of voltage variations. An ideal asynchronous design incurs
2% performance loss due to delay fluctuations. As timing margins increase up to the worst-case
15% level, performance loss can mostly be attributed to the fixed margins as delay fluctuations are
infrequent. Figure 1.6(b) presents a similar plot that considers the impact of PVT variations. The
error bars again correspond to the spread, due to process variations for 100 simulated chips. With
0% timing margins, the fastest chip exhibits a 4% loss in performance and the slowest chip incurs a
much larger penalty of ∼17%. Applying larger fixed-timing margins penalizes the fastest chips until
the fastest and slowest chips suffer similar losses beyond 20%, where the margins again dictate per-
formance loss.The plot extends to 33%, which represents a scenario that sets margins with respect to
the worst-case delay across all chips. Thus, this analysis shows that the severe but infrequent nature
of worst-case runtime conditions motivates architectural design strategies that avoid running with
timing margins based on worst-case conditions. Such strategies have the potential to recapture up
to 20% of performance loss on average.



1.4. SCOPE OF THE BOOK 9

1.4 SCOPE OF THE BOOK

Answering the above questions requires careful analysis and introspection. In this book, we offer an
in-depth look at how to develop a resilient processor architecture to address voltage variation, which
is frequently also known as voltage or inductive noise, or the Ldi

dt
effect. Of all variations, we chose

voltage variation as the specific example because it necessitate the large guardbands (see Figure 1.4)
and thus, is a major source of processor inefficiency.

We describe a cross-layer approach for mitigating voltage variation with the goal of elimi-
nating the penalties to power, performance, and cost that arise in the use of any circuit techniques
and microarchitectural changes for mitigation. As technology trends force us to build for typical-
case design, error-detection and recovery mechanisms will become pervasive. To sustain continued
increases in system performance, we must identify and develop new machine organizations that
are capable of dynamically detecting and recovering from errors in the field across all layers of the
computing stack, including computer architecture and system software. The benefits are twofold:
(1) this eliminates performance and energy inefficiencies that arise at each layer from maintaining
strict abstraction between hardware and software and (2) it eliminates power and area overheads
that arise from the use of circuit- and microarchitectural-level techniques that mitigate the various
sources of failures. A cross-layer solution will rely on hardware for fail-safe execution, but, when it
is possible, it will attempt to optimize away recurring sources of errors via software techniques.

The rest of this book is structured as follows. First, we provide the reader with background
on voltage variation in Chapter 2. We focus on the basics of modeling voltage variations at the
architecture level. Since modeling involves trade-offs between speed and accuracy, we discuss the
trade-offs between various modeling approaches.

Power-delivery subsystem design affects voltage variation within a processor. We discuss this
in Chapter 3. Most of our effort is targeted toward low-cost robust solutions for voltage variations,
therefore, we give a detailed characterization of the design of a power-delivery subsystem and its
impact on the rest of the system. We cover a wide range of power-delivery subsystems for modern
processors and show how different characteristics affect the occurrence of timing-margin violations.

In Chapter 4, we examine how traditional solutions cope with voltage variation. Several of
these solutions work at the expense of power, performance, and cost. As such, we propose and forecast
a forward-looking, resilient architecture design for coping with voltage variations systematically and
more efficiently.

Chapter 5 summarizes a variety of solutions that push toward typical-case design by tolerating
emergencies.The goal here is to allows margin violations to occur, but when they do, the architecture
has the ability to roll back to a guaranteed-correct processor state.

However, in the event that tolerating emergencies is prohibitively costly, as in the case of a
costly rollback mechanism, it is more advantageous to proactively anticipate margin violations based
on heuristics or logic and take precautionary measures that avoid the issue altogether by dynamically
reacting to the impending violation. In Chapter 6 we cover a spectrum of avoidance techniques that
have been proposed to predict voltage emergencies.



10 1. INTRODUCTION

While hardware-based solutions can be effective, they are often reactive. They sense, detect,
and respond repeatedly, even when the activity can be smoothed-away by potentially simple instruc-
tion and thread scheduling techniques. Software has a global view of execution, and as such, it can
perform such transformations, albeit at a higher penalty. However, this penalty can be amortized
if the optimization is effective and the program runs long-enough to reap the benefits of the opti-
mization. Thus, it is possible to fall back on hardware for immediate reaction (albeit suboptimal) to
emergencies (e.g., aging protection circuits) and rely on software to eliminate repeated stress-related
occurrences, thereby eliminating “waste” and improving overall system efficiency. In Chapter 7, we
provide motivation for the software-based solutions and evaluate the trade-offs, specifically in the
context of multicore systems where building hardware-based solutions is substantially more chal-
lenging than building software-based solutions.

Finally, in Chapter 8 we provide our thoughts on promising new directions for resilient
architecture design and deployment.



11

C H A P T E R 2

Modeling Voltage Variation
Efforts to address microprocessor power dissipation through aggressive supply voltage scaling and
power management require that designers be increasingly cognizant of power supply variations.
These variations, due primarily to fast changes in supply current, can be attributed to architectural
gating activity and microarchitectural events that reduce power dissipation. In order to study this
problem, coarse- and fine-grained parameterizable models for power-delivery networks are required
that enable system designers to study localized and global on-chip supply fluctuations in processors.
In this chapter, we focus on the different voltage modeling approaches and discuss the associated
modeling tradeoffs.

2.1 A QUICK PRIMER

Sudden current swings due to activity fluctuations in a microprocessor, when coupled with parasitic
resistances and inductances in the power-delivery subsystem, can give rise to large voltage swings.
Equation 2.1 highlights how current fluctuations interact with the impedance of the system (repre-
sented by Z). A decrease in supply voltage leads to an increase in the delay of the gates. Voltage also
impacts both the system’s dynamic power and leakage power.

V = VDD − VDrop (2.1a)
VDrop = Z × IInstantaneous (2.1b)

IInstantaneous = PLeakage + PDynamic × VDD (2.1c)

In order to prevent sudden current changes over a large range of frequencies (typically from
the kilohertz range to the processor’s operating clock frequency) from becoming voltage spikes,
designers carefully design the processor’s power supply such that it has a low impedance over a wide
range of frequencies. To achieve such a low impedance power supply, several strategies are used that
include some combination of decoupling capacitors and voltage regulators. Circuit designers build
the system with on-die capacitors, on-package capacitors, and voltage regulators in combination
with off-package capacitors and regulators. The decoupling capacitors strive to compensate for
impedance that is introduced by the parasitic inductance of the power-supply network at each level
of the power-delivery hierarchy.

We will present the detailed aspects of voltage modeling later, in Section 2.2. Several factors
must be considered, such as the voltage regular module (VRM), motherboard, package, and off-chip
decoupling capacitors. Moreover, there are different approaches to modeling voltage variation: the



12 2. MODELING VOLTAGE VARIATION

distributed grid model, the sparse grid model, and the impulse-response-based model.The trade-offs
in accuracy and simulation speed vary.

2.2 THE POWER-DELIVERY NETWORK (PDN) SUBSYSTEM

Voltage variations are strongly coupled to the characteristics of the underlying power-delivery sub-
system. Therefore, it is important to have good models for processor activity, power consumption,
and the power-delivery subsystem. In this section, we begin with an overview of the power-delivery
components that need to be included in any voltage model. Then we describe three different meth-
ods of modeling voltage variation: a detailed grid model, an impulse-response-based model, and a
sparse grid model.

Figure 2.1 gives an overview of the components to model for voltage variation, including
the VRM, motherboard, package, and off-chip decoupling capacitors. The off-chip power-delivery
network includes the motherboard, package, and off-chip decoupling capacitors and parasitic induc-
tances,which are modeled via a ladder RLC network.It is also necessary to model the bulk capacitance
on the PC board and the package as an effective capacitance and effective series resistance. Voltage
regulator modules (VRM) typically have response frequencies in the sub-MHz range, which is much
lower than the challenging higher frequencies associated with the entire power-delivery network.
For simplicity, the power supply is typically modeled as a fixed-voltage source, which is scaled with
respect to the average current draw to deliver VDD at the bump nodes, mimicking the feedback
loop associated with the VRM. The electrical properties of these network elements determine what
impact current variations at different frequencies have on chip-level voltage.

For any given power-delivery network, the impedance profile of the power-delivery subsystem
describes the distribution network’s frequency sensitivity. An example impedance plot of a Pentium 4
processor is shown in Figure 2.2. The mid-frequency resonance peak is the dominant property re-
sponsible for the inductive noise problem. The mid-frequency resonance peak shown at 100 MHz
in Figure 2.2 is mainly due to the interaction of the package inductance and decoupling capaci-
tance [13]. It is not easy to compensate for the inductance of the wires between the die and the
package. This inductance often causes a peak of high impedance [11, 43] in the power supply at the
resonance of the chip capacitance and the package inductance.

“Noise” at this resonant frequency, which is typically in the range of 10–100 MHz [11], is
considered the most dangerous since it can be excited by an instruction loop whose repetition rate
coincides with this resonant frequency and contains a large current step. The net effect is a transient
voltage droop large enough to exceed the margin Although some extreme circuit techniques for
compensating for this exposed inductance exist, such as increased on-die capacitors and on-die
voltage regulators [41], these techniques are prohibitively expensive and are not broadly applicable
for general-purpose mainstream computing where cost is an influential design parameter for system
architects.



2.2. THE POWER-DELIVERY NETWORK (PDN) SUBSYSTEM 13

Figure 2.1: Power-Delivery Subsystem.This
figure depicts the main components associated
with a processor’s power-delivery subsystem.

10
5

10
6

10
7

10
8

10
9

0

1

2

3

4

5

6

7

Frequency (Hz)

Im
p

e
d

a
n

c
e

 (
m

O
h

m
)

Figure 2.2: Example Impedance Plot. This plot
depicts an impedance plot modeled for a Pen-
tium 4 package, with mid-frequency resonance at
100 MHz and a peak impedance of 7m�.

2.2.1 DISTRIBUTED GRID MODEL
We first present a detailed yet flexible power-delivery model that captures the characteristic mid-
frequency resonance, transients related to board and package interfaces, and localized on-chip voltage
variations. As we show, this model provides good accuracy but at a simulation cost, which makes it
appropriate for feedback-driven experiments where a circuit solver interfaces with architectural-level
simulation for a few 1000s of cycles as opposed to longer simulations of millions of cycles.

Figure 2.3 presents a detailed model of the power-delivery network with a distributed on-chip
power-supply grid. Figure 2.4 illustrates the distributed on-chip grid model used in our analysis.
We assume a flip chip package design. The package connects to the chip through discrete controlled
collapse chip connection (C4) bumps. The C4 bumps are modeled as parallel connections (via RL
pairs) that connect the grid to the off-chip network, with each grid point having a bump connection.
The decision to model a flip chip package is made because it is the frequent design choice for high-
performance processors. This model could be easily adapted to capture the behavior of a bond wire
package instead.

The on-chip grid itself is modeled as an RL network. The evenly distributed on-chip capac-
itance between the VDD and GND grids is modeled in two ways—Cspc represents the decoupling
capacitance placed in the free space between functional units, and Cblk represents the intrinsic par-
asitic capacitance of the functional units. In contrast, an on-chip lumped model would consist of a
single RLC network connected across the package-to-chip interface. When scaling the size of the
grid, the values in the RLC network are scaled proportionally. The amount R and L is scaled by the
change in length of each grid segment, and the total capacitance between the power and ground



14 2. MODELING VOLTAGE VARIATION

Figure 2.3: Model of a Power-Delivery System. The figure shows the parasitics of the package, the
package-to-chip interface, and the on-chip grid.

Figure 2.4: On-Die Distributed Grid Model. Illustration of the parasitics of the on-chip grid model,
including the additional decoupling capacitance on the processor core.

planes is redivided among the grid nodes. This yields a closely matching impulse response as the
number of grid nodes is increased.

Table 2.1 provides the values of the resistances, inductances, and capacitances used for the PCB
and package and on the die for the power-delivery model. These values were chosen to match the
measured off-chip impedance of the Pentium 4 processor [7, 45]. It is important to note that these
parameters can easily be modified to model different architectures and power-delivery networks.This
parameterizable distributed grid model was used in analyzing voltage variations in the context of
next-generation chip-multiprocessor (CMP) architectures using both real applications and synthetic
current traces [37].



2.2. THE POWER-DELIVERY NETWORK (PDN) SUBSYSTEM 15

Table 2.1: Parameters for the Power-Delivery Model. The values of various resistances, inductances,
and capacitances in the power-delivery subsystem. The values represent a power-delivery model such as
a Pentium 4 processor power-delivery subsystem

Resistance Value Inductance Value Capacitance Value

Rpcb,s 0.094 m� Lpcb 21 pH Cpcb 240 μF

Rpcb,p 0.1666 m�

Rpkg,s 1 m� Lpkg 120 pH Cpkg 26 μF

Rpkg,p 0.5415 m� Lpkg,p 5.61 pH

Rbump,grid 40 m� Lbump,grid 72 pH

Cdecoupl 335 nF

Rgrid 50 m� Lgrid 5.6 fH Cblk 0.12nF

Cspc 1.5nF

Table 2.2: Simulation Speed of Using a Distributed Grid Model. This table presents the simulation
times of various grid sizes (100K cycles)

Grid Size 1x1 2x2 4x4 6x6 8x8 12x12 16x16 20x20 24x24

Speed (s) 5 28 174 493 1070 1423 1830 4620 7280

Accuracy of the power-delivery model is strongly dependent on the grid resolution of the
on-chip distributed grid. A finer distributed grid should be able to give a finer sampling of the
voltage variations across the die, and hence, provide a more accurate depiction of the variation
across the chip. A coarser resolution of the grid fails to capture the finer variations across the chip.
However, simulation speed is a critical issue if localized power-delivery models must interface with
architectural power and performance simulators. Table 2.2 outlines the speed of the lumped model
and various grid models for a 100K-cycle sample run with a detailed power/performance model for
a high-performance microprocessor.

2.2.2 IMPULSE-RESPONSE-BASED MODEL
While a given microprocessor’s PDN is a complex system consisting of several different components
(e.g., voltage regulator module, package, on-die capacitors, etc.) [7, 27], a simplified second-order
lumped model [42, 87] can adequately capture its resonance characteristics with impedance peaking



16 2. MODELING VOLTAGE VARIATION

in the mid-frequency range of 50 to 200 MHz and can be reasonably modeled as an underdamped
second-order linear system [42] as described by Equation 2.2.

a
d2

dt2
y(t) + b

d

dt
y(t) + cy(t) = f (t) (2.2)

Ideally, the supply voltage across a processor should be constant. However, due to dynamic
current fluctuations and the non-zero impedance of the PDN, large voltage fluctuations can occur.
One way to characterize voltage variations is by convolving the microprocessor’s instantaneous
current profile with the impulse response of the PDN (Equation 2.3).

v(t) = i(t) ∗ h(t) (2.3)

Most of the earlier work that seeks to address voltage variation at the architectural level
uses a simplified second-order lumped model [42, 87], which captures the system’s mid-frequency
response. However, such models fail to capture within-die spatial variation of voltage. While detailed
grid models have also been proposed and used, the large number of nodes lead to prohibitively high
simulation times; hence, we discuss an intermediate model next.

2.2.3 SPARSE GRID MODEL
A detailed distributed grid model suffers from slow simulation time, of the order of few hours per
million instructions, making it impossible to use such a model for detailed workload characterization.
To deal with the model’s simulation-time complexity, a simpler and faster on-chip model can be
used that retains the per-unit or per-block characteristics. The proposed model’s simulation time is
approximated at 1 hr/100M instructions, which is orders of magnitude faster than the detailed grid
model.

By appropriately scaling R, L, and C of each unit’s power grid with respect to area, the model
can enable relatively fast simulations while maintaining the accuracy that closely matches a detailed
grid model. The R, L, and C for any unit must be scaled as given in Equations 2.4, where Aunit

represents the area of the unit and Acore represents the area of the core. Rl , Ll , and Cl correspond to
those values that are found in a lumped model.

R = Rl ∗ Acore

Aunit

(2.4a)

L = Ll ∗ Acore

Aunit

(2.4b)

C = Cl ∗ Aunit

Acore

(2.4c)

To demonstrate confidence in the sparse model, the sparse model is validated against a 12x12
distributed on-chip grid model.The sparse model used for validation is a simplified grid model with
a single point for each unit. Figure 2.5(a) shows the mean and variance of the error in the voltage
reported by the abstract model as compared to a detailed model. The mean of the error in voltages is



2.3. SUMMARY 17

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
0

0.5

1

 M
ea

n 
of

 E
rr

or
 

(%
 re

la
tiv

e 
to

 V
dd

)

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
0

0.005

0.01

0.015

Va
ria

nc
e 

of
 E

rr
or

(%
 re

la
tiv

e 
to

 V
dd

)

(a) Mean and Variance of Error

Distributed Grid Sparse Grid
0

5

10

15

20

25

30

35

40

45

%
 C

on
tr

ib
ut

io
n 

to
 F

au
lts

Model

 

 

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5

(b) Relative Order of Units

Figure 2.5: Accuracy of the Sparse Grid Model. (a) Shows the mean and variance of the difference of
voltage reported between the sparse and detailed grid model, reported each cycle, relative to the nominal
power supply. (b) Depicts the relative order of the faults across the different units modeled in the core
for a timing-margin of 6%.

less than 20mV, which translates to less than 1% of error in the voltage for a 1.15 V nominal power
supply.

Additionally, the relative order of the per-unit behavior also reflects the model’s good accuracy.
Figure 2.5(b) shows the descending order of the units for voltage violations at a 6% timing-margin
averaged across all the programs. The analysis indicated that the test programs spend a significant
amount of time around 6% timing-margin and hence, a 6% timing-margin is applied as the reference
margin.The relative order of the units is maintained in the abstract model as compared to the detailed
distributed model, with little difference in the absolute distribution of the faults for each unit.

2.3 SUMMARY

Accurate and fast models are important to study and understand the impact of parameter variations
on future processor architectures. In this chapter,we briefly explored process and temperature models,
alluding to the works that provide greater details.We then focused on voltage variation and described
three fundamental voltage modeling approaches.There is a trade-off to be made between the accuracy
and speed of the three voltage models. The choice depends on the type of study being conducted.
For architectural studies, speed is often a concern, because simulating millions of clock cycles is a



18 2. MODELING VOLTAGE VARIATION

substantially slow and time-consuming process that can render the approach inapplicable.The sparse
grid model, however, achieves satisfactory performance without sacrificing modeling accuracy.



19

C H A P T E R 3

Understanding the
Characteristics of Voltage

Variation
Voltage variation is closely linked to the detailed characteristics of the power-delivery network (PDN)
subsystem. In this chapter, we characterize the interaction between current consumption profiles and
the PDN that leads to voltage variation using the impulse-response-based voltage model described
in Chapter 2.We also explore how different package parameters affect the magnitude of the variation
for a given processor. It is important to understand these interactions in order to design a robust
resilient processor architecture for handling voltage variation.

3.1 CURRENT PULSES

Sudden short spikes in current can cause voltage variations, but the magnitude of the variation is
largely determined by the amount of charge built up over a specific time interval. These current
spikes inside the processor are typically caused by power management techniques, such as clock
gating and power gating, which have become increasingly important to stay within the peak power
ceiling. By carefully pruning the clock tree and disabling portions of inactive circuits, designers
effectively reduce the dynamic switching power. However, the sudden change of switching current
may introduce undesirable voltage variation.

Figure 3.1(a) shows the voltage transients for current pulses of varying amplitudes and dura-
tions.The first and second pulses have the same width, but, the second pulse has a higher amplitude.
A sufficiently high amplitude can induce violations. While the last two pulses shown have large in-
tegrated charge, they do not cause significant variations in core voltage. This indicates that isolated
pulses with a certain amplitude/width combination can lead to voltage variation.

Even if the voltage fluctuation caused by a current pulse in isolation does not exceed voltage
margins, a series of such pulses at the PDN’s resonance frequency may lead to a voltage emergency.
Figure 3.1(b) shows the voltage response for a series of current pulses. The first sequence of current
pulses has a period of 30 cycles, which corresponds to a frequency of 100 MHz for a 3 GHz processor.
If the resonance of the PDN also occurs at 100 MHz, voltage swings gradually build up and exceed
emergency thresholds. Thus, it is important to consider both isolated pulses and resonating pulses



20 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

0 200 400 600 800 1000
0

15

30

cycles

cu
rr

en
t (

A
)

0 200 400 600 800 1000
0.95

1

1.05

cycles

vo
lta

ge
 (

V
)

(a) Current Pulses

0 200 400 600 800 1000
0

15

30

cycles

cu
rr

en
t (

A
)

0 200 400 600 800 1000

0.95

1

1.05

cycles

vo
lta

ge
 (

V
)

(b) Resonant Current Pulses

Figure 3.1: Current Pulses and Effect on Voltage Transients. The plot depicts isolated current pulses
and resonating current pulses with a period of 100 MHz and the corresponding voltage behavior.

when designing an architectural solution to handle voltage emergencies. In general, there are a few
basic types of current profiles commonly found in real-world programs.These include the following.

1. Step Current: This type of current profile commonly occurs when a core suddenly changes
state. Figure 3.2(a) shows a sudden increase/decrease in activity. This can occur, for example,
when the firmware enables sleep/active state transitions that power up/down cores. Typically,
these step currents are very large in magnitude.

2. Pulse Current: These are caused by sudden, short increases/decreases in the core’s activity,which
are typically caused by long stalls in the processor. Figure 3.2(b) shows an example of isolated
pulses with a certain pulse width.

3. Resonating Current: Periodic behavior largely associated with recurring activity patterns gen-
erally attributed to loops in an application. In particular, a periodic sequence of current pulses
occurring at or near the power-delivery network’s resonant frequency is typically of most
interest because it leads to large voltage variation. These resonating currents are shown in
Figure 3.2(c) for bzip2.

Given the observed application profiles, we can perform in-depth analysis by substituting
synthetic current profiles in order to interrogate the power-delivery network for a wide range of
problematic scenarios. In the following paragraphs, we focus our efforts on describing the effects
of step currents and sequences of pulse currents on the power-delivery network that lead to voltage
variations. Current pulses of long enough duration and magnitude can be classified as step currents.
In simulations, the worst-case analysis is achieved by using two states for each core: max-power and



3.1. CURRENT PULSES 21

4
0 200

C
u

rr
e

n
t 
(a

m
p

)

400 600 800 1000

5

6

7

8

9

10

(a) Step Current

4
0 100

Cycles
C

u
rr

e
n

t 
(a

m
p

)

200 300 400 500

5

6

7

8

9

10

(b) Pulse Current

4
0 100

Cycles

C
u

rr
e

n
t 
(a

m
p

)

200 300 400 500

5

6

7

8

9

10

(c) Resonating Current

Figure 3.2: Typical current pulse characteristics. Three distinct types of current consumption profiles
from real-world programs.



22 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

min-power. The maximum power state refers to when a core is drawing maximum power, which for
the purposes of the following text corresponds to 10W/core in simulations of a four-core processor.
The minimum power state refers to the core consuming minimum power from the system, which
corresponds to 4W/core. In the remaining analysis, we model steps and pulses with these max/min
power levels to mimic powering up/down cores or activities observed in the SPEC programs.

Step Current Effects Current steps can induce large voltage fluctuation around the nominal voltage.
Large step currents are typically observed whenever cores are powered on/off.Thus, voltage variation
is an alarming scenario during system boot-up/reset. Figure 3.3 shows the voltage variation on the
chip when all four cores are powered on simultaneously. Given that a step is composed of signals
across a wide range of frequencies, the initial drop in voltage and the subsequent ringing can be
attributed to the power-delivery network’s high-frequency resonance (100 MHz). The voltage dip
that occurs at 500 cycles can be attributed to the low-frequency resonance. The voltage eventually
stabilizes to the system’s nominal voltage (1V).

Figure 3.3 (inset) plots the minimum voltage with respect to the number of simultaneously
engaged cores. As expected, the worst-case voltage drop is observed when all the cores are switched
on simultaneously (i.e., four cores vs. one, two, and three cores).To avoid such a worst-case condition,
designers typically use a simple staggering mechanism to gradually ramp the current profile with
assistance from the firmware or microcode [81]. The cores are turned on one by one in some order
to avoid the sudden in-rush of current.

Periodic Pulse Current Effects Figure 3.4 plots the peak voltage swing observed across the chip
when the current consumption of all four cores simultaneously switches between maximum and
minimum power at different frequencies with a 50% duty cycle. This leads to a resonating current,
which, in effect, is a periodic current pulse occurring at frequencies within the resonant band of the
power-delivery network.

As anticipated and shown by the impedance plot of the power-delivery network, the worst-
case voltage swing occurs around 100 MHz (i.e., the package’s resonant frequency). Given resonating
currents, the voltage ripple initially grows and then settles to a periodic waveform around the nominal
voltage (as shown in Figure 3.4 (inset)). In steady state, even small current pulses can induce large
peak-to-peak swings; thus, they are of further interest.

It is useful to categorize resonating current pulses into the following two important categories:
Locally Resonant, where each core individually has periodic current pulses at the resonant frequency;
and Globally Resonant, where the aggregate current, seen globally across the die, has, or appears to
have, current pulses at the resonant frequency of the power-delivery network’s impedance. Let us
investigate the combination and interaction of these two types of resonating currents.

1. Locally Resonant and Globally Resonant: This represents a scenario where each core has res-
onating current and the combined (or average) current pulses across all of the cores are also at
the same resonant frequency. Voltage swings grow as the number of resonating cores increases



3.1. CURRENT PULSES 23

Cycles

Minimum voltage

Number of Cores going from ‘Idle to Power On State’

M
in

im
u

m
 V

o
lt
a

g
e

min_voltage

4
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

3 2 1

0
0.88

0.92

0.94

0.96

0.98

1.02

1.04

0.9

1

200 400 600 800 1000

V
o

lt
a

g
e

 (
V

)

Figure 3.3: Step current effect. Powering on cores together is bad for voltage variation.

Frequency (MHz)

Cycles

Max Voltage

Peak-Peak

Voltage Swing

Minimum Voltage

V
o

lt
a

g
e

 (
V

)

0.7

0 100 200 300 400 500 600

0.8

0.9

1

1.1

1.2

1.3

1.4

0
0.05

0.15

0.25

0.3

0.35

0.5

0.55

0.1

0.2

0.4

0.45

100 200 300 600800 500

P
e

a
k
-P

e
a

k
 V

o
lt
a

g
e

 S
w

in
g

 (
V

)

Figure 3.4: Periodic currents effect. A periodic current pulse occurring at frequencies within the reso-
nant band of the power-delivery network can cause large peak-to-peak voltage swings.



24 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

due to the higher aggregate current amplitudes (i.e., constructive interference).The theoretical
worst-case condition occurs when current pulses across all of the cores are aligned in phase.

2. Locally Resonant but Globally Nonresonant — Locally, the cores are resonating, but due to phase
differences, the combined view seen by the system is not a resonating wave. For conditions
where the resonating currents across all cores are phase-shifted with respect to one another,
currents between the cores can interact to cancel out some of the effects of the locally resonating
currents at the global scale. When 50% duty cycle current pulses are 90◦ out of phase with
one another, as shown in Figure 3.5(a) (left), the currents combine to appear as a constant
amplitude current, globally.

Figure 3.5(a) (right) presents the case where resonating current pulses are each offset by 60◦.
In this case, the combined currents have periodicity at the resonant frequency, but the stepwise
waveform leads to smaller voltage fluctuations. Figure 3.5(b) summarizes the effect of varying
the phase shift between resonant currents across the four cores and a range of duty cycles, on
the resulting peak-to-peak voltage swing magnitudes seen across the chip. As seen before, the
worst-case condition is when all current pulses are aligned in phase (0 or 360).

Generally, a larger duty cycle means higher overall current draw and, hence, it leads to larger
voltage variation. Interestingly, in the simulated four-core processor example, interactions
between cores lead to the most canceling when current pulses are phase-shifted by multiples
of 90◦. Given this dependence on the number of cores, a 16-core processor may exhibit similar
dips for phase differences occurring in multiples of 22.5◦.

3. Locally Nonresonant but Globally Resonant:The previous conditions were examples of resonating
currents occurring locally within the cores. But, we must also consider the scenario where each
core does not consume currents that pulse at the resonant frequency; rather, as shown in
Figure 3.6(a), the combined waveforms look like a resonating current. Given a tightly coupled
power-supply grid with low impedance connections between the cores, Figure 3.6(b) (left)
shows that each core internally experiences resonant voltage variation. In fact, there is little
difference to the condition where the combined current waveform is evenly distributed across
the four cores, whose resulting voltage waveforms are plotted in Figure 3.6(b) (right). The
only difference is the higher local ripples that occur according to the local current pulses.

Hence, simply studying current pulses at the resonant frequency at the individual core level
will not be sufficient to fully characterize voltage variation at the global scale of a multicore
chip.The example we discussed further emphasizes the need to understand and study intercore
interactions at the various levels of the system and design process, from application-derived
current profiles to the low-level power-delivery network itself.



3.1. CURRENT PULSES 25

Core 1

A

A

A

B

B B

B

B
15

2A+2B
3A+B

A+3B

2(A+B)

Core 2

Core 3

Core 4

Combined Waveform

90 degrees out-of-phase 60 degrees out-of-phase

Combined Waveform

(a)

(b)

Figure 3.5: Locally Non-Resonant but Globally Non-Resonant. (a) Effect of number of resonating
cores on the peak voltage swing and (b) Effect of phase difference on the peak voltage swings.



26 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

Core 4

A

B15

105

A+3B

4B
30

Core 3

Core 2

Core 1

Combined Waveform

(a)

Core 4

Core 3

Core 2

Core 1

Core 4

Core 3

Core 2

Core 1

1800 1850 1900 1950 2000
Cycles

25 Mhz, cores 90 degrees out-of-phase

1800 1850 1900 1950 2000
Cycles

100 Mhz, synchronized cores

(b)

Figure 3.6: Locally Non-Resonant but Globally Resonant. (a) Example of a locally non-resonant but
globally resonant input and (b) Snapshot of voltages for the four cores.



3.2. PDN CHARACTIERSTICS 27

3.2 PDN CHARACTIERSTICS
Given that a power-delivery subsystem can be modeled as a second-order linear system, the package
model’s response to current variations is largely governed by three factors: Q (quality factor), C
(resonance cycles), and Z (peak impedance). These factors affect the robustness and correctness of
any solution for handling timing-margin violations. In this section, we analyze the effects of these
three factors on voltage emergencies.

Quality Factor (Q) A system’s quality factor is the ratio of the resonant frequency to the rate at
which it dissipates its energy. This factor determines the width of the resonance, or the resonance
band of the system. A higher Q leads to a greater buildup of voltage for currents oscillating within the
resonance band. Q depends on the effective inductance (L) and resistive losses (R) at the resonant
frequency (f = 1

2∗π∗√
(LC)

) as shown in the following equation:

Q = 2 ∗ π ∗ f ∗ L

R
. (3.1)

A good package will have lower parasitic inductance and hence, lower Q than a poor package.
Figure 3.7(a) shows different packages with different Q, highlighting that higher-Q packages have
a narrower resonance band and higher impedance at the resonant frequency. Higher impedance
means that applications with current variations within the resonance band experience larger voltage
fluctuations. Figure 3.7(b) illustrates how different packages with different Q factors affect voltage
emergencies on a subset of the SPEC CPU2000 programs. As Q increases, the fraction of cycles
where the voltage extends beyond ± 5% thresholds increases for all programs. However, the slope
for each program differs, with crafty experiencing the steepest increase in timing-margin violations.
This can be attributed to the programs’ differing current profiles.

The PDN Q factor defines an important constraint on any technique designed to handle
voltage emergencies. Specifically, the rate of change of voltage will depend on Q. Later, in the
next few chapters, we will discuss the implication of the rate of change of voltage on the design of
architectural solutions to deal with voltage emergencies.

Resonance Cycles (C) This factor represents the number of processor cycles corresponding to one
period of the PDN resonant frequency. As processor frequency increases, while the PDN resonant
frequency remains fixed, C also increases. For example, a resonant frequency of 100 MHz for a
10 GHz processor would result in a C of 100 [72], whereas C would be 30 for a 3 GHz processor.

Voltage emergencies strongly depend on this resonance cycles metric. Figure 3.8 plots the
resulting voltage fluctuations for three settings of C and shows that the minimum width of an
emergency-inducing isolated current pulse differs for different resonance cycles. In fact, this width
depends on the resonant frequency of the PDN such that a larger C tends to require wider current
pulse widths, in terms of the number of processor cycles.

Figure 3.9 shows how the fraction of cycles with timing-margin violations varies with processor
frequency for a given package. The package considered here has a resonant frequency of 100 MHz.



28 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

10
7

10
8

10
9

0

5

10

15

20

Frequency (Hz)

Im
pe

da
nc

e 
(m

O
hm

)

 

 

Q=1

Q=2

Q=3

Q=4

Q=5

Q=6

(a) Packages with different Q factors.

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Q factor 

F
ra

ct
io

n 
of

 c
yc

le
s 

be
yo

nd
 5

%
 th

re
sh

ol
d

 

 

crafty
bzip
gcc
mesa
gap
apsi
gzip
equake

(b) Variation of cycles in voltage emergencies with Q

Figure 3.7: Sensitivity to Q. A package with a higher Q-factor would lead to more timing-margin
violations (i.e., voltage emergencies).



3.2. PDN CHARACTIERSTICS 29

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

cycles

cu
rr

en
t (

A
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.95

1

1.05

cycles

vo
lta

ge
 (

v)

 

 

C=30

C=60

C=100

Figure 3.8: Sensitivity to Resonance Cycles.The plot shows an example of an isolated pulse for different
resonance cycles metric.A higher resonance cycle metric requires a wider pulse to cause violations (crossing
−5%).

10 20 30 40 50 60 70 80 90 100
0
5

10

0
5

10

0
5

10

0
5

10

Resonance Cycles

Fr
ac

tio
n 

of
 c

yc
le

s 
in

  
no

is
e−

m
ar

gi
n 

vi
ol

at
io

ns

 

 
Z=default

Z=1.5X

Z=2X

mgrid

gcc

crafty

bzip

Figure 3.9: Resonance Cycles and Peak Impedance (Z). The figure depicts the sensitivity to resonance
cycles metric and peak impedance(Z) for some CPU2000 programs.

We can see that the peaks for the different programs shown here are at lower values of the resonance
cycles metric (20-30 cycles). This is because, in these programs, current pulses tend to have smaller
widths—both for resonating and isolated pulses.

Peak Impedance (Z) This factor represents the peak impedance for the power-delivery subsystem
at its resonant frequency. Ideally, this peak (or target) impedance should be as low as possible to
avoid voltage emergencies. However, efforts to reduce this peak impedance can increase system
cost. It would require improved package design, etc.Therefore, circuit and architecture designs must



30 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

cope with higher-than-desired impedance to avoid voltage emergencies. Figure 3.9 shows that, as the
package’s peak impedance increases, the timing-margin violations also increase across all applications
and resonance cycles.

The extent of voltage variation varies across different power-delivery subsystem designs, and
is also closely related to the current consumption profiles. It is important to guarantee that the
mechanism used for handling voltage emergencies is robust across a wide range of package and
processor characteristics.

3.3 MICROARCHITECTURAL EVENTS

Thus far, we have explored voltage variation in response to stimulant current pulses and their inter-
action with the underlying PDN. In a real processor, these current pulses are caused by execution
stalls, which are the result of microarchitectural activity. Thus, in this section, we study events that
cause stalls, such as branch mispredictions and cache misses.

Gupta et al. [38] considered several microarchitectural parameters that could affect voltage
variation, such as the number of entries in the reorder buffer, the instruction fetch queue, and the
load/store queue, along with microarchitectural events such as cache misses and pipeline flushes.
On the basis of their findings, we describe the perturbation effects of microarchitectural events on
processor activity using real program examples and show that they can lead to voltage emergencies.
We also discuss patterns in activity that let us not only identify voltage variation points uniquely, but
also predict their recurring occurrences [38, 40, 78].

Figure 3.10 shows a snapshot of pipeline activity for the topmost loop in equake. Pipeline
statistics, such as occupancy of reorder buffer and commit rate, are depicted along with microar-
chitectural events that were tracked. Several other microarchitectural parameters, such as number
of entries in the ROB, instruction fetch queue, and load/store queue, were also considered but are
deemed to be not as useful.

In the figure, the presence of a long stall due to an L2 cache miss can be observed (shown by
marker point 1). During the time it takes to service the L2 miss, pipeline activity ramps down, as
seen in the current profile. However, after the L2 miss data is available, functional units become busy
and there is a sudden increase in activity (shown by marker point 2). This steep increase in current
leads to a significant voltage drop (shown by marker point 3). Other events such as TLB misses, L1
misses, or flushes are not present in the pipeline during this window, which clearly suggests that the
L2 miss in this code region caused the voltage fluctuation in equake. We now categorize such events
into six distinct categories.

Memory Miss Events Stalls can occur in the pipeline owing to loads missing the L1 cache, and
larger stalls occur when the loads miss the L2 caches. The large miss penalty associated with L2 or
higher cache misses can drain the active instructions in the pipeline and can result in long periods
of inactivity. It is important to note that an L2 miss that results in a pipeline stall may lead to an
emergency, while an L2 miss that does not stall the pipeline likely will not. This period of inactivity



3.3. MICROARCHITECTURAL EVENTS 31

100 200 300 400 500 600 700 800 900

0.96

1   

1.05

vo
lta

ge

 

 20
30
40
50

cu
rr

en
t

 

 
0
5

10

co
m

m
it 

ra
te

 

 −1
0
1

Fl
us

h

 

 −1
0
1

TL
B 

m
is

s

 

 0
2
4

L2
 m

is
s

 

 −1
0
1

L1
 m

is
s

 

 240
250
260

RO
B 

oc
cu

pa
nc

y

 

 

1

2

3

Figure 3.10: Memory Miss Events. Example of a microarchitectural stall effect on voltage from proce-
dure smvp in program equake.

following a miss is characterized by low current draw (as shown in 3.10). A sudden increase in activity
happens when the L2 miss returns, leading to execution of all dependent instructions. These bursts
of activity following a long period of inactivity must be avoided.

Pipeline Flush Events Misprediction of branches leads to flushing the entire pipeline when the
branch is resolved. This leads to a sudden decrease in activity following a flush event; however, a few
cycles later, activity ramps up because of noncontrol instructions at the branch target. If the period
of low and high current draw matches coincides with the periodicity of the package characteristics,
resonance buildup of voltage occurs. Figure 3.11 shows one such example of a snapshot of art. The
L2 miss (shown by marker point 1) is responsible for the initial inactivity and subsequent increase
in activity when it returns, leading to a drop in voltage, but the subsequent pipeline flushes (shown
by markers 2, 3, 4) occur periodically, leading to further voltage drops. The snapshot also shows the
presence of L1 misses, but their effect has been determined to be small on voltage drop [38].



32 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

0 100 200 300 400 500 600
0.96

1   

1.04

vo
lta

ge

 

 
20

30

40

50

cu
rr

en
t

 

 
0
5

10

co
m

m
it 

ra
te

 

 0
0.5

1

Fl
us

h

 

 0
0.5

1

TL
B 

m
is

s

 

 0
0.5

1

L2
 m

is
s

 

 0
0.5

1
L1

 m
is

s

 

 100
200
300

RO
B 

oc
cu

pa
nc

y
 

 

1

2 3 4

Figure 3.11: Pipeline Flush Events. Example of memory miss events and resonant flushes on voltage
from procedure match in program art.

Long Latency Events A long chain of dependent floating-point operations, such as divides, can lead
to a long wait period for dependent instructions leading to a stalling effect of the pipeline. Figure 3.12
shows one such example. The occurrence of the long-latency divide operation is shown at the top
of Figure 3.12. The divide instruction halts all processor activity due to a lack of instruction-level
parallelism (ILP), and thus, the processor’s issue rate drops, as does the current draw. However, when
the divide instruction finishes execution, there is a sudden burst of activity. Instructions dependent
on the divide are ready to execute, leading to a dramatic increase in ILP. Rapidly issuing instructions
causes the current to suddenly increase, which in turn causes the voltage to drop quickly (15 cycles).

Uncharacterized Certain applications or phases of application execution display an an even more
complex interplay of events. In such cases, it is sometimes difficult to identify a single cause or a
set of interacting events that lead to voltage swings. Figure 3.13 shows one such example with high



3.3. MICROARCHITECTURAL EVENTS 33

480 490 500 510 520 530

10

20

30

C
ur

re
nt

480 490 500 510 520 530

2
4
6
8

10

Is
su

e 
R

at
e

 

 

480 490 500 510 520 530

Flush

Longlat

Cache

TLB

P
ro

ce
ss

or
 E

ve
nt

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

V
ol

ta
ge

Steep dI/dt causes voltage to 
  drop below the minimum margin

Data dependence on a long latency operation
  causes all pipeline activity to stall

Rapid issue rate causes steep dI/dt

Figure 3.12: Long Latency Event. Example of a long latency stall effect on voltage in program Sieve
from the JavaGrande benchmarking suite.

frequency noise occurring around the nominal voltage. We see L1, L2, and pipeline flush events
all occurring close to one another. In such cases, it is difficult to clearly identify a single dominant
microarchitectural cause for the emergency.

Mixed Events Whether a microarchitectural event at a particular location causes an emergency
may depend on activity just before and after the event. Even a small loop like that in Figure 3.14(b),
extracted from the gcc program of SPEC CPU2006,can have behavior phases with markedly different
activity patterns. Figure 3.14(a) is a snapshot of activity within that loop over 880 cycles. It shows
three repeating phases of the loop. Phase A uses paths 1→4 and 1→2→4, while phase B uses only
path 1→2→3→4. The issue rate of phase A is relatively low, while that of phase B is quite high.
The flush events labeled 1 are caused by branch mispredictions at the end of basic block 1. Those
events in phase B, where the issue rate is high, always cause emergencies.Those same events in phase
A never do. Therefore, tracking program flow and microarchitectural events yields a proxy for the



34 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

0 100 200 300 400 500 600 700 800 900
0.96

1   

1.04

vo
lta

ge

 

 
20
30
40
50

cu
rr

en
t

 

 
0
5

10

co
m

m
it 

ra
te

 

 0
0.5

1

Fl
us

h

 

 −1
0
1

TL
B 

m
is

s

 

 0
0.5

1

L2
 m

is
s

 

 0
0.5

1
L1

 m
is

s

 

 0
200
400

RO
B 

oc
cu

pa
nc

y
 

 

Figure 3.13: Uncharacterizable Activity. This microarchitectural activity snapshot corresponds to the
longest_match procedure in gzip. No one particular event, or set of events, is the cause for the voltage
variation.

activity leading to emergencies. The findings are similar for events in phase C that correspond to
events in phase A.

Gupta et al. [38] devised an algorithm to automatically identify root causes in single-threaded
processors. The algorithm scans recent processor events in a fixed-priority order, looking for event
completion times that coincide with the time of the emergency. It scans down the list of L2 misses,
TLB misses, pipeline flushes, L1 misses, and long latency operations, in that order. To show the
strength of the relationship between these processor events/operations and emergencies, Figure 3.15
shows the percentage of emergencies caused by different root causes for the SPEC CPU2000 bench-
mark suite. A majority of the emergencies are caused by pipeline flushes and L2 misses. Interference
of these events is also important. The uncharacterized 14% corresponds to emergencies that cannot
be uniquely identified (i.e. mixed or others).



3.3. MICROARCHITECTURAL EVENTS 35

C
ur

re
nt

V
ol

ta
ge

Is
su

e
F

lu
sh

Lower Margin

A B C

1 4 411 4 1 4

A B C

(a)

1

2

4

3

(b)

Figure 3.14: Mixed Events. (a) Voltage variation is associated with recurring activity (phases A, B, and
C) over 880 cycles. The numbers next to the vertical bars in the flush graph correspond to the basic block
number in (b) containing the mispredicted branch. (b) A sensitive loop from function init_regs in gcc
from the SPEC CPU2006 benchmark suite. Its activity snapshot is shown in (a).

Interference In multicore systems, microarchitectural activity can interfere across cores and lead to
either constructive (bad) or destructive (good) interference. Researchers demonstrated this behavior
on a Intel© Core™ 2 Duo processor [80] by simultaneously running microbenchmarks on each
processor core and measuring the magnitude of the peak-to-peak voltage swing across the entire
chip.

Figure 3.16 shows the interference heat map. Both cores are subject to different microarchi-
tectural activity, including L1 cache misses (only) and L2 cache misses, translation lookaside buffer
(TLB) misses, and branch mispredictions (BR). The magnitude of the chip-wide voltage swings are
normalized relative to an idling machine. The y-axis corresponds to microarchitectural activity on
Core 0, and the x-axis corresponds to activity on Core 1. The data indicates that depending on the
pair of events occurring simultaneously, the magnitude of the voltage swing can vary substantially.



36 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

24% (L2 Miss)

55% (Pipeline Flush)

4% (TLB Miss)
< 1% (L1 Miss)

3% (Long Lat)

14% (Uncharacterized)

 

 

Figure 3.15: Pie Chart Distribution of Voltage Variaton Causes. Distribution of microarchitectural
events and operations that cause the most voltage emergencies in the SPEC CPU2000 benchmark
suite [36].

��

��

���

��

��	


	
�
�

��

�� �� ��� �� ��	


	��
��

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

��


��
��
�


��
�
��
�
��
 
���
!
�"
#
$���

���

���

���

���





�
%
&�
�
&'


�
%
�(
�
��
�
!


�#
)
��
!
*�
�

Figure 3.16: Interference. Microarchitectural event interactions in a multicore system and the resulting
effect on core voltage [80], e.g., BR-BR is worse than L1-L1 pairing.

3.4 PROGRAM BEHAVIOR

Strong voltage variation can also be caused due to pure program behavior. Hazelwood and
Brooks [40] showed that voltage emergencies are correlated with an application’s dynamic code
stream and not just the underlying architecture and power-delivery subsystem, and as such, the
variation problem can also be dealt with at the application and software layer.

Problematic Loops Joseph et al.[50] were one of the first to identify and demonstrate that the most
problematic processor current profiles include successive periods of high and low processor activity.
It is when these high and low durations approach the resonant frequency of the power-supply
network that the problem becomes more serious. The problem was demonstrated by developing an
artificial application that was hand-tuned to simulate periods of high and low activity that matched
the resonant frequency of the processor’s power-supply network. The synthetic program shown in
Figure 3.17(a) contains a single loop body that consistently causes voltage swings dangerously large
enough to violate the minimum voltage margin, as shown in Figure 3.17(b).



3.4. PROGRAM BEHAVIOR 37

(a)

V
o

lt
a

g
e

 (
V

o
lt
s
)

dl/dt stressmark

resonant square wave

Minimum Voltage

Time (CPU Cycles)

20000

1.00

0.95

20060 20120 20180

(b)

Figure 3.17: Problematic Loop Behavior. (a) di
dt

stressmark. (b) Voltage swing of the di
dt

stressmark
vs. peak swings at resonance [50].

The loop body oscillates between very low current activity (because divt produces long
stalls) and high current activity (in which dependent instructions store the divt result to memory,
reread it, and restore it to registers). This software code loop provides motivation for software-based
solutions to mitigate voltage variation, because, if such loops exist in real applications, then it is
logical to apply a permanent solution at the code level, thereby limiting the performance penalty of
(repeatedly) activating control hardware.

In fact, Gupta et al. [38] showed that loops are responsible for nearly all the large voltage
emergencies observed within an experimental framework. Table 3.1 summarizes statistics about



38 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

Table 3.1: Problematic Loops. Loops associated with emergencies in the SPEC CPU 2000 programs

Benchmark Total Loops Total Emergencies Total Emergency Loops Procedural Emergencies

applu 479 389897 13 0

apsi 718 21056 25 537

art 293 120885 13 0

bzip 383 403798 35 6181

crafty 1406 623977 302 190181

equake 423 174293 9 6942

gap 1806 243259 48 2115

gzip 310 67324 40 17

mcf 338 88828 23 620

mesa 536 279904 41 41

mgrid 411 1111152 32 75

swim 425 2332 4 0

twolf 1271 514970 81 138241

wupwise 425 42598 14 81

the static loops present in the SPEC CPU 2000 programs. Loops that are active at the time of
emergencies are the loops that we are interested in examining. The third column of Table 3.1
tabulates the number of emergency loops identified, i.e., the number of static loops in which a
voltage emergency occurs. Though the total number of loops ranges from 310 to 1806, the total
number of emergency loops for each application is a small fraction of this total. Most programs have
a small number of procedural emergencies and more than 90% of the emergencies can be associated
with unique loops. Benchmarks crafty and twolf are the only two that do not follow the trend, with
33% and 25% of the voltage emergencies classified as procedural emergencies, respectively.

Emergency Hotspots The next step toward understanding the relationship between application
runtime behavior and voltage emergencies is to uniquely identify the “signature” of the emergencies,
to understand whether the same signature of emergencies occurs repeatedly, and determine the
frequency at which they occur. This code-region identification is required to provide the compiler



3.4. PROGRAM BEHAVIOR 39

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 

 

Lo
g 

Sc
al

e
 Static program locations  
 Dynamic emergency count

Figure 3.18: Emergency Hotspots. A small set of static program addresses (fewer than 100) are re-
sponsible for the large number of voltage emergencies. We assume a 4% operating margin, but this trend
remains across different margins.

with hints in order to eliminate the problematic behavior. Hazelwood and Brooks [40] identified
the use of the last executed branch (LEB) as a starting point for software to optimize the candidate
code region.

Using a technique very similar to LEB that was later refined by Gupta et al. [38], Reddi et
al. [75] characterized the number of distinct voltage emergencies that occurred during program
execution in the JavaGrande benchmarking suite. Figure 3.18 shows the number of distinct static
program locations that were deemed as voltage-emergency hotspots. The interesting finding cor-
responds to the number of times that the software would need to intervene to correct voltage
emergencies, which is (ideally) once per static program location, vs. the total dynamic emergency
count, which is the number of times that the hardware must intervene if the software is not part of
the solution.

Interthread Interference As the number of cores increases, and cores share the same power-delivery
network, increasingly, one core can either constructively or destructively interfere with activity from
other cores. Constructive interference is bad because it amplifies voltage variation while destructive
interference is good because it dampens the variation.

Figure 3.19 is an example of the interthread voltage variation interference. The measured
results are based on an Intel Core 2 Duo processor. Both cores in the experiment share the power
delivery network. For such a system, the figure quantifies the aggregate droop activity where both
cores are simultaneously running two instances of the 473.astar program from the SPEC CPU2006
benchmark suite.The x-axis corresponds to the start time offset between the two programs. In other
words, the graph is a convolution of two executions of the same program, offset by different start



40 3. UNDERSTANDING THE CHARACTERISTICS OF VOLTAGE VARIATION

���

���

��

��

�

�
�	

	


��




��
�
�
��

�
�
�

�

����������������

���
����������
�����
 �!�"

������������

�	�
��������


�
��������

������������

��		�� �����

Figure 3.19: Interthread Interference. In multicore systems we observe voltage variation interference
when multiple threads run simultaneously [80].

times. Voltage variation, expressed as droops per 1K cycles, when two cores are active, is smaller
between 0s and 275s than later (between 275s and 500s). The former is an example of destructive
interference. The latter is an example of constructive interference. Interfering microarchitectural
activity across cores, such as pipeline flushes and cache misses, is the root cause of both the construc-
tive and destructive interference. We discussed microarchitectural event interference previously in
Section 3.3. Similar behavior was observed across other programs in the SPEC CPU2006 suite [80].

At first glance, constructive thread alignment would seem to be a low-probability event in
multi-core machines with complex, out-of-order cores and shared and non-shared resources. How-
ever, Kim et al. [54] showed that alignment occurs relatively often when threads consists of short
execution loops. The authors observed this behavior during droop measurements of an AMD pro-
cessor and determined that the effects were caused due to natural perturbations in the threads as a
result of the operating system’s thread scheduling dynamics.

Kim et al. showed an example of naturally occurring behavior over the course of 100 ms when
running a four-threaded loop-intensive program that exhibits resonant behavior within each loop.
Each major grid point in Figure 3.20 corresponds to 10 ms and the y-axis shows the measured
processor voltage (VDD) values at a 100 MS/s sampling rate. Approximately every 16 ms VDD

variability changes, which corresponds to the OS timer tick on the Windows operating system.
When the threads align constructively, as is the case around the center point of the scope shot, the
voltage droop is maximized.This data shows that repetitive loops across multiple threads at the same
time can result in significant voltage variation in the system, due to naturally occurring interthread
execution interference.

3.5 SUMMARY

As the industry trends toward aggressive power management and voltage scaling in future multicore
designs, it is increasingly important for architects to understand the potential for voltage variation.
To this end, we took an in-depth look at factors that influence the magnitude of voltage variation



3.5. SUMMARY 41

Figure 3.20: Thread Alignment Effects.The magnitude of the variation increases or decreases depend-
ing upon voltage plane interactions across threads [54].

in a system. These factors range from current pulse amplitude and periods to the characteristics
of the power-delivery network combined with microarchitectural processor activity and program
behavior. In effect, voltage variation is the result of complex interactions between the different
factors. Therefore, while we explored the individual factors’ impact by looking at specific examples,
it is important to understand that the exact behavior can vary depending on the complex interactions
between all factors.





43

C H A P T E R 4

Traditional Solutions and
Emerging Solution Forecast

There are two fundamental approaches to dealing with voltage variation. Broadly speaking, there are
static techniques and dynamic techniques. In this chapter, we first give a brief overview of the tra-
ditional approaches that specifically deal with voltage variation (i.e., voltage margins, floorplanning,
and adding decoupling capacitance at various levels of the system). However, these are static tech-
niques that do not take into account dynamic activity that impacts voltage variation. In the previous
chapters, we discovered that voltage variation is the result of complex interactions between PDN
characteristics, application activity, and microarchitectural event behavior. Recently, several dynamic
approaches have been proposed that leverage knowledge about these interactions. We grouped these
approaches into the following categories: tolerance, avoidance, and elimination. Before elaborating
on the various techniques, in this chapter we provide the key insight behind each of those categorical
approaches. We provide the intuition behind each of these approaches, and subsequently elaborate
on the techniques in the following chapters.

4.1 TRADITIONAL STATIC TECHNIQUES

Designers must take several precautions to ensure voltage variation is kept to a minimum during
operation. Current designs prevent dangerous voltage fluctuations via careful allocation of large
voltage margins, placement of decoupling capacitors, and advanced floorplanning. These are all
static techniques that designers have applied traditionally, and which we must adapt.

4.1.1 VOLTAGE MARGINS
Today’s production processors use operating voltage margins that are nearly 20% of nominal supply
voltage [49]. However, conservative designs either lower the operating frequency or sacrifice power
efficiency. As feature sizes shrink and nominal supply voltage scales down gradually with limited
threshold voltage scaling, circuit delay sensitivity to margins increases with each technology node.

Figure 4.1 plots peak frequency at different voltage margins across four PTM [99] technology
nodes (45 nm, 32 nm, 22 nm, and 16 nm) based on detailed circuit-level simulations of an 11-stage
ring oscillator consisting of fanout-of-4 inverters. The plot shows that at today’s 32 nm node, a
20% voltage margin translates to a 33% frequency degradation, and at future technology nodes, the



44 4. TRADITIONAL SOLUTIONS AND EMERGING SOLUTION FORECAST

50403020100
40

50

60

70

80

90

100

Margin (%)

Pe
ak

 F
re

qu
en

cy
 (%

)

 

 

45nm (Vdd=1.0V)
32nm (Vdd=0.9V)
22nm (Vdd=0.8V)
16nm (Vdd=0.7V)

Figure 4.1: Impact of Worst-case Margins.
Worst-case voltage margins are a growing
source of processor inefficiency [79].

Figure 4.2: Impact of Technology Scaling.
Voltage variation is a growing problem in future
process generations, as the peak-to-peak swings
are increasing [80].

situation gets much worse. Practical limitations on reducing power-delivery impedance, combined
with large current fluctuations, make margin-based solutions unsustainable.

Trends indicate that margins will need to grow to accommodate worsening peak-to-peak volt-
age swings. Consequently, designers must increasingly compromise peak performance for growing
worst-case delays. Figure 4.2 shows the worst-case peak-to-peak swing in future generations relative
to today’s 45 nm process technology.This data is based on simulations of a Pentium 4 power-delivery
package model [37], assuming nominal voltage gradually scales according to ITRS projections from
1 V in 45 nm to 0.6 V in 11 nm [48]. To study package response, current stimulus goes from 50
A to 100 A in 45 nm. Subsequent stimuli in newer generations is inversely proportional to VDD

at the same power budget. Voltage swing doubles by the 16 nm technology node. Future processor
performance and power efficiency will suffer to an even greater extent than in today’s systems.

4.1.2 DECOUPLING CAPACITORS
To dampen voltage variation and keep voltage margins within some reasonable bounds, processor
designers also rely on package and on-chip decoupling capacitance.These capacitors attempt to main-
tain low impedance over a range of frequencies. Bulk capacitors on the motherboard dampen low-
frequency noise, while package capacitors target mid-frequency variation between 50 and 200 MHz
that is caused by impedance in the power-delivery network. Lastly, on-chip decoupling capacitance
targets high-frequency variation caused by sudden sharp changes in current due to dynamic clock
gating of idle functional units. Figure 4.3 illustrates the distribution of these capacitors over the
different types of voltage droops.



4.1. TRADITIONAL STATIC TECHNIQUES 45

For today’s processors, designers need to apply a significant amount of on-chip decouple
capacitance to keep the magnitude of voltage swings within tolerable bounds. However, there is a
careful trade-off to be made between the amount of decoupling capacitance that is used and the area
that the decoupling capacitance requires. For instance, researchers [21] demonstrated estimates that
if the CMOS thick-oxide gate provides 10 f F/μm2 [71], an area of 20 mm2 is needed to provide
200 nF of decoupling capacitance. The Alpha 21264 processor’s designers reported that roughly
15% to 20% of the die area is occupied by decaps [34]. Therefore, it is important to estimate and
allocate the area needed for on-chip decoupling capacitors during the early design stage.

Although designers have traditionally used oxide capacitors [57], the industry is making
advances toward integrating deep-trench decoupling capacitors [44] into logic circuits. Deep-trench
capacitors provide significantly more capacitance per unit area than oxide capacitors.Figure 4.4 shows
the frequency response of package impedance for thick-oxide capacitors vs. deep-trench capacitors.
With the integration of deep-trench capacitors into logic circuits, it is conceivable that off-chip
decoupling capacitors on the package may be completely eliminated in the future. However, deep-
trench decoupling capacitance does have its drawbacks.The area requirements are high. Deep-trench
capacitors will also add to a chip’s cost, due to the costly manufacturing process, and will exacerbate
the already problematic leakage power problem in processors.

4.1.3 FLOORPLANNING
Modules within the processor do not exert uniform current demands. Some modules consume
significantly more power than others. It is critical to ensure that such modules have a low impedance
path on the power-delivery grid. Similarly, it is also important that designers do not place high-power
modules that are likely to simultaneously switch on or off close together. Such placement could lead
to a sudden large current swing in a short amount of time, causing a voltage emergency. Therefore,
it is possible to engineer a floorplan that is resistant to such voltage variation by distributing the
current demand of modules more regularly across the processor [22, 64, 70]. Because modules within
the processor do not have uniform current demand, designers can exploit this information to place
high-current modules spatially far apart from one another by pairing them with low-power modules.

Overall, margins, decoupling capacitance, and floorplanning all help make the processor ro-
bust against voltage noise. However, such static solutions require careful preplanning. For instance,
at present, the only quantifiable methodology that strongly establishes the amount of decoupling ca-
pacitance required involves planning for the worst-case voltage swing. Such pessimistic design lowers
the processor’s overall operating efficiency. The traditional means of dealing with voltage variation
discussed in this section are already being stretched to their limits. Continued scaling trends will
only make voltage variation a more serious problem for the community to address. As performance,
power efficiency, area, and cost become more important, new and more cost-effective solutions will
become necessary to cope with all forms of variations.



46 4. TRADITIONAL SOLUTIONS AND EMERGING SOLUTION FORECAST

chip

K. Wong et al., JSSC, 2006

1.00

20

1st 
droop

2nd
droop

3rd
droop

1.05

1.10

1.15

1.20

1.25
V

20.5 21 21.5 22 μS

package board

Figure 4.3: Voltage Droop Types and Capacitances. Sources of capacitance for the three primary types
of voltage droops.

Figure 4.4: Impact of Capacitance Type. Effect of deep-trench decoupling capacitance on package
impedance.



4.2. TOWARD DYNAMIC TECHNIQUES 47

4.2 TOWARD DYNAMIC TECHNIQUES

While current designs are able to manage voltage variation through careful placement of decou-
pling capacitors and advanced packaging, traditional means of reducing voltage variation are being
severely stretched due to recent technology trends. These trends, that will make voltage variation
management a considerable challenge in the coming few years, include increasing processor cur-
rents, decreasing supply voltages, and a significant increase in current variability due to power-saving
gating techniques [46].

The problem with addressing voltage variation using the static techniques discussed in the
previous section is that such techniques are overly conservative. The solutions put in place are
not adaptable after the chip hits the market. Therefore, designers make cautious and pessimistic
assumptions about the conditions under which a chip may operate to ensure high reliability. But
such conservative design strategies lead to worst-case design that is nonrepresentative of typical-case
behavior, causing poor performance and power inefficiency.

Prior work demonstrated that worst-case design is overly conservative for a production pro-
cessor from 881 benchmarking runs on an Intel© Core™ 2 Duo [80]. Figure 4.5(a) shows a cu-
mulative histogram distribution of voltage samples for the Core 2 Duo processor. The figure shows
the deviation of each voltage sample relative to the nominal supply voltage. Each line within the
graph corresponds to a run. The 881 runs include a spectrum of workload characteristics: 29 single-
threaded SPEC CPU2006 workloads, 11 Parsec [12] programs, and 29×29 multiprogram workload
combinations from CPU2006.

Runtime voltage variation for these programs is as large as 9.6% (see min. droop marker),
and therefore the estimated 14% worst-case margin is necessary for this processor. But such large
variations occur infrequently. Most voltage samples are within 4% of the nominal VDD . The typical-
case marker in Figure 4.5(a) indicates this range. Only a small fraction of samples (0.06%) lie beyond
this region. Therefore, it is a better design choice to tighten the worst-case voltage margin to 4%,
while providing a fail-safe guarantee mechanism for those very infrequent large voltage swings.

In the following sections, we will introduce the fail-safe mechanisms under the umbrella of
the following three categories: tolerance, avoidance, and elimination. Here, our objective is to first
explain the driving philosophy behind each of the categorical approaches. In the chapters that follow,
we will present the myriad of techniques under each category.

4.2.1 TOLERANCE
Tolerating or allowing voltage emergencies to occur, rather than preventing them at any cost, is
useful for two important reasons. First, it enables designers to tighten the voltage margin. Second,
it enables feedback-driven solutions to the problem, i.e., by observing the emergency behavior of
running code the system can learn to adapt itself to avoid emergencies. In order to enable tolerance,
the architecture must support a built-in mechanism that allows voltage emergencies to occur, but,
when they do, it must recover state and resume.



48 4. TRADITIONAL SOLUTIONS AND EMERGING SOLUTION FORECAST

(a) Worst-case vs. typical-case voltage variation.

10
-9
 

10
-7
 

10
-5
 

10
-3
 

10
-1
 

D
is

tr
ib

ut
io

n 
of

 S
am

pl
es

-10 -8 -6 -4 -2 0
% of Voltage Swing

Frequent droops
(bad for resiliency)

Optimum for Max TP

Infrequent droops occur
for Vcc  3% on average

Infrequent droops
(good for resiliency)

(b) Wide tail distribution between programs.

Figure 4.5: Measured Voltage Variation Behavior in a Typical System. Measured cumulative distri-
bution of supply voltage (VDD) samples vs. the percentage of nominal VDD for 881 unique programs
executing on the Intel Core 2 Duo processor [80].



4.2. TOWARD DYNAMIC TECHNIQUES 49

Some researchers have proposed dedicated recovery schemes to tolerate all voltage emer-
gencies [39]. Such schemes are typically intrusive and require changes to traditional microarchi-
tectural structures, complicating design and testing, in addition to requiring revalidation of prior
logic blocks. However, they are extremely efficient at tolerating voltage variation. In contrast, more
general-purpose coarse-grained checkpoint-recovery units are already available in existing produc-
tion systems [3, 86]. These systems have been leveraged to serve numerous other purposes, such as
testing and debugging [55, 61, 67, 85, 89, 96]. Therefore, an alternative to using custom recovery
blocks is to rely on these general units.

While we may think that general-purpose checkpoint recovery is good from a reusability
standpoint, the cost of relying purely on coarse-grained checkpoint-recovery is prohibitively expen-
sive. Tolerating emergencies is not always possible. The intervals of traditional checkpoint-recovery
schemes (between 100 and 1000 cycles) translate to unacceptable performance penalties. Therefore,
it is only feasible to rely on this mechanism infrequently.

4.2.2 AVOIDANCE
Tolerating emergencies using coarse-grained checkpoint-recovery hardware is not always practical,
because it can be a prohibitively expensive rollback mechanism.Therefore, researchers have proposed
a variety of emergency predictors that identify when emergencies are imminent and prevent their
occurrence by throttling execution. Throttling is the act of slowing down machine execution so that
voltage recovers to its nominal level gracefully. A voltage-emergency predictor can predict voltage
emergencies using a variety of heuristics, such as current and voltage profiles, microarchitectural
activity signatures, and so forth.

An added benefit of building avoidance mechanisms is that it is possible to train the microar-
chitecture. The processor can learn from emergency activity occurring during runtime and tweak
its behavior (e.g., issue rate) in response to that behavior. In the previous chapter, we discussed
several microarchitectural events and code characteristics that can induce strong voltage variation.
Such knowledge, applied systematically, can enable strong prediction mechanisms that can anticipate
emergencies based on little information.

Avoidance mechanisms can be a form of feedback-driven optimization that is beneficial
because applications exhibit different voltage variation behavior. Figure 4.5(b) represents a zoomed-
in version of Figure 4.5(a). The figure demonstrates that the distribution of VCC droops varies
widely across the 881 programs. VCC droop magnitudes that occur less than 0.25% (VCC > 3%)
are infrequent and thus, can be effectively mitigated by an avoidance mechanism. However, VCC

droop magnitudes that occur greater than 0.25% (VCC < 3%) are too frequent to reduce with any
resilient hardware. But, this data indicates there is there is room for runtime specialization based on
application behavior.



50 4. TRADITIONAL SOLUTIONS AND EMERGING SOLUTION FORECAST

4.2.3 ELIMINATION
Better than tolerating or avoiding emergencies is eliminating them altogether. Consider a frequently
executing loop that experiences recurring emergencies every iteration of the loop because the program
is taking the same error-prone code path every iteration. Such a scenario can be handled better in
software than in the hardware. Hardware would need to repeatedly tolerate or throttle processor
execution in order to avoid the emergency. But an intelligent piece of software, such as a compiler, can
perform fine-grained instruction-level code transformations to eliminate the emergency. A compiler
typically has several options when choosing the order of instructions and many of the options result
in equally performing software. Therefore, in the case of a voltage-emergency-prone loop, such as
Joseph et al.’s code in Figure 3.17(b), the compiler can rearrange instructions along the problematic
code path to avoid recurring emergency activity without impacting performance.

Figure 4.6 shows the contribution to total emergencies from loops. Almost all the voltage
emergencies occur in loops. This suggests that the runtime overhead of voltage-specific software
optimizations would be small, because the overhead can be easily amortized. We optimize the
loop once and reap the rewards of emergency-free loop execution for the remainder of the loop’s
iterations. In this context, we are also interested in the loops that incur the greatest numbers of
voltage emergencies. Therefore, in Figure 4.6 we show the percentage of total voltage emergencies
that occur in the top five emergency loops for each SPEC CPU 2000 program. For each program,
around 2 and 5 loops account for more than 75% of the emergencies and, hence, we can classify
these loops as hot loops.

The data above indicates that optimizing these hot loops can significantly reduce the overall
number of emergencies. Identifying such problematic hot loops, understanding the characteristics
of these loops, and investigating their interaction with other loops can provide insights into the
sequences of events that lead to emergencies. This understanding is critical to finding perturbations
to the code that will eliminate the emergencies.

In a multicore processor, it may be difficult to coordinate and orchestrate individual core
activity in hardware to anticipate emergencies. For instance, in Section 3.1 we examine how local
and global resonant current pulses interact. One key observation was that, even when there is no
locally resonant core activity, there can be global resonance. As the number of cores increases,
hardware coordination is likely to be problematic. However, a firmware-level thread scheduler can
smooth out voltage variation across interfering execution threads.

Thread scheduling is an important topic of study in symmetric or chip multiprocessors (CMP).
Prior work demonstrated that threads can hurt each other’s performance by destructively interfering
with one another [19, 20, 31, 56, 60, 88, 100]. For instance, scheduling two cache-intensive programs
together is a bad decision,because the shared cache resource becomes a bottleneck and both programs
suffer. And as such, it is better to schedule one of those cache-intensive programs with another
program that is more CPU-bound (i.e., less intensive on the cache), resulting in less interference
and better overall system performance.



4.3. SUMMARY 51

applu apsi art bzip crafty equake gap gzip mcf mesa mgrid swim twolf wupwise
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmarks

%
 C

on
tr

ib
ut

io
n 

to
 to

ta
l e

m
er

ge
nc

ie
s

 

 

1st Loop

2nd Loop

3rd Loop

4th Loop

5th Loop

Remaining

Figure 4.6: Emergency-prone Loops. Contribution of loops (top 5) to voltage emergencies in SPEC
CPU2000 programs.

In the previous chapter, we observed that similar interthread interference exists in the context
of voltage variation. Therefore, a variation-aware thread scheduler can schedule threads intelligently
to minimize emergencies. By reducing emergencies, a system’s overall throughput increases due to
fewer rollbacks; in our system, we assume a global checkpoint-recovery mechanism across all cores
sharing a power supply source.

4.3 SUMMARY
In the future, we will require better integration and collaboration between devices, circuits, archi-
tecture, and the software layer, building on the categorical principles of tolerance, avoidance, and
elimination. As technology trends force us toward typical-case designs, error-detection and recovery
mechanisms will both need to become pervasive in microprocessor designs. Sustained increases in
performance and energy efficiency require us to identify and develop new dynamic techniques that
can dynamically detect and recover from errors in the field to overcome the penalties of traditional
static techniques.





53

C H A P T E R 5

Allowing and Tolerating Voltage
Emergencies

In this chapter, we explore proposed architectural mechanisms that enable the performance and
power the benefits of typical-case design margins, specifically, by tolerating voltage emergencies.
Rather than trying to prevent voltage emergencies with the aggressive use of static techniques, the
concept of tolerance allows margin violations to occur, but, when they do, the architecture has the
ability to roll back to a guaranteed-correct processor state.

There are two options for implementing tolerance in today’s microprocessors.The first option
is to leverage traditional checkpoint-recovery schemes built for recovering from soft errors. The
second option is to develop a specialized recovery solution that is specifically designed and targeted
toward tolerating voltage emergencies. We will look at a system called the delayed commit and
rollback mechanism (DeCoR) to handle voltage emergencies.

5.1 ERROR DETECTION

A key requirement of any tolerating mechanism is timely detection of timing violations, or voltage
emergencies, in order to prevent propagation of corrupted state across unit boundaries. To maintain
correct semantics and ensure that a corrupt instruction does not propagate from the unit in violation
of the rest of the pipeline, errors must be detected at the transition boundaries between units. Here,
we present two basic circuit designs for timing-error detection. First, we discuss an embedded error-
detection sequential (EDS) circuit [16, 17, 23, 24, 30, 32, 33, 68]. Second, we discuss a tunable
replica circuit (TRC) [17].

Error-Detection Sequential Circuit In the embedded EDS design, an EDS circuit (shown in
Figure 5.1(a)) replaces the receiving flip-flop of critical paths to detect late timing transitions during
the high-clock phase. During normal operation (i.e., without variations), the input data typically
arrives well before a preset setup-time constraint. However, in the presence of dynamic variations,
the input data may arrive slower at the receiving flip-flop. Note that the input data to the receiving
flip-flop must always arrive setup-time prior to the rising-clock edge in order to ensure correct
functionality. In order to detect slow- or late-data arrival, an EDS circuit double samples the input
data with a datapath flip-flop on the rising-clock edge and a shadow latch on the falling-clock edge.
The flip-flop and latch outputs are compared with an XOR gate. In the event of a mismatch, an
error signal is raised to the the microarchitecture level to enable error recovery.



54 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

EDS

ERRORFF

LatchD Q

CLK

(a) Error-detection
Sequential (EDS).

TRC

ERRORFF

Tuning Bits

EDS

(b) Tunable Replica Circuit (TRC).

Figure 5.1: Timing Error Detection Schemes. Both are useful for detecting emergencies.

The fundamental trade-off in the EDS circuit is max-delay vs. min-delay. The width of the
error-detection window determines the maximum potential benefit in FCLK as well as the min-delay
penalty. For a target error-detection window, presilicon design satisfies the min-delay requirements
with appropriate buffer insertion and sizing. In addition, a scan-configurable duty-cycle control
circuit allows designers to perform post-silicon tuning of the high-clock phase to maximize the
error-detection window while avoiding min-delay errors. During runtime, an OR tree combines
the error signals from each EDS circuit in a pipeline stage to produce a single pipeline-error signal,
which can be pipelined to the write-back stage in order to invalidate an errant instruction and to
initiate error recovery [17].

Tunable Replica Circuit In comparison to the embedded EDS design, the TRC design (shown in
Figure 5.1(b)) is less intrusive [17]. The TRC detects timing failures for a scan-configurable buffer
delay chain with the input transitioning every cycle. A TRC is placed adjacent to each pipeline stage.
Post-silicon calibration of the buffer delay chain ensures that the TRC always fails if any critical
path fails in the pipeline stage due to a dynamic variation. Thus, the TRC is tuned slower than the
critical path.

The TRC and the paths in the pipeline stage use the same local VCC and clock, which enables
the TRC to track critical-path delay changes due to VCC droops while capturing clock-to-data
correlations. If a dynamic variation induces a late timing transition in the TRC, the circuit generates
an error signal that represents the single pipeline-error signal. As with the embedded EDS design,
the single pipeline-error signal is pipelined to the write-back stage to invalidate the errant instruction
and to enable recovery.

EDS vs. TRC Table 5.1 lists the key trade-offs between the embedded EDS and TRC designs.
The EDS design detects critical-path timing failures for fast, slow, long-range, and local dynamic
variations. In contrast, the TRC design cannot detect path-specific or highly-localized dynamic vari-



5.2. GLOBAL RECOVERY 55

Table 5.1: Comparion of Schemes. EDS vs. TRC design trade-offs [17]

EDS Design TRC Design
Dynamic
Variation
Detected

Slow & fast, long-range & local slow & fast, long-range

Exploit Path
Activation

Yes No

False Error
Recovery

No Yes

Design
Complexity

High Low

Min-Delay
Overhead

Yes No

Clock Energy
Overhead

Yes Negligible

Clock
Duty-Cycle

Control
Required Not required

Maximum
Potential
Benefit

Limited by core min-delay paths
Not limited by
core min-delay paths

Post-Si
Calibration

Clock duty-cycle TRC delays

ations (e.g., delay push-out from cross-coupling capacitance). The TRC requires a delay guardband
to ensure the TRC delay is always slower than critical-path delays, thus preventing the possibil-
ity of exploiting path-activation rates for higher performance. Furthermore, the TRC design may
initiate an error recovery when an actual error did not occur. This results in unnecessary recovery
cycles. In comparison to the EDS design, the TRC design significantly reduces the design com-
plexity overhead. In particular, the TRC design does not affect the min-delay paths in the core, has
lower clocking energy, and does not require a duty-cycle control circuit. While the core min-delay
constraints limit the error-detection window for the EDS design and, consequently, the maximum
potential benefits, the TRC design provides a larger error-detection window to detect a wider range
of dynamic delay variation. Both designs require post-silicon calibration, which affects testing.

5.2 GLOBAL RECOVERY
Existing processors have begun to implement global recovery (GR) mechanisms to handle errors,
such as the recovery unit (RU) in POWER6 [59]. There can be several mechanisms for explicit



56 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

checkpoints that vary in their degree of implementation complexity and overheads involved. Earlier
checkpointing schemes were predominantly aimed at providing fault tolerance in large-scale, high-
performance computing systems. Recently, however, checkpointing schemes have been proposed for
several other domains: soft-error detection [96], boosting processor performance [55, 61, 89], fault
detection [85], and debugging [67]. In this section, we will discuss efforts to expand checkpoint
recovery to tolerating voltage variation.

5.2.1 CHECKPOINT RECOVERY
A common trait of such checkpoint-recovery schemes is the explicit saving and restoring of required
architectural state. The state that must be saved for correct execution at recovery is mainly the
architected state, which consists of the registers and the updated memory state. For example, [55]
and [61] assume a buffered memory update,using volatile bits for updated lines between checkpoints.
When a rollback occurs, the lines marked volatile are flushed from the cache. Of course, this results in
additional cache misses after rollback, but, at least resumed execution remains correct. The overhead
of implementations proposed in [1] and [61] includes a register restore latency of eight cycles (for 32
registers with four write ports). The infrequency of the rollbacks in such implementations typically
shadows the cost of supporting a rollback scheme. These schemes aim to take checkpoints at very
coarse granularities, ranging between 100 to a few 1000s of processor-clock cycles.

General-purpose checkpoint recovery is good when rollbacks occur infrequently, such as in
the case of soft errors. Applied to voltage emergencies, the cost of frequent recovery can outweigh the
benefits of using tighter voltage margins for typical-case design. Soft errors and voltage emergencies
are similar in that they can cause transient failures, but they differ greatly in their characteristics.The
main differences are in (1) the physical phenomenon that causes them, (2) the frequency of error
occurrence, (3) the structures sensitive to the errors, and (4) the relationship between application
characteristics and error occurrence. Understanding these differences and their requirements for
detection and correction is important for knowing whether GR is applicable for voltage emergencies.

Soft errors are transient errors that are generally characterized as single-event upsets or bit
flips, caused by energetic particles from cosmic rays or alpha particles. The occurrence of soft errors
is quite rare, and these errors primarily affect data-storage nodes. The probability of single-event
upsets affecting the correctness of computation depends on the architectural vulnerability factor of
the logic [65], which determines whether a fault in that logic would actually affect the application’s
outcome. A common strategy is to employ a reactive mechanism where appropriate recovery actions
are taken once an error has been detected. A main challenge in dealing with soft errors is the
implementation of a robust error-detection mechanism, often seen in the form of parity bits and/or
error-correcting codes (ECC). For example, a parity-bit propagation technique to detect soft errors
was implemented by Fujitsu in their SPARC processors, providing coverage for almost 80% of latch
banks and array structures [4].

Other detection approaches use redundant (or checker) processors and threads, which re-
execute some, or all, of the instructions to verify correctness [6, 82, 90]. The infrequent occurrence



5.2. GLOBAL RECOVERY 57

Figure 5.2: Tolerating Sensor Delay Via Two Checkpoints. Example illustrating that two checkpoints
are required in explicit checkpoint schemes and are used to maintain correctness in the presence of voltage
emergencies.

of soft errors allows these reactive mechanisms to have large penalties associated with recovery. For
example, the Fujitsu processor employs a checkpoint hardware mechanism with a quiescent and
preparation period for restart of around 1μs. Such microsecond-scale penalties are acceptable for
soft errors that occur at the timescale of days.

Voltage emergencies are also transient errors, but they have different characteristics from those
observed for soft errors. Voltage emergencies are dependent upon the interactions across, and the
characteristics of, the underlying power-delivery network, the processor’s microarchitecture, and the
executing application. Recall that voltage variation results from parasitics present in the system that
can cause voltage swings in response to current fluctuations. If the voltage swings are significant,
they can induce timing-margin violations. Voltage emergencies primarily affect logic delay paths and
are tightly coupled to application characteristics. For example, the presence of repeated execution
patterns in applications can increase the susceptibility to timing violations due to resonance in the
power-delivery network [40]. Unlike soft errors, noise-margin violations are easier to detect (e.g.,
using hardware sensors), but require careful balance between latency and resolution.

A subtle, but important, aspect of handling voltage emergencies using general-purpose check-
point recovery is that the recovery scheme must be invariant to sensor delays. Detecting emergencies
is not instantaneous. Voltage data from a number of sensors must be continuously gathered and
analyzed to detect a margin violation. This can be in the order of five to seven clock cycles, or more,
which requires the processor to maintain two checkpoints for correctness. Figure 5.2 shows an ex-
ample of a scenario where the voltage emergency is detected after checkpoint Ci+1 has been taken.
To have correct semantics, the system should rollback to checkpoint Ci , which incurs more rollback
penalty because it is further back in time. In general, even if the checkpoint interval is adjusted to
match the detection delay in the checkpoint-recovery mechanisms, the recovery costs of discrete,
explicit mechanisms are higher, and thus require more implicit checkpointing techniques.



58 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

applu apsi art bzip crafty equake gap gcc gzip mesa mgrid swim twolf wupwise avg
0

50

100

150

200

P
er

fo
rm

an
ce

 L
os

s 
(%

)

 

 

throttle penalty

rollback penalty

delayed−commit penalty

restoring−state penalty 

DeCoR
Explicit 

Checkpoint 

Figure 5.3: Penalty Analysis. Breakdown of different penalties associated with our proposed delayed-
commit and rollback scheme and explicit checkpoint schemes. The sensor delay assumed for this com-
parison is 20 cycles and checkpoint interval of 21 cycles for explicit checkpoint schemes.

Figure 5.3 shows a breakdown of the performance impact of rollback, throttle, and restoring of
state for explicit checkpoint and recovery for a conventional out-of-order superscalar x86 processor
with a Pentium 4 package [7], assuming a typical-case 5% voltage margin. Note that the system
must throttle the processor after a rollback in order to guarantee that the same burst of activity that
first caused the emergency does not reoccur. From the data we observe that, due to the rollback to
the previous checkpoint, Ci , instead of the current checkpoint, Ci+1, for every rollback, the rollback
penalties (including the throttle penalties) are higher for the explicit checkpoint schemes.We can also
see that the performance impact of restoring state in explicit checkpoint mechanisms is significantly
higher, around 39% on average. This includes both the register-restore penalty as well as the impact
of flushing the volatile lines. For example, a huge performance loss of 170% is seen for bzip, because
frequent flushing of volatile lines significantly increases cache-miss rate. All programs clearly do not
favor explicit checkpointing due to the large performance degradation. Clearly, explicit checkpoint
mechanisms incur unacceptable performance overheads when applied to highly frequent transient
errors that are characteristic of voltage variation.

5.2.2 DELAYED COMMIT AND ROLLBACK
Given the poor performance of coarse-grained checkpoint-recovery for voltage emergencies,
Gupta et al. [39] proposed a more specialized recovery mechanism to tolerate emergencies. The
mechanism, delayed commit and rollback (DeCoR), does not attempt to avoid voltage emergencies,
as is expected of a tolerating mechanism. It lets the processor core run freely with more aggressively
set timing margins and provides safeguards to detect and recover from potential timing-margin
violations, if and when voltage emergencies do occur.

Protection Zones In DeCoR, the overall machine architecture is divided into two protection zones:
a zone that is timing-margin protected (TM-protected), as is traditionally done, and a zone that is



5.2. GLOBAL RECOVERY 59

(a) Traditional. (b) DeCoR.

Figure 5.4: Traditional Timing Protection vs. DeCor. (a) Traditional worst-case design margining
requires large-enough margins to protect all processor structures inclusively. (b) With DeCoR, the re-
quired margins are for a smaller portion of the processor. The rest of the core state is recoverable using
the rollback mechanism.

rollback protected (RB-protected). A RB-protect zone includes all structures where DeCoR permits
recovery from voltage-induced timing violations. In particular, the vast majority of the processor
core, along with the read path of the L1 data cache, is under the RB-protect zone. A TM-protected
zone encompasses all other structures that require timing margins large enough to prevent voltage
emergencies. The L1 cache’s write path, the entire L2 cache and the retirement register file (RRF)
are TM-protected.

Figure 5.4 contrasts two schemes to handle voltage emergencies. In standard design flows, the
designer is responsible for meeting timing margins across the entire processor under its worst-case
conditions, as shown in Figure 5.4(a). As we have seen in the previous chapters, this leads to a
robust but overdesigned system for typical conditions. In DeCoR, only a relatively small part of the
processor is TM-protected, thus reducing the penalties.

The TM zone relies on standard circuit-based techniques to guarantee that all timing margins
are met. Although circuitry in this zone requires a more conservative design, the blocks that reside
here are limited to the retirement register file, the PC chain, the L1 write port, and the L2 cache.
Fortunately, these structures tend to be less timing-sensitive for several reasons. First, processor
performance is relatively insensitive to L2 cache latency, so circuit-level access time is not critical
to system performance. For example, many designs will construct L2 caches using low-leakage,
high-Vt transistors that trade access latency for reduced power consumption [66]. For the L1 cache,
the L1 read path is known to set the access time, while the write path is less critical [97]. This is
because the read ports are driven by small SRAM cells that cannot easily be sized up, while the write
ports are driven by external peripheral circuits that can be appropriately sized to increase speed.



60 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

Idle memory cells are assumed to be resilient to common-mode voltage fluctuations, which affect
both sides of a differential SRAM cell equally. Intel’s cache [83] shows that memory cells retain
state in lower-voltage drowsy modes, where the voltages are much lower than the assumed low-end
voltage-emergency level. Furthermore, idle memory cells typically have additional protection from
standard ECC measures common in today’s microprocessors. Finally, the retirement register file and
PC chain are relatively small structures, which are unlikely to be timing-critical and can be sized up
with small power penalties, if needed.

The rest of the processor pipeline resides in the RB-protected zone, which includes the
instruction fetch unit, instruction cache (there are no writes to the I-cache from the processor and
the static memory cells are robust, as explained above), the issue logic, the execution units, and
the commit logic that consists of the reorder buffer and store queues. These structures can assume
more-aggressive timing margins to avoid unnecessary performance loss, because they rely on an
architectural mechanism for protection. Note that updates to the branch predictor in the speculative
state may corrupt the predictor state if a rollback is initiated. However, such entries would be few,
would have only slight performance impact, and will not affect correctness. Splicing the processor
into TM-protected and RB-protected is also straightforward, and can simply be applied at the
architectural block level (in RTL). The paths from these blocks can be flagged for extra timing
margin.

Delayed Commit To deal with voltage emergencies in the RB-protected zone, delayed-commit
guarantees correctness in the presence of voltage emergencies. The delayed-commit mechanism
speculatively buffers processor updates to the machine state (register file and memory) until it has
verified that no emergencies have occurred during a time period sufficient for the sensors to detect
an emergency. At the end of the sliding window of time, the state is said to be verified and can be
committed to its respective structure.

In the event of an emergency, speculative updates are discarded and execution is restarted
from a prior verified state. Thus, the delayed-commit mechanism distinguishes the processor’s spec-
ulative state from its verified state. While the proposed delayed-commit and rollback mechanism
may appear to resemble traditional checkpoint-recovery schemes, there are distinct differences in
implementation requirements/challenges and resulting performance penalties. Figure 5.2 shows that
DeCoR outperforms explicit checkpointing.

Figure 5.5 presents a functional diagram of the delayed-commit architecture. The program
can be rolled back to the verified state following a timing-margin failure, which will be signaled
by a voltage-sensor reading. In the speculative state, the processor continues executing the regular
execution path and results are held in existing buffering mechanisms (reorder buffer (ROB) and
store queue (STQ)) until the outcome of the sensor reading is known. Throughout execution, the
retirement register file (RRF) and the L1 data cache hold the correct state of the program.

To know when the state becomes a verified state, each entry in the ROB/STQ has a counter
associated with it. Completed results must be buffered in the ROB/STQ until they are verified to
be safe. The time the instructions need to be buffered is directly proportional to the system’s sensor



5.2. GLOBAL RECOVERY 61

Figure 5.5: Architecture of DeCoR. A part of the RB-protected zone has been shown along with the
additional modification, including the counters added to the queues. The L1 cache and register file lie in
the TM-protected zone.

delay. If sensor delay is D cycles long, then all completing instructions will set their counters for this
delay. When the instruction reaches the head of the queue and it is ready to retire, the commit logic
verifies that the counter has expired and then declares the state as verified. At this point, it is safe to
commit the state to the appropriate TM-protected structure, i.e., RRF or L1 data cache.

This scheme’s correctness relies on proper transitions from the speculative state to the verified
state.The transition takes place when the state is committed from the STQ to the L1 data cache and
from the ROB to the RRF. The designers must guarantee the robustness of writes to the RRF and
data caches at all times, because in a worst-case scenario, a voltage emergency could occur while state
is being moved into the verified locations. For this reason, the designer must ensure that the write
paths of these structures have sufficient timing margins to tolerate voltage emergencies, and, hence,
lie in the TM-protected zone. Reads from the data cache and the retirement register file, however,
can experience voltage emergencies without correctness concerns, because these emergencies would
be detected and handled by the delayed-commit mechanism. Thus, the designer does not need to
take any special measures when data transitions into the RB-protected zone.

Rollback When the system detects a voltage emergency, all speculative state must be flushed. The
system needs to initiate a rollback to the last verified correct state. Flushing is straightforward, as
the speculative state is already located in structures (the ROB and STQ) that are capable of flushing
speculative states and rolling back program execution. Thus, the rollback mechanism flush is similar



62 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

to a flush after branch mispredicts, and the machine can be restarted the next cycle. A key attribute
of the scheme is that rollback occurs only when emergencies actually occur; false alarms never occur,
which is a key trade-off with mechanisms that we will discuss in the following chapter.

To ensure that the processor does not cause new emergencies during rollback execution, the
processor starts at a reduced frequency for some number of cycles, called the throttling period. This
guarantees that the program progress forward, but at the cost of some performance loss. Typically,
half-rate throttling is used during rollback. This can be achieved without the PLL’s involvement—
that is, by gating the clock every other cycle.

5.3 LOCAL RECOVERY

Global recovery schemes, such as DeCoR and the POWER6 processor’s recovery unit, provide a
coarse-grained recovery mechanism that can overpenalize parts of the processor that do not experi-
ence timing violations. In Section 1.1 we studied workload and unit-level variability. This motivates
further solutions that can exploit workload and unit-level variability to reduce timing margins (more)
aggressively.

Prior work proposed fully distributed local recovery mechanisms (LR) that are cognizant of
interunit variability and thus reduce the overall recovery cost in the presence of emergencies. A fully
distributed local-recovery mechanism entails overhead, particularly for the front end of the pipeline.
Hence, there are two flavors of local recovery: (1) a fully distributed LR that completely eliminates
the global recovery mechanism, and (2) a partial local recovery mechanism (PLR) that augments
global recovery with local recovery for the execution units. The hardware required for implementing
a local recovery mechanism is described below. An overview of global recovery is shown as the shaded
logic in Figure 5.6. It is used to eliminate the global recovery unit.

Error Detection Unit (EDU) Many server-class microprocessors now provide error-detection
mechanisms distributed throughout the pipeline, often in the form of parity check, ECC, and
residue codes [59]. More recent circuit-level schemes, as we saw earlier in this chapter (Section 5.1),
can provide supplemental error detection [29, 94, 95].When the EDU detects a violation, it triggers a
recovery mechanism that simultaneously flushes the local pipeline and initiates the replay mechanism
described below. For each execution pipeline in the processor, the detection unit is placed directly
after the execution stage and before the delay and writeback stages. In the POWER6 pipeline, all
units except the FPU have several delay-buffering stages following execution completion to ensure
in-order writeback. These stages allow error detection to be performed off the critical path, in most
cases with multiple stages before writeback. For the FPU pipeline, writebacks may need to be de-
layed depending on the timing of the EDU for FPU operations. Interpipeline communication (e.g.,
load-to-FXU dependencies) requires flushing both pipelines if the forwarding unit reports a viola-
tion, although this is not required for interpipeline dependencies through the register file. When an
emergency is detected, the EDU sends a replay signal to the replay logic and a kill signal to the write-
back stages of the execution pipeline. This prevents corrupted state from being propagated, which



5.3. LOCAL RECOVERY 63

Figure 5.6: Architectural Support for Local Recovery. A baseline microarchitecture with architectural
support for the local recovery mechanism. Additional hardware is shown by the shaded boxes. Details
of the recovery mechanism for the execution units are presented for the fixed-point unit (FXU), and
remaining units have the same logic represented as Replay + EDU logic. (DS: delay stages; RF: register
file access; EX: execute; EDU: error detection unit; RM: replay mux.) Our distributed recovery mechanism
replaces the recovery unit.

protects the architected state of the processor (the register files and memory units). The architected
register file must be ECC-protected.

Replay Buffer for the Execution Units Error detection must trigger a recovery mechanism. The
unit in error needs to replay all operations performed on the internal, temporary state corresponding
to the in-flight instructions in the unit’s pipeline. Recovery is provided through replay buffers for
each execution pipeline. Replay buffers are often used in processors to provide speculative execution
of long latency or load instructions [62]. A similar replay mechanism can be used to provide recovery
in the presence of timing-margin violations. The replay buffer stores the source and destination
registers and the operation field for each instruction in the execution pipeline. The EDU sends a
replay signal to the replay mux, which then feeds instructions into the execution pipeline from the
replay buffer. A stop signal is sent to the scheduler, which halts scheduling of instructions to the



64 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

recovering execution units; however, it is possible to continue scheduling nondependent instructions
in the remaining execution pipelines. Normal scheduling resumes after all instructions are replayed.
Figure 5.6 depicts the details of replay logic coupled with the EDU for the FXU; other units have
similar logic, which is shown as a composite box (Replay+EDU).

Emergencies detected in the processor trigger a global throttling mechanism, which operates
the processor in a low-frequency mode (at half the processor’s frequency).This throttling mechanism
both ensures that local restart will make forward progress and provides timing slack so that the logic
in the error-recovery mechanism is free of timing errors. For the programs considered in this study,
simulations show that a slow-restart period of 10 cycles is sufficient to guarantee forward progress.

Recovering the front end Unlike the execution units, the processor’s front-end units (fetch and
decode) do not require replay buffers. The instruction stream fed into the back end is the relevant
state that must be maintained in the front end. The fetch unit must save the instruction address
buffer (PC-chain) to recover the fetched instruction sequence, which is saved in the instruction fetch
address buffers (IFABs). The IFAB’s size is proportional to the IFU’s pipeline depth. Instructions
fetched from the I-cache are written into instruction buffers in the IDU. To enable recovery of the
IDU, a copy of the instruction buffers must be maintained (replay instruction buffers (RIB)). The
instruction buffers can receive eight instructions per thread, every cycle. The RIB size is 8 times the
number of stages in the IDU. It is important to note that all recovery state buffers (in both the front
end and back end) require ECC protection, since, for functional correctness, these buffers must not
be corrupted.

Implementation overhead The fully distributed local recovery mechanism eliminates the need for
a global recovery unit, distributing much of its functionality to the local recovery mechanisms. Most
of the EDU logic is already present as part of the existing global recovery scheme. The overhead for
local recovery is dominated by the ECC-protected replay state. However, for the back-end units,
much of this state would already be present in an existing global RU, and hence, the state is simply
being distributed across the local pipelines. In fact, for the LSU, most of the local replay logic and
state may already exist in most processors to enable speculative execution for load instructions. The
FXU pipeline requires a two-stage replay buffer (RF and EX stages), while the FPU pipeline requires
an eight-stage replay buffer, due to the longer execution pipeline. In contrast to the back end, front-
end units have higher replay state overhead. The IFU and IDU units deal with a wide stream of
instruction and decode bits. We estimate that the RIB in the IDU requires eight instructions per
pipeline stage in the IDU, leading to a 48-entry buffer per thread. While the total additional state
required for a fully distributed recovery mechanism translates to less than 0.5 KB (less than 1% of
the core latch count), the front end accounts for 75% of the overhead.

5.4 RAZOR
Circuit-level techniques provide fast response times with smaller recovery penalties as compared to
the architectural-level schemes that we have discussed so far. Razor was the first circuit-level tech-



5.4. RAZOR 65

nique that proposed to lower processor voltage until the error-detection circuits detected voltage
emergencies. More recently, such techniques have been tested in real chips, on Intel and ARM de-
signs, and they have been demonstrated to work effectively. Intel-based chips demonstrated between
16% and 12% improvement [17]. ARM-based chips have shown that, for typical workload behavior,
they can achieve as much as a 52% reduction in power while still maintaing correct execution [18].

Implementation Razor [30] uses EDS-like circuits (Figure 5.1(a)) that are more tunable and flexible
than TRC (Table 5.1), replicating flip-flops along the critical paths and sampling the output of the
critical path twice to detect errors. In the simplest case, the EDS error signal can restore the incorrect
value of the main latch using the value of the shadow latch.All the other flip-flops in the same pipeline
stage must also replace their values at the same time. Sometimes, however, this is not possible, and
more aggressive approaches are required to restore processor state.

The simplest, but slow, pipeline-level recovery solution is to use clock gating to stall the whole
pipeline for a cycle. Whenever an emergency is detected in any stage of the pipeline, processor
execution is halted by Razor (for a cycle). The global clock edge is gated, causing it to act as
a buffering mechanism, and thus allowing every stage to get the result from its shadow latches.
Operations can then safely resume with the correct value, which guarantees that the program makes
forward progress, since the faulting instruction will simply continue execution in the next pipeline
stage with the correct value.

In aggressively clocked processor designs, it may not be possible to implement global clock-
gating without hurting processor performance significantly.Thus, the second technique is a counter-
flow pipelined approach, whereby the faulting flip-flop distributes a bubble signal (forward) toward
the end of the pipeline. At the same time, a flush signal is propagated (backward) toward the front
of the pipeline. Thus, the notion of counterflow pipelining. The bubble moving down the pipeline
ensures that the faulting instruction takes an additional clock cycle to complete its remaining stages,
while the instructions following the faulting instruction are flushed out.

The flush control logic then restarts the pipeline at the instruction following the erroneous
instruction. If multiple errors occur across the pipeline stages in the same cycle, then all stages initiate
recovery, but only the error closest to the write-back stage will complete. All other earlier recoveries
are automatically flushed out by later ones.

Aside from the conventional Razor techniques, two other techniques are based on replaying
instructions for error recovery. The first is instruction replay at 1

2FCLK [16, 17, 24]. The second is
multiple-issue instruction replay at FCLK [17]. Reducing FCLK in half ensures that the replayed
instruction executes correctly.When initiating the error recovery, the clock generator reducesFCLK in
half, which can be done via a clock-divider circuit to avoid relocking of the phase-locked loop (PLL).
While FCLK reduces in half, the duty-cycle control circuit maintains a constant high-phase clock
delay to provide min-delay protection for the embedded EDS design. After the replayed instruction
finishes, the ECU signals the clock generator to resume at the target FCLK .

The motivation for the multiple-issue instruction replay design is to correct the errant instruc-
tion without changing FCLK . This technique issues the errant instruction multiple (N ) times. The



66 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

first N − 1 issues are replica instructions that do not affect the architecture state. The Nth issue is a
valid instruction, which is allowed to commit data to the architectural state. The replica instructions
flow through the pipeline to set up the register nodes for the valid instruction. Any error that occurs
in the execution of the replica instructions is ignored, and if the number of replica instructions is suf-
ficient, the register inputs for each pipeline stage statically settle to the correct value. This allows the
valid instruction to execute correctly. If an insufficient number of replica instructions is issued such
that an emergency occurs during the execution of the valid instruction, then the errant instruction
is replayed a 2nd time with N equal to the number of pipeline stages to guarantee correct operation.
Since this error-recovery design relies on setting up path nodes, this technique is directly applicable
to static-CMOS logic circuits. This technique is not applicable to dynamic logic circuits.

Benefits To illustrate the benefits between an EDS- and TRC-based Razor implementation, here
we discuss the results of a 45nm microprocessor processor core [17]. In Figure 5.7(a), the core
without resilient circuits (i.e., conventional design) operates at a maximum clock frequency (FMAX)
of 1.45 GHz at 1.0V. When a 10% VCC droop occurs, the FMAX reduces to 1.26 GHz. As illustrated
by the shaded region in Figure 5.7(a), the difference between these two FMAX values represents the
FCLK guardband for a 10% VCC droop in the conventional design. Enabling EDS or TRC allows the
infrequent errors from the VCC droop to be detected and corrected, resulting in a higher FCLK and
throughput (TP). The optimal FCLK for the resilient designs (1.46 GHz for EDS, 1.42 GHz for
TRC) occurs at the point of maximum TP. Pushing FCLK beyond this point reduces TP because
the increasing number of recovery cycles outweighs the benefit of a larger FCLK . In comparison to
the conventional design, EDS and TRC circuits improve TP by 16% and 12%, respectively, at 1.0V.

EDS vs. TRC Trade-Off Although an EDS design provides a larger benefit at 1.0V, the error-
detection window, and corresponding potential TP gain, is limited by core min-delay constraints
(Section 5.1). In contrast, the core min-delay constraints do not limit the error-detection window for
the TRC design, which allows the TRC design to capture a wider range of dynamic delay variation.
In Figure 5.7(b) at low VCC , the impact of variations increases and TRC provides more throughput
gain than EDS (51% vs. 28% at 0.6V).

5.5 SUMMARY
Circuit-level embedded error correction incurs major penalties for detectors and correcting control
loops. Generally, speaking, a 10% area penalty can provide a 40% improvement in performance, or a
20% reduction in energy [53].With 30% transistor-level performance improvement each technology
generation, the question that circuit designers and architects must address is whether the 40% circuit-
level performance improvement is worthy of all the added area, design, and validation complexity
introduced by resiliency mechanisms.

Circuit-level error correction provides very low latency, but it is hard to embed in optimized
designs. Specifically, circuit-level techniques may be too costly to implement in a modern high-
performance, out-of-order core with several large array structures and tight timing paths. These



5.5. SUMMARY 67

(a) Measured results. (b) EDS vs. TRC trade-off.

Figure 5.7: Performance Benefits. (a) Measured throughput normalized to the conventional maximum
throughput, and recovery cycles as a percentage of total cycles vs. FCLK [17]. (b) Measured throughput
gain vs. VCC [17], showing that TRC can outperform EDS-based error detection for Razor-type design.

circuit-level techniques must be applied carefully to all the critical executions paths for timing
violations. Annavaram et al. showed that the distribution of timing margins for different paths
across functional blocks in the Intel Core Duo microprocessor have hundreds of paths within 10%
timing margins [5]. Designs such as Razor impact overall processor performance and area overhead,
as well as design and verification effort. For instance, Razor is estimated to add between 1% and 3%
area overhead, and has an estimated penalty between 1% and 3% during normal conditions.

In general, timing and completion uncertainties caused by embedded error-correction tech-
niques pose added challenges in design verification, validation, and test. All circuit types and arrays
must be covered with resilient solutions to make a difference in overall power-performance trade-off.
Designers must evaluate the techniques across a spectrum of practicality issues in the real world. Mi-
croarchitectural level correction, such as DeCoR, is an alternative, but it may not work for all types
of machines, e.g., in-order vs. out-of- order execution pipelines. DeCoR implicitly relies on value
buffering of the noise-speculative state in the reorder buffer (ROB) and store queue (STQ), which
are specific to out-of-order processor design. Moreover, it adds to the processor’s design complexity.

In other words, there is no magic bullet that specifically addresses the problem without penal-
ties. There is a need for an end-to-end platform solution. Industry is moving toward a collaborative
architecture design, involving some level of tolerance combined with proactive resiliency techniques
at the hardware (and the software) layers. In this chapter, we discussed only reactive solutions that



68 5. ALLOWING AND TOLERATING VOLTAGE EMERGENCIES

detect and respond to an emergency. Going forward, we require proactive solutions that anticipate
an emergency and take preventive measures to balance the penalty trade-offs intelligently, based on
the emergencies characteristics.



69

C H A P T E R 6

Predicting and Avoiding Voltage
Emergencies

Possibly the first microarchitectural-level approach to reducing voltage variation was by Pant et
al. [69], clearly identified that sudden swings introduced by clock gating in the microprocessor were
the primary reason for large voltage variation.Their recommended approach was to gradually activate
and deactivate functional units as required to mitigate the large and sudden current fluctuations.Over
recent years, more effort has been focused on investigating other architecture-level solutions to avoid
voltage emergencies [35, 50, 72, 74].

In general, many of the techniques, unlike tolerance, strive to avoid impending voltage emer-
gencies arising from voltage variation to prevent failures. Avoidance mechanisms require proactive
detection of impending voltage emergencies, not reactive detection as we discussed in the Chap-
ter 5. In this chapter, we discuss these sensor- and event-based detection mechanism. On the basis
of detecting an impending emergency, we discuss a plethora of avoidance throttling mechanisms,
such as pipeline muffling and phantom firing.

6.1 SENSOR-BASED THROTTLING
Joseph et al. [50] propose a voltage-sensor-based approach, where a throttling mechanism is invoked
when the sensed supply voltage crosses a specified level, called the soft threshold. As shown in
Figure 6.1, the sensor turns on a throttling mechanism (i.e., the actuator). The hardware-based
actuation mechanism responds with a precautionary measure whenever the source voltage moves
outside of the predefined control range. As the source voltage moves outside of the control threshold
range, the processor reacts by performing one of two actions. If the alarm is resulting from a sudden
reduction in current draw, the processor responds by producing phantom firings of one or more
functional units. Furthermore, if the current suddenly increases, the processor disables one or more
functional units. Although these techniques effectively correct impending voltage emergencies, the
latter case does so at the expense of program performance, while the former case wastes energy.

Sensor-based techniques are becoming mainstream. A sensor-based throttling scheme called
Critical Path Monitoring (CPM) has been implemented in the IBM POWER7 server. CPMs
measure the available timing margin dynamically and adjust the operating voltage to maintain a
fixed-timing guardband determined during worst-case characterization. The resulting mechanism
reduces power consumption for typical workloads, while still allowing worst-case workloads to
operate at the maximum frequency used in the characterization process. Lefurgy et al. [58] show



70 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

Figure 6.1: Sensor-Based Emergency Avoidance.The feedback loop that is associated with any sensor-
based emergency-avoidance mechanism.

that during better-than-worst case conditions the average voltage automatically reduced by137 to
152 mV below nominal, which resulted in a 24% reduction in power consumption without any
impact on performance.

6.1.1 DESIGN
Actuator In general, there are several different ways to reduce current variations via throttling
mechanisms. These throttling mechanisms include frequency throttling [35], phantom firing [50],
pipeline muffling [74], pipeline damping and a priori current ramping [73], and changing the
number of the available memory ports. Throttling simply reduces the processor’s clock rate by a
certain amount, say by half, in order to slow down the amount of processor current draw. Pipeline
muffling reduces current variability either in space (i.e., variability in usage of circuit blocks) or in
time (i.e., variability within a circuit block across clock cycles). It does this by controlling instruction
issue and limiting changes in the number of resources utilized. Pipeline damping gradually raises
resources’ current draw over time to reduce the rate of sudden current change in individual resources.
A priori current ramping allows time for the resource current to gradually ramp up a few cycles
ahead of utilization and to ramp down immediately after utilization. Resonance tuning is yet another
throttling mechanism that assumes, and specifically targets, voltage emergencies caused by repeating
high-low/low-high current transitions, occurring within the resonance band [72]. Phantom firing is
the process of activating idle functional units whenever there is a sudden reduction in current draw.
Most of these approaches attempt to control current draw, but, in practice, they end up impacting
application performance because they typically slow down the machine.

An alternative to the above performance throttling mechanisms is expending energy in an
execution-independent manner. Alon and Horowitz [2] propose a push-pull regulator topology that



6.1. SENSOR-BASED THROTTLING 71

 High
Threshold

 Low
Threshold

Type I Type II Type III

Figure 6.2: Warning Types. Classification of various voltage variation levels.

uses an additional higher-than-nominal supply voltage, comparator-based feedback, and a switched-
source follower output stage to reduce voltage variation. This regulator’s output stage can be used
as an actuator. This technique has an effect similar to throttling, but without the extra performance
penalty associated with throttling.

All of these mechanisms rely on voltage or current sensors to detect threshold crossings
indicating timing-margin violations having occurred or about to occur. As shown in Figure 6.1, the
sensor turns the throttling mechanism (i.e., the actuator) on. Assuming that the control logic and
actuation mechanism can react quickly, the main bottleneck in throttling for emergency avoidance
is the speed of the individual sensors and aggregation across multiple sensors in different parts of the
processor.This delay sets the speed of the overall feedback loop.There are many ways to build sensors
with tradeoffs between delay and precision. Hence, it is important to understand the impact of the
inherent delay and inaccuracy associated with the sensors on the different emergency-avoidance
schemes.

Sensor A throttling mechanism must react before the voltage deviation proceeds beyond the soft
threshold to the hard threshold. The sensors must have the capability of tracking voltage to trigger
various warning levels. It is important to note here that not all warnings constitute an emergency.
Recall that voltage variation can arise due to the interaction between parasitic inductance and
capacitance in the power-delivery network during events that cause sudden fluctuations in the
current (i.e., di

dt
). In light of the power-supply network’s resonance, the warnings can be broken up

into various categories.
Figure 6.2 illustrates the different types of warnings that sensors typically need to identify.

The first class (Type I) corresponds to a case when a large di
dt

event occurs that causes large voltage
fluctuations, which immediately exceed prescribed high and low thresholds required to guarantee
proper circuit operation. This warning signifies an emergency that requires immediate action. The
second class (Type II) corresponds to a warning scenario where the initial di

dt
event does not consti-

tute an immediate emergency. However, continued occurrence of the event at or near the resonant
frequency of the power-supply network will eventually lead to catastrophic failure and, therefore, will



72 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

require action at some point. The third class (Type III) presents a scenario where the power-supply
voltage is perturbed, but is eventually damped by the PDN and does not require action.

Given these different scenarios, the best throttling solution to address the problem can differ.
A Type I alarm requires a hardware solution that responds hard and fast. For a Type II alarm, a
responsive but slowly reacting solution may be possible, depending on how long it takes for the
warning to become a catastrophic emergency. Clearly, a Type III warning does not constitute an
emergency and requires no action.

The warning classifications highlight desirable sensor attributes that must be in place for
sensor-based throttling schemes to operate. Instead of simply detecting when the supply voltage
crosses preset thresholds, it may be able to detect the rate of change of the voltage fluctuations. This
additional information can enable the sensor subsystem to track the trajectory of voltage signals in
order for the microarchitecture to better distinguish the class of a warning, predict when upcoming
emergencies will occur, and take action.This methodology for sensing emergencies is especially useful
since hardware-level actions taken to handle emergencies can mask the downstream consequences
of coupled events.

One can envision multiple ways to construct sensors. Here, we briefly describe the CPM
circuit that is used in the POWER7 processor [26]. The CPM is a critical path synthesis circuit.
The CPM relies on a variety of delay paths that are constructed using a mix of field-effect transistor
(FET) and wire delay to approximate the critical paths that dominate within the microprocessor
over the processor’s range of operating frequencies.

Figure 6.3 is a high-level block diagram of a CPM circuit. In order to take a measurement,
a pulse is sent down the CPM circuit’s delay paths at the start of clock cycle n and the penetration
of the pulse through the delay paths is captured in a 12-bit edge detector on the following clock
cycle, n + 1. The amount of penetration of the pulse into the 12 bits gives an approximation of the
circuit’s timing margin at the current operating point of the processor. Note that the pulse’s delay
through the synthesis paths is in fact a function of different processes, such as voltage, temperature,
workload, aging, etc. It is not just a voltage variation sensor.Thus, the CPM provides a measurement
of the chip’s operating environment on any given clock cycle. It effectively allows us to measure how
the amount of variation in the environment is affecting the current timing margin of that region of
the chip. Several CPMs are required to observe the global state of the processor.

Also, it is worth noting that designers must understand the sensitivity of sensors, such as
CPMs, to noise caused by temperature, voltage, and clock frequency. The circuits must be calibrated
accordingly across a range of operating environment characteristics.

Feedback Loop A typical sensor-based proposal uses a tight feedback loop like that shown in
Figure 6.1.The loop includes a sensor on the critical path that tries to detect impending emergencies
to actuate the throttling mechanism based on the soft threshold level. Assuming that the control
logic and actuation mechanism can react quickly, the main bottleneck in throttling for emergency
avoidance is the speed of the individual sensors and aggregation across multiple sensors in different
parts of the processor. This delay sets the speed of the overall feedback loop, which in turn implies



6.1. SENSOR-BASED THROTTLING 73

Representative
critical path

(tunable)Input
signal

Edge detector

Location of edge indicates margin

Insertion
delay

(calibration)

Figure 6.3: Block Diagram of a Critical Path Monitor Circuit. Signal penetration depth into the edge
detector indicates how much timing margin exists for the chip’s circuitry to operate.

that the choice of the soft threshold level is largely governed by the voltage-sensor response time and
accuracy. There are many ways to build sensors with tradeoffs between delay and precision. Hence,
it is important to understand the impact of the inherent delay and inaccuracy associated with the
sensors on the different emergency-avoidance schemes.

6.1.2 CHALLENGES
We previously emphasized the importance of a power-delivery network’s Q factor while designing
any technique to handle voltage emergencies (Section 3.2). Specifically, the rate change of voltage
will depend on Q. For example, a snapshot of crafty’s voltage trace is depicted in Figure 6.4(a). In this
example, we assume two thresholds, one at ±3% (soft) and the other at ±5% (hard). The short time
interval over which the voltage crosses both soft and hard thresholds determines the maximum delay
any soft-threshold-based avoidance mechanism can tolerate. Figure 6.4(b) plots the percentage of
voltage emergencies occurring for different delays between threshold crossings over a range of Qs
across the entire voltage trace of crafty. This plot shows that, even with moderately low Qs, voltage
fluctuations can be very fast.

Sensor Delay Figure 6.4(a) shows that it takes only three cycles from the crossing of the ±3%
soft threshold to the crossing of the ±5% hard threshold for the program crafty. In general, the
maximum allowable sensor delay is largely determined by the minimum number of cycles for voltage
to transition between the two thresholds. This suggests that for the emergency-avoidance throttling
mechanism to work correctly for crafty under the given package model, the sensors must detect
the soft-threshold crossing within two cycles, leaving only one cycle for the actuator mechanism.



74 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

600 650 700 750
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

cycles

vo
lta

ge
 (

V
)

(a) A snapshot of the voltage profile, assuming a
package with Q=2.

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

 cycles between 3% and 5%

%
 o

f n
oi

se
 m

ar
gi

n 
vi

ol
at

io
ns

 

 

Q=2

Q=4

Q=6

(b) Number of cycles over which the voltage
crosses 3% and 5% thresholds.

Figure 6.4: Need for Fast Sensors. A voltage-emergency snapshot of a SPEC CPU2000 program—
crafty. Figure 6.4(a) shows the cycles between the crossing of a threshold of 3% and 5%. Figure 6.4(b)
shows the distribution of these cycles for packages with different Q factors.

Because voltage emergencies are rare events,one might argue that the fraction of those occurring with
such a steep slope would be extremely rare. Unfortunately, there needs to be a single timing-margin
violation to disrupt the reliability of the processor circuits and cause incorrect program execution.
Consequently, all such situations must be avoided, and as such, the designer should carefully calibrate
the soft threshold accordingly to allow enough lead time to avoid the emergency.

Threshold Setting Figure 6.5 illustrates the use of a soft threshold to throttle execution and prevent
an emergency.The figure shows a voltage profile snapshot with and without sensor-based throttling.
The dotted horizontal lines marked Soft Threshold indicate the thresholds at which a sensor-based
scheme takes action to prevent an emergency. Setting the soft threshold aggressively (i.e., close to
the timing margin, as illustrated in Figure 6.5(a)) requires fast reaction by the sensor and actuation
system. Otherwise, failure to respond quickly results in a voltage emergency, leading to correctness
violations. The original execution waveform in Figure 6.5(a) represents the voltage activity of a
system that is operating without a mechanism to prevent emergencies. Left uncorrected, the voltage
exceeds the lower operating margin. Throttled execution is the voltage activity under a sensor-
based throttling mechanism to prevent emergencies. With a sensor-based throttling mechanism in
place, the sensor actuates the throttling mechanism upon crossing the soft threshold. The throttled-
execution voltage waveform starts recovering, but not in time to avoid exceeding the lower operating
margin.



6.1. SENSOR-BASED THROTTLING 75

(a) Aggressive Threshold

(b) Conservative Threshold

Figure 6.5: Choice of Thresholds. The impact of choice of soft thresholds on the performance and
correctness guarantees. (a) Aggressive thresholds allow too little time to prevent emergencies, which
leads to violations. (b) Conservative thresholds increase the rate of unnecessary throttling, leading to
performance loss.

To guarantee correct operation, emergency-avoidance throttling mechanisms must apply the
throttling mechanisms before an emergency actually develops. To provide the sensor and actuator
with more time to operate when delays are long, one can consider increasing the distance between
the timing margins and soft thresholds. However, conservatively setting the soft threshold increases
the number of false alarms, where voltage variations are unnecessarily flagged as requiring throttling.
Figure 6.5(b) illustrates how false alarms can arise with conservative soft thresholds. The original
execution voltage waveform does not fall below the lower margin. But a sensor-based scheme using a



76 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

1

1

1

1

1000

1000

1000

1000

10000

10000

20000

50000

Q factor

Re
so

na
nc

e 
C

yc
le

s

1 2 3 4 5 6
10 

20 

30 

40 

50 

60 

70 

80 

90 

100

(a) Sensor Delay = 0 cycles

1

1

1

1000

1000

1000

100000

100000

100000

50
00

00

500000

1000000

1000000

2000000

2000000

3000000
4000000

Q factor

Re
so

na
nc

e 
C

yc
le

s

1 2 3 4 5 6
10 

20 

30

40 

50 

60 

70 

80 

90 

100

(b) Sensor Delay = 5 cycles

Figure 6.6: Sensitivity to Package and Sensor Delays. The number of timing-margin violations for
SPEC program bzip with different package solutions and different sensor delays.

conservative soft threshold incorrectly assumes an emergency is about to occur and throttles execution
to no benefit. Not every soft threshold crossing goes on to exceed the operating margin, and for this
reason it is possible to throttle unnecessarily and degrade performance.

Robustness A processor’s susceptibility to voltage emergencies is tightly coupled to the underlying
power-delivery network, as we discussed in Section 3.2. Hence, any proposed solution’s correct-
ness depends on assumptions made about the package and/or processor models. We show that
the throttling schemes’ correctness varies with respect to current swings (dependent on processor
architecture), resonant frequencies (i.e., packaging assumptions), and sensor delays. To illustrate
this point, it is sufficient to sweep two of the three parameters governing power-delivery network
characteristics—Q factor and resonance cycles—as changing either one affects the peak impedance
of the system.

The techniques discussed in Section 6.1 avoid emergencies by reducing current fluctuations
by throttling the system in response to detection of voltage [50] or current repetitions [72]. Fig-
ure 6.6 presents contour plots of the number of timing-margin violations for bzip across different
package characteristics, while employing an aggressive, 0.5× frequency-throttling mechanism that
responds to voltage swings. With a voltage-sensor soft threshold of ±3%, consider two sensor-delay
scenarios—a sensor delay of 0 (Figure 6.6(a)) and a sensor delay of 5 (Figure 6.6(b)). Even with
an optimistic sensor delay of 0, this throttling scheme fails to prevent timing-margin violations for
packages with Q greater than 2, leading to correctness violations. For more realistic sensor delays,
the number of violations increases by two orders of magnitude, and even packages with relatively
low Q are sometimes unable to avoid timing-margin violations. The package characteristics as-



6.1. SENSOR-BASED THROTTLING 77

0 20 40 60 80 100 120 140
0

20

40

cycles

cu
rr

en
t (

A
)

0 20 40 60 80 100 120 140

0.95

0.97

0.99

1.01

cycles

vo
lta

ge
 (

v)

(a) Example of an isolated pulse

5

5

5

5

5 5

10

10

10

10

10
10

15

15

15

15

15

15

20

20

20

20

20

20

25

25

25

30

Q Factor

R
es

on
an

ce
 C

yc
le

s

1 2 3 4 5 6
10 

20 

30 

40

50 

60 

70

80

90 

100

0

0

(b) Evaluation for different package solutions

Figure 6.7: Evaluation of Resonance Tuning Technique. An evaluation of the resonance tuning
scheme [72] for equake. (a) depicts the current and voltage profile for few hundred cycles for equake.
(b) depicts the percentage of single transition events causing timing-margin violations for different pack-
age solutions.

sumed in [50] lie in the small region (upper left corner) where the throttling mechanism is effective.
These results show that a throttling-based emergency-avoidance scheme alone is not robust enough
to be a general solution to guarantee correctness, and therefore, care must be taken in its design,
implementation, and application.

Caution must be taken in using specialized avoidance mechanisms at very aggressive margins.
For instance, resonance tuning specifically avoids voltage emergencies that are caused by repeating
high-low/low-high current transitions in the resonance band [72]. At aggressive margins, in addition
to resonant pulses, several single-transition events can occur, and any one of these events can cause
timing-margin violations.Unfortunately, resonance tuning cannot cope with single-transition events,
which can lead to erroneous execution. For example, Figure 6.7(a) illustrates an example of a sudden
isolated current pulse found in SPEC workload equake that causes voltage to swing below the hard
threshold. Figure 6.7(b) shows a contour plot delineating the fraction of single-transition events
(or isolated pulse emergencies), seen in equake, that caused timing-margin violations across different
package characteristics.These results show that resonance tuning by itself would not be able to detect
such pulse emergencies for packages with Q greater than 2.



78 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

6.2 EVENT-BASED THROTTLING
Sensor-based predictors operate independently of program or microarchitectural state. Higher-level
information has the intrinsic property that it relates program/machine activity to power supply
behavior. The intuition behind this relationship is that processor-current draw depends on the set
of functional blocks that are active and consuming power during each cycle. The activity of these
functional blocks depends on the set of instructions in flight through the core’s pipeline, thus relating
current draw and consequently voltage flux to higher-level program instruction sequences.

6.2.1 SINGLE-EVENT PREDICTORS
An approach to eliminate the challenges of feedback-loop delay associated with sensor-based tech-
niques is to instead monitor specific microarchitectural events as indicators of processor activity that
can lead to voltage emergencies. In effect, this predictor replaces current and voltage sensing in Fig-
ure 6.1 with microarchitectural event detection. Such an event-driven mechanism triggers corrective
action when it detects certain emergency-prone events (L2 cache misses and branch flushes, as they
are the events associated with most of the emergencies). Certainly, a naive implementation might
take preventive measures at every such event (e.g., to activate a throttling mechanism at every L2
miss). That would be overly conservative, however. Because most such events do not give rise to
emergencies, such a system lends itself to a high false-alarm rate of 71% [36].

Instead, by tracking specific instructions associated with events (L2 misses or pipeline flushes)
that have caused emergencies, and maintaining contextual information for each event and emergency,
it is possible to reduce the false rate significantly. Reacting only to events associated with emergen-
cies results in much less overhead than the naive implementation. Figure 6.8 shows a cumulative
distribution graph plotting the number of unique program addresses that trigger emergencies and
their contribution to the total number of emergencies during execution. Each program except for
parser, gcc, twolf, and crafty has fewer than 15 unique program addresses that cause over 90% of
runtime emergencies.

The challenge of event-based prediction is finding the leading indicator (i.e., unique program
addresses). It requires a method that learns to avoid recurring voltage emergencies by triggering
preventive action on the microarchitectural events that cause them. Figure 6.9 shows an overview of
the architecture for the event-guided predictor to detect and suppress voltage emergencies.The parts
of the diagram that are connected by solid arrows detect and respond to actual voltage emergencies.
The parts connected by dashed arrows are responsible for learning to recognize impending violations
and using this training to suppress future occurrences of violations.Current and voltage are monitored
by a sensor,and an emergency handler determines when the supply voltage exceeds operating margins.
Note that, since the event-guided predictor is a reactive mechanism that learns by allowing an
emergency to occur, it is not subject to the same issues as sensor delay, discussed previously in
Section 6.1. Upon detecting a voltage emergency, the handler invokes a fail-safe mechanism to
recover from any deleterious effects of an emergency. This fail-safe mechanism can be any one
of the recovery mechanisms we described earlier in Chapter 5. The handler also signals an event



6.2. EVENT-BASED THROTTLING 79

0 20 40 60 80 100
0

20

40

60

80

100

Number of Unique Addresses

C
u

m
u

la
ti
v
e

 C
o

n
tr

ib
u

ti
o

n
 t
o

 E
m

e
rg

e
n

c
ie

s
(%

)

gzip

wupwise

mgrid

applu

gcc

mesa

art

mcf

equake

crafty

parser

gap

bzip2

twolf

apsi

Figure 6.8: Single Event-based Voltage Emergency Prediction. The number of unique instructions
causing emergencies and their corresponding contribution to the total number of emergencies [36].

tracker to learn from this emergency, in order to recognize future emergencies, which passes the
relevant information to the triggering layer. Later, when the triggering layer detects an emergency-
prone situation, it invokes the adaptation mechanism to take appropriate preventive action. The
adaptations can be any one of the techniques borrowed from the sensor-based throttling schemes.

While there are just a few instructions, prior research demonstrated that event predictors are a
poor heuristic for whether voltage emergencies are likely in the next few clock cycles [78]. Prediction
accuracy can be poor. Single-event prediction accuracy is only about 10%. As we discussed in the
tolerance section, the history of activity leading to voltage emergencies is important. A single-event
predictor does not capture sufficient history for accurate emergency anticipation. Gupta et al. [36]
also confirm these results, showing that throttling is a poor adaptation mechanism for the event-
guided scheme described here.

6.2.2 SIGNATURE-BASED PREDICTION
To overcome the limitations of event-based predictors, another approach that has been proposed is
a voltage-emergency predictor that identifies when emergencies are imminent and prevents their
occurrence by predicting them using signatures [78]. An emergency predictor predicts voltage emer-
gencies using emergency signatures and throttles machine execution to prevent them. An emergency
signature is an interleaved sequence of control-flow events and microarchitectural events leading up
to an emergency.

A voltage-emergency signature is captured when an emergency first occurs (tolerated) by tak-
ing a snapshot of relevant event history and storing it in the predictor. Tolerance is an integral part
of this predictor because, after detecting an emergency, a fail-safe checkpoint-recovery mechanism



80 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

Figure 6.9: Event-Guided Predictor Architecture. A feedback-driven voltage-emergency prediction
architecture based on program and architectural events for handling emergencies.

must roll the machine back to a known correct state and resume execution. Subsequent occurrences
of the same emergency signature cause the predictor to throttle execution and prevent the impending
emergency. By doing so, the predictor can effectively enable aggressive timing margins to maximize
performance, even in the presence of emergencies, but without compromising performance unnec-
essarily. The cost of signature-based throttling is fewer than 10 cycles, much less than the cost of
recovery.

Figure 6.10 illustrates example snapshots of emergencies, and the corresponding processor
activity history that is captured. At the point of the emergency during execution region B, the history
of activity contains (from oldest to most recent) two control flow instruction addresses (illustrated
as BR) and an event encoding for the pipeline flush (illustrated as 2), followed by another branch.
The function of a voltage-emergency signature is to precisely indicate whether a pattern of control
flow and microarchitectural event activity will give rise to an emergency. To this end, the accuracy
of a signature, where accuracy is defined as the fraction of predicted emergencies that become actual
emergencies during execution, is a measure of its contents and size.

Contents Information tracked in the signature must correspond to parts of the execution engine
that experience large current draws, as well as dramatic spikes in current activity. The signature
can collect the control flow trace at different points in a superscalar processor: in-order fetch and
decode, out-of-order issue, and in-order commit. Each of these points contributes different amounts
of information pertaining to an emergency. For instance, tracking execution in program order fails
to capture any information regarding the impact of speculation on voltage emergencies. Tracking



6.2. EVENT-BASED THROTTLING 81

Figure 6.10: Voltage-Emergency Signatures. Taking snapshots of recent processor microarchitectural
and program activity for an example set of three voltage emergencies.

information at the in-order fetch and decode sequence captures the speculative path, but it does not
capture the out-of-order superscalar issuing of instructions.

The accuracies of different signature types are illustrated in Figure 6.11(a) (assuming a sig-
nature size of 32 entries, which will be discussed next). Tracking committed control-flow sequences
gives an accuracy of only 40%. If information is tracked at the decode stage, an accuracy of 72%
is possible because the decode stage captures the speculative control-flow path. Accuracy improves
further by 12%, from 72% to 84%, if control flow is tracked at the issue stage, since we can now
capture interactions more precisely at the level of hardware instruction scheduling and code executed
along a speculative path.

Interleaving microarchitectural events with program control improves accuracy even further,
as processor events provide additional information about swings in the supply voltage. For instance,
pipeline flushes cause a sharp change in current draw as the machine comes to a near halt before
recovering on the correct execution path. The last two bars of Figure 6.11(a) show the accuracy
improvements from adding microarchitectural event activity. The second to last bar represents the
effect of capturing events that have the potential to induce large voltage swings—pipeline flushes and
secondary (L2) cache misses. An improvement of five percentage points is achieved by taking flushes
and L2 misses into account (i.e., total accuracy of 89%). Capturing the more frequently occurring
events like DTLB and DL1 misses contributes additional improvements of ∼4%. Microarchitecture
perturbations resulting from instruction cache activity (i.e., IL1 and ITLB) have been shown to be
negligible, and thus, do not lead to noticeable improvements in accuracy.

Size Assuming signature information is captured at the issue stage of the pipeline, accuracy also
depends not only on recording the right interleaving of events, but also on balancing the amount of
information kept in the voltage-emergency signature. Typically, accuracy improves as the length of
signatures increases. However, it can be detrimental to increase the number of register entries beyond



82 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

(a) (b)

Figure 6.11: Signature-based Prediction Accuracy. Prediction accuracy improves as (a) signature con-
tents represent machine activity more closely and as (b) the number of entries per signature increases.

a certain count.Large numbers of entries in a signature can cause unnecessary differentiation between
similar signatures—signatures whose most recent entries are identical and whose older entries are
different, but not significantly so. The predictor would have to track more unique signatures per
emergency because of this differentiation.

Figure 6.11(b) shows prediction accuracy improves as signature size increases. Accuracy is only
13% on average for a signature containing only 1 entry, which supports the discussion presented in
Section 6.2 whereby Gupta et al. discovered that voltage emergencies do not depend solely upon
the last executed branch or a single microarchitectural event [36]. It is the history of activity that
determines the likelihood of a recurring emergency. Prediction accuracy begins to saturate once
signature size reaches 16, and peaks at 99% for a signature size of 64 entries. However, accuracy is
to be taken with caution here, since we must also think about the hardware requirements to support
that level of accuracy.

Lead Time For a voltage-emergency predictor to be effective, the predictor must anticipate an
emergency accurately and do so with sufficient lead-time for throttling to take effect. Signatures
predict emergencies with an average accuracy of 93% across the entire spectrum of SPEC CPU2006
programs, as illustrated via the 0-cycle lead-time bar in Figure 6.12. A lead time of 0 cycles opti-
mistically assumes there is no delay to actuate throttling to prevent an emergency, thus representing
an ideal scenario. However, real systems require non-zero lead times to account for circuit delays,



6.2. EVENT-BASED THROTTLING 83

Figure 6.12: Lead-time Prediction. Prediction
accuracy of a signature-based predictor is high
even when predicting cycles ahead of time [78].

��

��

�

��
��

�
�	



��

�



�
�

��
�

�


� � �� �� �
�
�
�
���

���������

 ���!!"���#��$��!�

Figure 6.13: Performance Benefits. A
signature-based predictor enables substan-
tial gains using an aggressive 4% voltage
margin [77].

as we discussed previously in sensor-based schemes. Naturally, as lead time increases, Figure 6.12
shows that accuracy degrades from 93%.

Throttling cannot prevent all emergencies, even if prediction accuracy is high. In such cases,
the fail-safe recovery mechanism recovers processor state, albeit at much higher penalty. But the
number of such emergencies is typically only 1% of all emergencies that occur without throttling.
Therefore, total recovery penalty observed is typically low.

An aggressive reduction in operating voltage margins translates to higher performance or
better energy efficiency. However, benefits are offset to some degree because of throttling penalties
to prevent emergencies and checkpoint-recovery rollbacks to train the predictor. In simulations of a
representative superscalar microprocessor in which fluctuations beyond 4% of nominal voltage are
treated as voltage emergencies, a signature-based predictor shows great promise. Based on a 1.5×
relationship between voltage and frequency at the PTM 32nm node [99], we observe an ideal per-
formance gain of 14.2% using an oracle throttling scheme (see Figure 6.13). By comparison, the
voltage-emergency predictor comes to within 0.7% points of the ideal scheme, assuming infinite
or unbounded resources to implement the predictor. But even under strict physical resource con-
straints, an intelligent bloom filter-based predictor ranging in size between 4 KB and 32 KB delivers
substantial gains.

Robustness An added benefit of signature-based emergency prediction is that the predictor does
not require fine tuning based on specifics of the microarchitecture or the power-delivery network, as
is the case with sensor-based predictors.The current and voltage activity within a microprocessor are
products of machine utilization that are specific to running workload-dynamic demands. Capturing



84 6. PREDICTING AND AVOIDING VOLTAGE EMERGENCIES

that activity in the form of emergency signatures allows the predictor to dynamically adapt to
the emergency-prone behavior patterns resulting from the processor’s interactions with the power-
delivery network without having to be preconfigured to reflect the characteristics of either.

6.3 SUMMARY
Avoidance is an important first step in proactive architectural solutions to the voltage variation prob-
lem. In this chapter, we examined microarchitectural control mechanisms for predicting the problem
using a variety of mechanisms, ranging from sensor-based thresholds to using microarchitectural
event(s). These architectural avoidance mechanisms assume operation with and without backing
support to restart and replay instruction execution, providing a tradeoff between strictly proactive
strategies that have limitations on the extent of guardband margin reductions, and partially proactive
schemes, which, when combined with reactive strategies, enable more aggressive margin reductions.

The choice of implementation,however, is not a straightforward and obvious one.The strength
and duration of voltage transients vary depending on the characteristics of and interactions between
the power-delivery network, the processor and runtime workload activity. In general, it seems a
proactive mechanism combined with a coarse-grained recovery scheme offers a well-balanced system
that is capable of dynamically learning and avoiding the interactions that lead to emergencies in the
field.

Despite advances at the architecture layer, there is a need for an end-to-end system-level so-
lution for resiliency. Industry is moving toward hardware-software co-design. While software-based
correction methods are typically slow to react, the performance/energy gains they offer are sub-
stantially high (assuming the software overheads can be amortized over runtime). Software-driven
improvements are likely to be in the order of multiples. Moreover, they are flexible. Their sensitivity
and intrusiveness can be dynamically calibrated based on a system’s runtime requirements. In con-
trast, hardware design needs to be well thought-out beforehand, requiring costly design and testing
up-front. Application adaptation and/or error tolerance is also possible at the software level. For in-
stance, some level of error allowance can be linked with application- and/or user-driven instruction
criticality tags at compilation. So, we conclude that hardware should include sensors, environment
monitors (or circuit-level error detectors) that are coupled with sub-optional architecture-level re-
active and proactive measures that ultimately enable error correction at a higher level of abstraction.



85

C H A P T E R 7

Eliminiating Recurring Voltage
Emergencies

Hardware-based solutions typically work well for intermittent voltage emergencies, but a loop incur-
ring repeated voltage deviations may be handled more gracefully by a compiler. A hardware-based
solution may repeatedly throttle, or roll back, on an emergency recurring at the same program lo-
cation because it lacks global knowledge involving program structure and activity. In contrast, a
compiler typically has several options when choosing the order of instructions, and many of these
options result in equally performing software. Therefore, in the case of the voltage-emergency loop,
the compiler may be able to rearrange the instructions to avoid the voltage emergency without
impacting performance.

Moreover, in the context of multicore systems, coordinating hardware thread activity across
cores is substantially more challenging because of issues such as wire lengths and propagation delays.
It is difficult to simultaneously observe chip-wide activity at the hardware level to make coordinated
decisions at the individual core level. And as such, intelligently scheduling threads at the software
level to dampen voltage swings is likely to become important because of its feasibility and practicality.
As the number of processor cores sharing a power-supply source increases, the absolutely peak-to-
peak voltage swings may also increase due to interfering microarchitectural activity across hardware
contexts.

Hazelwood and Brooks [40] showed that voltage emergencies are correlated with an applica-
tion’s dynamic code stream and not just the underlying architecture and power-delivery subsystem.
As such, a holistic hardware/software approach to handling voltage emergencies has the potential to
provide additional advantages beyond the fail-safe capabilities of hardware-only solutions. In par-
ticular, voltage-monitoring hardware coupled with a dynamic optimization system could be used to
sense voltage emergencies, modify the problematic code sequences, and avoid future voltage emer-
gencies in those code sequences. To be worthwhile, a holistic hardware/software approach should
incur a hardware cost that is not much greater than the fail-safe circuitry currently employed and a
runtime cost that is significantly less than the performance gained from avoiding future emergencies.

A runtime system can effectively balance the performance/power trade-off. Most dynamic
optimizers optimize and cache the frequently executed portions of a program at the granularity of
hot code traces—dynamic instruction sequences that span procedure call and branch boundaries
whose code characteristics are highly tuned to the underlying hardware capabilities. Therefore, such
a system can correct problems that span beyond power and performance, and into reliability. It has



86 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

Executable

Voltage Control HW

Microprocessor

Clipped Program

SW

HW

Dynamic
Optimizer

Figure 7.1: Hardware/Software Codesign. Collaborative architecture for eliminating voltage emergen-
cies by exchanging pertinent information across traditional boundaries.

the benefit of knowing in real time when a voltage emergency occurs. Moreover, by operating in
a lazy optimization mode, a dynamic optimizer can wait until it is informed by the hardware of a
voltage emergency (after the hardware activates control mechanisms to eliminate the emergency),
and it can then reoptimize and cache a version of the code that exhibits more voltage stability. In
the ideal case, only one iteration of a power-virus loop would require hardware intervention, and
the remaining iterations would be executed from the software-based, dynamically-optimized code
cache.

Figure 7.1 provides a high-level view of the general software-assisted, hardware-guaranteed
resilient architecture design for voltage variation. The previously proposed hardware-based voltage-
control mechanisms remain intact, while the extensions are shown at the software level.The voltage-
control hardware in the figure monitors execution of the application. Upon detection of an imminent
voltage emergency, the control mechanism intercepts execution and performs various actions to
correct the emergency. Simultaneously, the control mechanism provides feedback to the dynamic
optimizer relaying pertinent information about the state of the processor during the emergency, such
as the instructions that are currently in-flight or recently completed.

7.1 OPPORTUNITIES AND CHALLENGES

To begin with, the interesting research question is not whether we can build a dynamic optimizer to
apply these optimizations, but whether the elimination of the identified emergency-prone activity
(be it program control flow or microarchitectural activity, or a mix of both) will actually reduce
the number of voltage emergencies incurred during execution. In this section, we examine whether
removing an identified emergency-prone activity in targeted loops of SPEC programs helps eliminate
emergencies. For example, if we identified that an L2 miss causes an emergency in a code region, then
does removing that L2 miss result in that emergency not recurring? Prior work results [38] support
this basic premise, but the effect of the “optimization” is not that simple and localized, as we will



7.1. OPPORTUNITIES AND CHALLENGES 87

describe. We recommend reviewing Sections 3.3–3.4 before proceeding, to recall the relationship
between microarchitectural events and program behavior and voltage emergencies.

7.1.1 OPPORTUNITIES
Let us begin by considering several programs along with the root causes of their emergencies. For
instance, the top loop in twolf is a very small loop, nested inside a larger outer loop. The inner
loop frequently suffers from branch mispredictions that lead to emergencies due to pipeline flushes.
Similarly, the top loop in apsi has 32% of its emergencies attributed to TLB misses. In equake, L2
misses are the primary cause of emergency, and so forth.

In the case of twolf, we apply branch optimization (i.e., perfect prediction) manually to the
emergency-prone branch. A hint is given to the hardware in order to enable perfect prediction. For
apsi, all the address translations that miss in the TLB are prefetched. For loops with L2/TLB misses
as the cause for emergencies, we prefetch the loads/stores that are causing misses. For loops with
long latency operations, the latency of the long instructions is eliminated artificially by tweaking
the simulator. For loops with several interesting events, the most recurring event is chosen and the
necessary optimization is performed.These methods, done as a replacement to compiler-driven code
reordering and hardware optimization, are sufficient to validate that these instructions in the code
region cause the emergencies and whether they can be eliminated with the proposed techniques.

Table 7.1 shows the effect of different optimization techniques. The third column shows the
effectiveness of the optimization in reducing the emergencies in that loop for each benchmark,
and the fourth column represents the overall effect of the optimization in the loop on the total
emergencies across the entire benchmark. This table shows that any optimization can either have an
isolated effect on the loop (self-contained optimization), or have secondary effects on loops close to
the optimizing loop region (spilling-over optimization).The secondary effects can be further divided
into positive spill-over, in which the optimization for that particular loop altered the application’s
current signature so as to remove emergencies from other loops, or negative spill-over, in which the
optimization removed emergencies from that loop but caused more emergencies elsewhere.

As can be seen from theTable 7.1, the optimizations are successful in removing the emergencies
in the code region. The extent of success, however, varies. For example, in equake, where L2 misses
are the primary cause of emergency, prefetching loads causing those L2 misses removes most of
the emergencies. On the other hand, in apsi, a variety of microarchitectural events contributes to
emergencies in the top loop. Hence, prefetching the TLB misses helps, but this results in less-
than-optimal reduction in emergencies. In bzip, a change in the application’s current signature as a
result of removing mispredicts had a significant positive spill-over (20%) effect and resulted in other
emergencies disappearing as well. However, gzip shows a negative spill-over, in which emergencies
in the loop were reduced, but more emergencies appeared elsewhere in the code region.

In general, results indicate that directed optimization is successful. A side effect of this suc-
cessful optimization points out the correctness of the categorization of the voltage emergencies.
However, the presence of negative spill-over suggests that the process of optimization has to be



88 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

Table 7.1: Opportunities. Effectiveness of various optimization schemes

Benchmark Contribution of the Reduction of Emergencies Overall Reduction Spillover
loop to emergencies(%) in the given loop (%) (%) (%)

Optimization: Branch Prediction
twolf 14.9 99.9 20.9 6.0
mesa 20.9 98.8 24.3 3.6
bzip 22.1 94.9 41.4 20.4
art 80.6 79.1 68.9 5.1
mcf 31.8 77.1 68.1 43.6
gap 10.8 52.7 6.1 0.41

crafty 9.7 22.1 1.9 -0.24
gzip 61.5 19 5.4 -6.3

Optimization: Prefetching Loads
equake 47.9 97.75 52.8 5.9
swim 71.1 80.2 57.0 -0.02

wupwise 48.2 66.6 16.0 -16
applu 23.8 32.3 7.7 0.01
gap 10.7 7.52 0.7 -0.11

Optimization: Long Latency Operations
applu 23.8 23.4 5.6 0.03

Optimization: Prefetching TLB misses
apsi 65.9 26.4 17.7 0.31

continuously carried out, perhaps throughout the application’s runtime. The simplicity of the op-
timization mechanisms and the narrow code region that need to be altered (for example, inserting
prefetch instructions before particular load instructions) make it suitable for a dynamic compiler to
do them in real time without much overhead.

7.1.2 CHALLENGES
The analysis so far strongly suggests a correlation between voltage variation and microarchitectural
stalls.This can lead to the false assumption of direct causality—namely, that eliminating stalls directly
decreases voltage variation. Kanev et al. [51] demonstrated that the effects of compiler optimizations
on voltage variation are more complex. Compiler-optimized code experiences a greater number of
voltage droops, and, in certain cases, the magnitude of the droops is also noticeably larger. In a
resilient design, this can eventually lead to a performance loss for the more aggressively optimized
case.

Impact on Droop Counts Typically, the task of an optimizing compiler is to increase instruction
throughput through the processor. A large body of well-known optimizations (such as loop unrolling,



7.1. OPPORTUNITIES AND CHALLENGES 89
140

120

100

80

60

40

20

0%
 C

h
a

n
g

e
 f
ro

m
 O

0
(D

ro
o

p
s
 p

e
r 

1
K

 C
y
c
le

s
)

a
s
ta

r

b
w

a
v
e

s

b
z
ip

2

c
a

c
tu

s
A

D
M

c
a

lc
u

lix

d
e

a
lI
I

g
a

m
e

s
s

g
c
c

G
e
m

s
F

D
T

D

g
o

b
m

k

g
ro

m
a

c
s

h
2

6
4

re
f

h
m

m
e

r

lb
m

le
s
lie

3
d

lib
q

u
a

n
tu

m

m
c
f

m
ilc

n
a

m
d

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

p
o

v
ra

y

s
je

n
g

s
o

p
le

x

s
p

h
in

x
3

to
n
to

w
rf

X
a

la
n

z
e

u
s
m

p

 O1  O2  O3

Figure 7.2: Voltage Variation Across Degrees of Compiler Optimizations. O1 includes basic opti-
mizations (e.g., dead code elimination). O2 increases their aggressiveness without increasing code size
(e.g., instruction scheduling). O3 includes the most aggressive and computationally heavy optimizations
(e.g., function inlining and vectorization).

instruction scheduling, register allocation) achieves that by eliminating various microarchitectural
stalls. Thus, if the analysis was interpreted as eliminating stalls would improve performance and,
as a direct casualty, decrease voltage variation, one would expect that higher compiler optimization
levels would decrease the amount of voltage variation, while increasing performance. However, data
gathered for the GCC compiler contradicts such a notion.

Figure 7.2 shows the voltage emergency behavior of the single-core SPEC CPU2006 pro-
grams, when compiled with optimization levels ranging from O0 to O3. We classify reductions in
its supply voltage below an aggressive 2.3% margin as voltage droops. We observe that increasing the
aggressiveness of performance optimization with respect to the O0 baseline leads to a larger number
of droops per 1K cycles in the majority of programs.

Out of the 29 runs in this experiment, 19 binaries compiled with maximum optimization result
in a more than 10% increase in the number of droops, compared to the respective non-optimized
versions. 454.calculix shows the largest increase—at O3 its droop counts more than triple. The
fluctuations for the other 10 programs in the experiment are predominantly smaller. Note that in
several cases these small fluctuations are negative, that is, better-optimized code results in fewer
droops.

Looking at the more moderate optimization levels O1 and O2 does not show a qualitative
difference.The set of programs that show a large increase in droops remains largely unchanged, with
the difference being in the magnitude of the increase. However, O3 does not always result in the
largest variation increase, compared to O1 and O2.

The behavior of the majority of the programs is easily explicable.When better optimized at O3,
programs achieve higher instruction throughput through the processor. At the microarchitectural
level, this implies that pipeline utilization is high, and consequently switching factors are larger,



90 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

1.8

1.6

1.4

1.2

1.0

P
e

a
k
-t

o
-p

e
a

k
 V

o
lt
a

g
e

 S
w

in
g

s
(R

e
la

ti
v
e

 t
o

 a
n

 I
d

lin
g

 O
S

)

L1 L2 TLB BR EXCP

Core 0 (active). Core 1 (idling).

Figure 7.3: Measured Impact of Microarchitectural Stalls. We observe varying amount of voltage
variation for different types of microarchitectural stall events.

therefore, the core consumes a relatively larger amount of current. On a stall, the net change in
current is larger than in the unoptimized case. Since voltage fluctuations are proportional to such
changes in current, each stall is more likely to cause a subsequent voltage droop. This effect leads
to a larger aggregate number of droops over the whole execution, even though the number of stalls
may be smaller.

Root Cause In order to better understand why more aggressively optimized code can lead to a
larger number of voltage droops, we must look closely at the microarchitectural foundations of
droops. By using microbenchmarks, we can see that some stall events generate significantly more
voltage variation than others.

Measured data on an Intel Core 2 Duo processor show that stall events contribute differently
to the amount of voltage variation [80]. Figure 7.3 illustrates this with microbenchmarks consist-
ing of simple sequences of stall events—L1 cache misses (L1), L2 cache misses (L2), data TLB
misses (TLB), branch mispredictions (BR), and hardware exceptions (EXCP). The bars show the
peak-to-peak magnitude of voltage swings, caused by the different stall events, normalized to the
swing magnitude of the idle loop of the operating system. We can see that branch mispredictions and
exceptions cause a significantly larger voltage swing than cache misses—e.g., the difference between
the branch misprediction swing and that of an L2 miss is close to 50%.

There is an intuitive explanation for the results in Figure 7.3. Voltage variation is an artifact
of rapid changes in processor activity. Before a miss event, the processor is executing instructions,
switching factors are high, and current consumption is relatively large. A miss event throttles execu-
tion, but to a varying degree—the more severe the miss event, the larger portion of the chip stays idle
to recover, hence, the lower the current consumption and the larger the voltage swing. Out-of-order
pipelines are designed to mask memory misses by continuing execution, explaining the low voltage
swings for L1 and L2 misses. TLB misses require more special handling (page-walking) that could
keep a larger portion of the chip idle. Finally, branch mispredictions and exceptions require flushing



7.1. OPPORTUNITIES AND CHALLENGES 91

1.6

1.4

1.2

1.0

B
ra

n
c
h

 m
is

p
re

d
ic

ti
o

n
 r

a
ti
o

(r
e

la
ti
v
e

 t
o

 O
0

)

O1 O2 O3

 473.astar  435.gromacs

(a) Branch mispredictions

4.0

3.0

2.0

1.0D
a

ta
 T

L
B

 m
is

s
 r

a
ti
o

(r
e

la
ti
v
e

 t
o

 O
0

)

O1 O2 O3

 473.astar  435.gromacs

(b) Data TLB misses

2.4

2.0

1.6

L
1

 c
a

c
h

e
 m

is
s
 r

a
ti
o

(r
e

la
ti
v
e

 t
o

 O
0

)

O1 O2 O3

 473.astar  435.gromacs

(c) L1 cache misses

2.8

2.4

2.0

1.6

1.2

L
2

 c
a

c
h

e
 m

is
s
 r

a
ti
o

(r
e

la
ti
v
e

 t
o

 O
0

)

O1 O2 O3

 473.astar  435.gromacs

(d) L2 cache missies

Figure 7.4: Miss Ratio and Compiler Optimization Interactions. Microarchitecture behavioral data
for 473.astar and 435.gromacs under different compiler optimization levels.

most of the pipeline, resulting in low activity before the core pipeline is filled up, leading to a large
voltage swing.

If we profile two programs as a case study, we can further demonstrate the variation-criticality
of some stall events. In order to demonstrate that, Figure 7.4 shows measured miss ratios for 435.gro-
macs and 473.astar. All data in the figure are relative to the case with no optimizations (O0) and
optimization aggressiveness grows to the right. For both programs, higher levels of optimization lead
to higher branch misprediction and TLB miss ratios (Figure 7.4(a)-7.4(b)). Both metrics are even-
tually higher at O3 for 435.gromacs, which also exhibits a large increase in voltage droops between
O0 and O3 (Figure 7.2). On the other hand, both L1 and L2 miss ratios increase significantly for
473.astar (Figure 7.4(c)-7.4(d)), without a corresponding increase in variation activity (Figure 7.2).

This data implies that in a resilient architecture design where the hardware is providing a fail-
safe guarantee at some recovery penalty, the increased number of droops at higher code optimization
levels has a respective net performance penalty. This penalty may be sufficiently large to even offset



92 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

1.6

1.4

1.2

1.0

0.8

0.6R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

10
0

10
1

10
2

10
3

10
4

Checkpoint cost

 O0 O1  O2  O3

(a) 473.astar

1.6

1.4

1.2

1.0

0.8

0.6R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

10
0

10
1

10
2

10
3

10
4

Checkpoint cost

 O0 O1  O2  O3

(b) 435.gromacs

Figure 7.5: Impact of Compiler Optimizations. Influence of compiler optimizations on performance
for varying recovery costs in a resilient processor architecture.

the initial performance gains from optimizing the code more aggressively. Therefore, we need to be
aware and sensitive to this tradeoff.

Impact on Net Performance Let us understand the tradeoff by analyzing the net performance of two
programs that are representative of the general trend that Kanev et al. observed [51].One benchmark,
represented by 473.astar, experiences little change in voltage variation across optimization.The other
benchmark, represented by 435.gromacs, experiences a significant increase in variation. Kanev et al.
account for the recovery cost of each voltage emergency using a simple performance model of a
resilient architecture. Namely, each crossing of the voltage margin triggers a fallback mechanism with
a set checkpoint recovery cost in cycles. The cycles spent in recovery are added to the conventional
running time of the program for an estimation of its runtime on a resilient architecture with the
specific recovery cost.

Figure 7.5 shows performance improvement achieved by the two representative programs for
different costs. Both programs rightfully receive a significant performance gain from higher levels of
performance-centric compiler optimizations. For 473.astar, this gain is sufficient to sustain higher
net performance even at very large recovery costs. Even though the gains diminish because of the
slightly increased droop counts (and therefore emergency recoveries), in this case, net performance is
dominated by factors other than variation. For workloads represented by 435.gromacs, fine-grained
recovery presents similar results. However, after a certain recovery cost (100 cycles in this particu-
lar case), voltage emergency effects begin to dominate over the initial performance gains and less
optimized binaries achieve better net performance, after factoring in emergency recovery penalties.
Even the modest 30% increase in relative droop counts that 435.gromacs shows is sufficient to offset
the 50% initial performance gains from compiling with O3.



7.2. COMPILER TECHNIQUES 93

These performance results, combined with the microarchitectural root-cause analysis,
strengthen the hypothesis that performance-critical and variation-critical stall events are not nec-
essarily the same. In terms of code optimization, this suggests that purely traditional optimizations
targeting, for instance only cache behavior using techniques such as software prefetching, are unlikely
to fully provide a solution for voltage variation. Such differences inspire future work in finding the
optimal set of code transformations for a voltage variation resilient processor architecture.

7.2 COMPILER TECHNIQUES
Currently, production compilers do not account for voltage variation when scheduling instruction
sequences. Nevertheless, techniques have been developed to produce power-efficient code at the
static compiler originally, and more later at the dynamic compiler level. We’ll discuss both here, and
explain why the dynamic compiler-based approach is likely the more suitable one to succeed in the
long run to mitigate voltage variation.

7.2.1 STATIC COMPILER
Toburen [92] and Yun and Kim [98] made initial progress in the direction of compiler-driven
code (re)scheduling. Toburen’s approach builds an instruction schedule that limits processor power
dissipation during each cycle. The power-aware scheduler attempts to place as many instructions
as possible into a single VLIW instruction bundle, but within a preset power threshold. Often,
high-energy instructions are not scheduled together because they can result in large and sudden
current spikes. Instead, instructions are dispersed slightly from one another by exploiting scheduling
slack, which is typically available if the compiler produces sufficiently large code regions. In this
manner, the compiler generates a uniform di

dt
curve that decreases the processor’s average peak-

power consumption each cycle.
Similarly, Yun and Kim propose a power-aware modulo scheduling algorithm for high-

performance VLIW processors. Their proposed algorithm reduces both the step power (the effect
that causes voltage noise) and peak power by constructing a more balanced parallel schedule that
does not sacrifice performance. They focus specifically on loops without conditional control trans-
fers because it enables effective software pipelining.The “optimization” transforms a sequential loop
such that new iterations start before preceding iterations finish, in order to overlap the execution of
multiple iterations in a pipelined execution manner.

Software pipelining is a widely used compiler algorithm for increasing the instruction-level
parallelism of cyclic code. By unrolling loops and overlapping the execution of instruction sequences
from several loop iterations, the instructions can be scheduled more tightly. Typically, the result of
software pipelining is that n-iterations of a loop will be combined to form one larger loop iteration.
The nature of the software pipelining algorithm has two interesting side-effects. First, the technique
allows high-activity periods in one loop iteration to be combined with low-activity periods of the next
loop iteration, potentially leading to a more stable sequence of instructions that will often complete
faster than the original sequences. Second, by changing the amount of work done in a loop iteration,



94 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

periods of high and low activity that fall on the resonant frequency will be disrupted. Figure 7.6(b)
depicts the result of applying software pipelining to the loop body in Figure 7.6(a). By unrolling the
loop body once, and therefore lengthening the period of low activity originally resulting from three
subsequent divide operations, we were able to move the stressmark off of the resonant frequency.
This reduced the resulting voltage fluctuations and potentially eliminated numerous invocations of
the hardware-throttling mechanism.

Even if algorithms were developed for locating potentially dangerous instruction sequences,
the decision on whether to intervene would depend on the power-supply network’s characteristics
and the target processor’s operating voltage range, which typically are not known at compile time.
Finally, static techniques may not avoid all voltage emergencies, because many of the emergencies
occur due to dynamic instruction sequencing, which is difficult to predict prior to program execution.
Hence, Hazelwood and Brooks [40] proposed extending the hardware mechanisms to additionally
provide feedback to a software-based dynamic optimization system that can determine whether
a similar voltage emergency has occurred in the past, making this region of code a candidate for
reoptimization.

7.2.2 DYNAMIC COMPILER
Dynamic optimization systems [8] are well-suited for emergency-specific code transformations,
especially in scenarios like “90% of the execution time is spent in 10% of the code.” By operating
in a lazy optimization mode, the optimizer can wait until the hardware informs it of a voltage
emergency (after the hardware activates control mechanisms to eliminate the emergency), and it
can then reoptimize and cache a version of the code that exhibits more voltage stability. Figure 7.7
shows a typical dynamic optimizer’s control flow. The system observes execution and performs code
transformations to a cached copy of the frequently executed instructions. The cached, transformed
code is then executed in lieu of the original code. Finally, runtime feedback and profile information is
used to guide other transformations, and the process continues per emergency. Let us now examine
some techniques.

Code Motion When a static compiler schedules instructions, it often has several options for schedul-
ing an instruction that result in equal runtime performance of the application. Thus, the compiler
may inadvertently create regions of high and low processor activity simply due to its predefined
settings for scheduling instructions in the event of a performance tie. By recognizing these sched-
ule slips, a dynamic optimizer can later apply code motion to move instructions from high to low
processor-utilization regions.This technique can result in the removal of a voltage emergency without
degrading application performance.

Issue Rate Staggering A dynamic compiler can slow the machine’s issue rate at an appropriate point
to prevent recurring emergencies altogether.The underlying assumption here is that the architecture
is co-designed to signal the dynamic compiler that there is an opportunity to fix an emergency. The
general idea was previously illustrated in Figure 7.1.



7.2. COMPILER TECHNIQUES 95

dI/dt Stressmark
BEFORE

ldt $f1, ($4)
($6)

$f1,

$f1,

$f2,
$f2,

$f3,
$f3

$f2, $f3
$f2,
8($4)
8($4)

8($4)
8($4)

($4)
($4)
($4)
($4)

($4)

$f3
$f3,
$7,

$3$7,

$3$7,
$7,

$3,

($4)$3,

($4)$3,

$3,
$3,
$3,

$3,

$31,

$31,

ldt
divt
divt
divt

ldt $f1, ($4)
($6)

$f1,

$f1,

$f2,
$f2,

$f3,
$f3

$f2, $f3

$f3, $f2, $f4

$f3, $f2, $f4
$f2, $f4$f4

$f4

$f2, $f3

ldt
divt
divt
divt
divt
divt
divt
stt

stt
ldq

ldq

cmovne

cmove

stq
stq
stq

stq

stq

stq

stq
... ...

AFTER

(a) Instructions in a stressmark

1.02V
Before Software Pipelining After Software Pipelining

1.01V

1.00V

0.99V

0.98V

0.97V

(b) Effect of software pipelining

Figure 7.6: Effect of Software Pipelining. (a) Modifying the instructions in the di
dt

stressmark (BE-
FORE) to a pipelined version (AFTER) reduces variation, as seen in (b).



96 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

Transform

Execute

Profile Code
Cache

Binary

Figure 7.7: Dynamic Optimizer. Control flow of a typical runtime code optimizer [40].

One can stagger issue rate in software by altering the program code that gives rise to emergen-
cies at execution time, and can do so without large performance penalties. The technique involves
exploiting pipeline delays to decrease the issue rate close to the root-cause instruction. Pipeline delays
exist because of NOP instructions or read-after-write (RAW), write-after-read (WAR), or write-
after-write (WAW) dependencies between instructions. Hardware optimization techniques, such
as register renaming in a superscalar machine, can optimize away WAR and WAW dependencies,
so a RAW dependence is the only kind that forces the hardware to execute sequentially.

The compiler tries to exploit RAW dependencies that already exist in the program to slow the
issue rate by placing dependent instructions close to one another.This constrains the burst of activity
when the machine resumes execution after the stall, which prevents the emergency. Whether the
compiler can successfully move instructions to create a sequence of RAW dependencies depends on
whether moving the code violates either control dependencies or data dependencies. From a high
level, the compiler’s instruction scheduler should not break any data dependencies, and it needs to
work around control dependencies by cloning the required instructions and moving them around
the control flow graph such that the original program semantics are still maintained.

Figure 7.8 shows how the issue-rate smoothing technique works. The plot shows a slice
of program activity corresponding to a loop within program Sieve from the Java Grande suite.
Figure 7.8(a) shows that data dependence on a long-latency operation stalls all processor activity,
so the current profile goes flat (marker 1). When the operation completes, the issue rate increases
rapidly (marker 2) as several dependent instructions are successively released to functional units.
This activity increases draw (marker 3), and, as a result, the voltage dips below the lower margin
(marker 4). Figure 7.8(b) shows activity after the reschedule transforms the code slightly to reduce
the issue rate. Because dependent instructions are packed more tightly, the issue rate in Figure 7.8(b)
does not spike as high as in Figure 7.8(a) (marker 5). As a result, the processor now draws current
less aggressively.The gradient at marker 6 is less steep compared to marker 3.Therefore, the original
emergency at marker 4 is now permanently eliminated (marker 7).

Using this one issue-rate constraining technique, the compiler removes over 62% of all emer-
gencies across the Java Grande suite [75]. On average, only 20% of all root causes had to be resched-



7.2. COMPILER TECHNIQUES 97

Lo
ng

la
t

Is
su

e

 

 

C
ur

re
nt

  
V

ol
ta

ge

1

2

4

3

Lower Margin

(a) Before code rescheduling

Lo
ng

la
t

 

V
ol

ta
ge

 

 

C
ur

re
nt

 

 

Is
su

e 5

6

7
Lower Margin

(b) After code rescheduling

Figure 7.8: A 50-cycle Execution Snapshot of Sieve. (a) A pipeline stall on a long latency operation
triggers an emergency (indicated by an arrow) as the issue rate ramps up sharply once the operation
completes. (b) Code rescheduling slows the issue rate just enough to prevent the emergency illustrated
in (a).

uled because they contribute to a large percentage (over 98%) of all emergencies. These results
indicate that issue-rate smoothing works well for isolated emergencies such as the case illustrated in
Figure 7.8(a). However, there is a caveat. Code rescheduling works best on in-order processors where
machine behavior is predictable at the compiler level. Out-of-order superscalar processors can ren-
der such compiler-level techniques ineffective because of low-level hardware-instruction scheduling.
However, researchers indicated that making the RAW dependence chain as long as the issue width
of the machine can overcome this hurdle effectively [76].

Instruction Padding A final optimization is one that can be applied to acyclic regions when it is
not possible to perform code motion. Instruction padding inserts unnecessary calculation into a low-
utilization code region. This transformation masks the low-utilization region in a manner similar to
the hardware technique of phantom firings of the functional units. Instruction padding is not used
in traditional compiler-optimization phases because it has no performance benefits. Although the
processor ideally will schedule the unnecessary instructions off the critical path on idle functional
units, this approach may degrade the performance of an instruction sequence, and therefore should
be considered as a last resort.



98 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

Figure 7.9: Single-thread vs. Multi-thread Impact. Worst-case droop increases during multithreaded
and multiprogram execution compared to single-thread execution.

A simple way to create padding would be to insert NOP instructions into a program’s dynamic
instruction stream. However, modern processors discard NOP instructions at the decode stage.
Therefore, the instruction does not affect the machine’s issue rate. Instead of real NOPs, the compiler
can generate a sequence of instructions containing RAW dependencies that have no effect. Because
these pseudo-NOP instructions perform no useful work, this approach often degrades performance.

7.3 THREAD SCHEDULING

Simultaneous multi-threading (SMT) and other multithreading architectures have become com-
monplace in high-performance processors. Thus, it has become necessary to identify the temporal
locality among threads (especially when that temporal locality causes recurring emergencies) and to
translate that temporal locality into “simple spatial locality” that is easy for a dynamic optimizer to
create, analyze, and optimize for mitigating voltage variation.

7.3.1 INTERTHREAD INTERFERENCE
El-Essay and Albonesi [27] were the first to demonstrate and mitigate the detrimental impact of
multithreaded execution on voltage variation. A natural downside of SMT processors is their larger
power dissipation, due to the fact that they require additional resources (e.g., registers) and that
they make better use of these resources (thereby dissipating more energy) over a given period of
execution. This higher power dissipation, and thus current consumption, can lead to larger current
fluctuations, and thus more voltage variation. Measured data on a Core 2 Duo processor, shown in
Figure 7.9, quantitatively confirms this behavior. The figure shows that the magnitude of the worst-
case voltage droop is larger during multithreaded and multiprogram execution than during single-
threaded execution. Therefore, thread scheduling for voltage variation is an important emerging
area.

The main reason for high voltage variation when many threads are executing is because of
hoarding. One or more threads hold resources that they release periodically, which results in sudden



7.3. THREAD SCHEDULING 99

bursts of activity that can lead to resonance. Hoarding of resources occurs whenever a nonblocking
event causes a thread to fetch and execute a large number of instructions, yet the event must complete
before these instructions can be committed. This causes the thread to tie up many machine registers
and issue queue slots.

Low-latency events such as L1 cache misses that hit in the L2 cache are serviced quickly
to prevent significant hoarding. However, other long-latency events such as L2 cache misses can
cause a large number of instructions to be bottlenecked, and subsequently cause a large bursty release.
Karkhanis and Smith demonstrated that several programs in the SPEC CPU2000 integer benchmark
suite are capable of executing well beyond an L2 cache miss, so far as to fill the (single-threaded)
machine resources [52].

Figure 7.10 shows a hard and clear example of processor resource hoarding. Four threads hoard
and periodically free a subset of the resources due to the result of a series of L2 cache misses. The
different hardware threads are represented using different colors in the graph. The graphs shows the
resource occupancies and events for these different threads. From the figure, we see that two of the
application threads experience L2 cache misses, but, after issuing a memory request, they manage
to find a significant number of independent instructions to accumulate into the machine’s available
resources. When the data from the L2 cache miss returns, there is a large release of dependent
instructions for execution, which immediately allows other threads to issue instructions until the
machine resources are once again fully occupied. These sudden bursts of activity, whenever pending
memory requests are satisfied, result in large voltage variation. In the specific example, the figure
also illustrates the result voltage variation, which around 300 cycles is resonating.

7.3.2 VOLTAGE SMOOTHING
We can overcome the unwanted behavior by scheduling threads intelligently. It is important to
minimize emergencies in a multicore system because the power plane is typically shared across
multiple cores and a droop anywhere on a common power plane can force recovery, or failure in
the case of a nonresilient architecture, across all cores. When activity on one core or hardware
context suddenly stalls, voltage swings, due to a sharp and large drop in current draw. However, by
maintaining continuous current-drawing activity on an adjacent core also connected to the same
power supply, thread scheduling dampens that current swing’s magnitude. In this way, scheduling
can prevent an emergency when either core or hardware context stalls [27]. Next, we will discuss
ways to perform this scheduling.

Flushing Thread-resource hoarding has been previously studied as a source of performance loss
and energy inefficiency in processors. Tullsen and Brown [93] propose a method to block fetching
of instructions from threads that incurred an L2 cache miss. Additionally, instructions from that
thread following the L2 cache miss are all flushed from the machine to reduce resource occupancy. In
effect, this allows other threads to proceed with execution, rather than being resource bottlenecked.
Originally, this technique was proposed for boosting thread performance. However, El-Essay and
Albonesi [27] recommend this technique to prevent thread-resource hoarding.



100 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

Figure 7.10: Effect of Multiple Threads. Microarchitectural activity, current, and voltage for a four-
threaded workload [27].



7.3. THREAD SCHEDULING 101

Time (milliseconds)

Cores in Barrier
Power (Watts)

110
100
90
80

80

70

70

60

60

50

50

40

40

30

30

20

20

10

10
0 0

8

16

24

32

0

Po
w

er
 (W

at
ts

)

Figure 7.11: Global Synchronization Effects. Voltage variation in response to barrier synchronization
for a 32-core system running the barnes program [63].

Similarly, El-Moursy and Albonesi [28] proposed schemes to reduce the energy consumption
of issue queues in SMT processors. The general idea is to avoid idling instructions from taking up
issue-queue slots by gating instruction fetch from certain threads during execution. El-Essay and
Albonesi [27] believed that this technique can also be used to proactively mitigate voltage variation.
In their research, El-Essay and Albonesi do not demonstrate a specific method that guarantees a
certain level of improvement in voltage variation, but, what they do demonstrate is that multiple
threads in a SMT processor can be effectively leveraged to mitigate the problem to a noticeable
extent. The benefits of their approach open up ways to use a less expensive power-delivery system
safely, while keeping still performance and power overheads with reasonable and acceptable levels.

Barriers Miller et al. [63] show that any coordinated chip-wide activity in multithreaded appli-
cations on a manycore architecture can lead to much larger and rapid voltage fluctuations than in
much smaller environments (e.g., a 32 core system vs. a 4 or 8 core system). One such example is
barrier synchronization that is commonly used in multithreaded programs where blocked threads
idle with very low power consumption. But when several idle threads are released from the global
synchronization point, a sudden power spike is inevitable due the large surge in current draw.

Figure 7.11 shows the power profile for a program from the SPLASH2 application suite.
Benchmark barnes is running on a simulated 32-core processor. barnes displays a very strong cor-
relation between barrier synchronization and variation in the power profile. Here we are assuming
that all the cores are connected to the same power grid. The figure shows that there is a gradual
decrease in the total power consumption as cores start gathering at the first barrier. Following that,
when the barrier is released, there is a sudden sharp spike in power that will likely lead to a large
voltage emergency. For subsequent barriers, the threads cluster more rapidly, causing a sudden and



102 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

sharp drop in the power consumption, which is immediately followed by a sharp spike in power
upon release.

To mitigate the effects of barrier scheduling, Miller et al. propose a new software-level thread-
scheduling technique called VRSync that forces more gradual and steady release of application threads
from barriers, which reduces the burden on the PDN. In doing so, the amplitude of current stage
is staggered over time, in effect, limiting the magnitude of the voltage variation. There are two
proposed thread-release models: linear and bulk. In the linear approach, threads are released one
after the other, staggered by some constant offset/delay. In the bulk mode, the technique determines
the optimal number of cores that can be released all at once, but still with delays at exits.

The linear VRSync scheduler has the highest overhead. The average increases in execution
time is about 11% across all the programs the authors evaluated.They find that applications that have
moderate to no barrier activity have very small increases in runtime that range typically between 0
and 10%. Naturally, applications with heavy barrier activity suffer significantly more under the linear
approach because more threads are forced into staggering for a longer time. For instance, they find
that streamcluster suffered the highest overhead, with a 2.1x increase in execution time. The high
overhead was because of the large number of barriers (4396) encountered in the program.

In contrast, the Bulk VRSync scheduler reduced the average execution overhead to 6.3%.The
streamcluster program showed large improvement. Its overhead went down to 36% as compared to the
2.1x slowdown with the linear scheduler. The improvements were due to the interplay between the
exit schedule and the early-exit optimization. The Bulk scheduler releases multiple threads together
at the barrier exit, which quickly reach a new barrier, which naturally trigger more early exits than
in the Linear case, which was the case with streamcluster. Thus, the Bulk scheduler is recommended
and performs better.

Phases Reddi et al. recently showed that programs experience voltage-variation phases [80] that
can be overloaded with one another to smooth out voltage variation. Here, we only discuss the
phase behavior. Figure 7.12 plots the droops per 1K clock cycles assuming a 4% voltage margin
across three different SPEC CPU2006 programs. This metric is similar to the metric that designers
typically use to study cache performance with respect to application behavior or its execution time—
“misses per 1,000 instructions.” The number of phases and the number of droops varies from one
program to another. In Figure 7.12 program 482.sphinx experiences nearly no phase changes. The
average number of droops is stable around 10 droops per 1,000 clock cycles. In contrast, 416.gamess
experiences four phase changes where droops vary between 10 and 14 emergencies per 1,000 clock
cycles transiently, while 465.tonto goes through more complicated phase changes in Figure 7.13(c),
oscillating strongly and more frequently between 4 and 12 droops every 1,000 cycles.

7.3.3 BENEFITS AND TRADEOFFS
Coscheduling threads to reduce voltage emergencies differs from scheduling for performance.This is
important to understand given the large body of existing work on scheduling for better performance
in multicore systems. In order to prove this point, Reddi et al. [80] evaluated different operating-



7.3. THREAD SCHEDULING 103

(a) Linear

(b) Bulk

Figure 7.12: Barrier Optimization. Timing release model proposed for barrier synchronization by
Miller et al. [63].



104 7. ELIMINIATING RECURRING VOLTAGE EMERGENCIES

12

10

8

6

4

2

0D
ro

o
p

s
 p

e
r 

1
K

 C
lo

c
k
 C

y
c
le

s

160012008004000

Time (s)

(a) 482.sphinx

16

12

8

4

0D
ro

o
p
s
 p

e
r 

1
K

 C
lo

c
k
 C

y
c
le

s

6005004003002001000

Time (s)

(b) 416.gamess

14

12

10

8

6

4

2

0D
ro

o
p
s
 p

e
r 

1
K

 C
lo

c
k
 C

y
c
le

s

160012008004000

Time (s)

(c) 465.tonto

Figure 7.13: Voltage Noise Phases. Benchmark 482.sphinx shows no phases, while 416.gamess and
465.tonto experience simple and more complex phases, respectively.

system scheduling policies, measuring emergencies over the course of a batch job schedule consisting
of 50 jobs. The job pool consists of randomly chosen SPEC CPU2006 programs. Some programs
may be repeatedly selected to construct the job pool, since there are only 29 CPU2006 programs.
For this selected set of programs, a range of scheduling policies are also evaluated: random selection
(Random) and target maximum performance (IPC), in addition to minimal emergencies (Droops).

Figure 7.14 plots performance in terms of instructions per cycle (IPC) vs. droops we observe
over the course of the batch schedule. Both the y- and x-axis of the graph are normalized to
SPECrate, which acts as a baseline. SPECrate assumes two instances of the same program are
running together at the same time. This is done to eliminate inherent IPC differences between
the programs, letting us focus in on only the effects of coscheduling. Each marker in the graph
corresponds to one simulation. The experiment is conducted using 100 random simulations. The
four quadrants in Figure 7.14 (Q1 through Q4) help us draw different conclusions. Ideally, we want
results in quadrant Q1, which indicates that the scheduling policy lowers emergencies, in addition to
improving performance. Quadrant Q2 is good, but only from a performance standpoint. Q2 suffers
from an increase in emergencies. Results in Q3 are bad, since performance degrades and emergencies
go up. Lastly, results in Q4 imply a reduction in emergencies at the expense of some performance.

By today’s standards, the random simulation is representative of production operating systems.
The POSIX 2010 policies include simple policies, such as round-robin and first-in, first-out, which
are effectively random in behavior. From observing data in Figure 7.14, we can conclude that random
schedules lead to more voltage emergencies.Additionally, there are no guarantees about performance.

By comparison,a performance-centric scheduler achieves best performance,as expected.How-
ever, such a scheduler is unaware of voltage-emergency activity occurring as a result of its scheduling
decisions. In Figure 7.14 the IPC marker is in quadrant Q2, indicating that on aggregate more
emergencies occur than the baseline. Although improving performance implicitly leads to fewer
execution stalls, this data indicates that reducing stalls alone is insufficient to reduce emergencies in



7.4. SUMMARY 105

���

��� ��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
�
	

������

�������������������������������������
��


�
�


� 
�

�������
�
��
������	

�
��������	
�

Figure 7.14: Scheduling for Voltage Variation. Scheduling for performance causes more emergencies,
which upon factoring emergency-tolerance rollback costs, can actually result in performance degradation.
Noise-aware schedulers are necessary in the architecture.

a multicore system. Interactions across threads (or cores) impact the amount of voltage variation we
observe. Therefore, a variation-aware scheduler is necessary.

Consider the Droops metric, or voltage variation-aware scheduling, whose data point resides
in Q4. The variation-aware scheduler focuses on emergency activity and therefore can minimize
emergencies across all 50 jobs. It does this without adversely affecting performance. A voltage
variation-aware scheduler can be adapted to not only reduce emergencies, but also, improve perfor-
mance. To achieve this, a metric is necessary: IPC/Droopsn. Droops are weighted by some factor n

that determines how costly emergencies are to tolerate. The value of n is small if recovering from
emergencies is cheap, costing only few tens of clock cycles. Otherwise, n is large. A scheduler can
use this value, n, to balance the penalty of tolerating emergencies as it attempts to maximize perfor-
mance. The arc of markers in quadrant Q2 of Figure 7.14 illustrates the range of opportunity over
different values of n.

7.4 SUMMARY
Optimizing away voltage emergencies is analogous to removing cache misses or branch mispredic-
tions to achieve better performance and/or lower power consumption. Considering the impact of
voltage variation on processor (in)efficiency, aggressive operating voltage margins are inevitable and
necessary in the future. As feature-size shrinking continues, reliability problems involving voltage
emergencies will emerge forcefully, requiring us to rethink traditional processor design and involving
software as an essential fabric of future processor design and deployment. Collecting information
about recurring emergencies and eliminating them will enable us to continue historically established
reliability standards and build processors that achieve good performance within strict power and
cost budgets.





107

C H A P T E R 8

Future Directions on Resiliency
As traditional timing-margin solutions stop scaling well with reduced feature size, future systems
will require adaptive processor-design techniques. The architecture must dynamically detect and
recover from variation errors in the field in order to enable more-effective designs. Enabling such
a system requires resiliency to be built into the system, where resiliency is a measure of a computer
architecture’s ability to continue working in the presence of processor degradations and failures.

In order to build a resilient processor architecture, we require a holistic system-level approach
that systematically abstracts the underlying circuit-level reliability challenges to the higher levels,
i.e., the architecture and software layers. The rationale is as follows. Modern applications continue
to benefit from an ever-increasing amount of performance, and thus, microprocessor vendors will
continue to make advances in VLSI technology, circuits, and microarchitectures to address this need.
But,as we have seen, there is a growing gap between nominal operating conditions and peak operating
conditions in microprocessor designs due to variations, and as such, chip manufacturers currently
have two general approaches for dealing with this gap: (1) increase the cost of microprocessor-
based systems by engineering them so that the hardware (including packaging and power supplies)
tolerates sustained execution at the peak operating conditions, or (2) forego the costs associated with
peak operating conditions and instead include hardware-based throttling mechanisms that sacrifice
performance when operating conditions stray too far from nominal.

Clearly, the first approach is not an option for the commodity market, where energy efficiency
and the price-to-performance ratio are more important design principles than just raw performance.
The second approach seems to head in the right direction in that it provides hardware guarantees
that catastrophic events will never occur. However, hardware-only solutions are reactive, lack global
perspective, and may be difficult to implement efficiently. Thus, we require an approach that relies
on hardware for immediate reaction (albeit suboptimal) to extreme margin violations, or emergen-
cies, and relies on the global view provided by the software layer to eliminate repeated emergency
occurrences. In this context, there are two forms of resiliency: system-level and application-level
resiliency.

8.1 SYSTEM-LEVEL RESILIENCY

In this book, we discussed a paradigm of collaborative computer architecture, where both hardware
and software play an integral role to diminish the detrimental effects of variations. In effect, we
abstracted circuit-level reliability challenges to the higher levels, the microarchitecture and software
layers. The lower layers propagated relevant information to the higher layers, as illustrated in Fig-



108 8. FUTURE DIRECTIONS ON RESILIENCY

Circuits

Microarchitecture

Chip-Set Software

Emergency
Information

Chip Circuit
Throttling

Activity
History

Emergency-Speci c
Optimizations

Operating System Abstraction
Boundary

Applications

Figure 8.1: Resilient Architecture Design. An overview of exposing circuit-level challenges to the
higher levels of execution.

ure 8.1. The figure presents an overview of the three levels and some of the information that flows
between these levels when detecting and resolving emergencies.The bottom layer included low-level
hardware and circuit blocks that signal sensed critical information about voltage emergencies. The
microarchitectural layer collects this sensor data, filtering it and combining it with runtime activity
history, such as the current thread and its code, along with microarchitectural state information,
before passing it up to a chip-management software layer that enables transparent and error-free
application-level software execution.

There are two distinct methods for dealing with emergencies in this architecture. First, the
circuits and microarchitectural layer are responsible for guaranteeing reliable operation without
the assistance of software. Second, the software layer seeks to eliminate these exceptional events
from recurring in the future through emergency-specific dynamic optimizations. But, as a first line
of defense, the circuits and microarchitectural layer operate independently of software to throttle
circuit execution/behavior to guarantee correctness. An advantage of this multilayered approach is
that it allows the hardware to focus on guaranteeing correct operation for the initial exceptional
event, while the software focuses on eliminating or reducing the performance impact of the future
events in the steady state.

Such a multilevel approach aims to eliminate the performance penalties that arise in the use
of circuit techniques and microarchitectural changes that lower power, price, or, in general, attempt
to optimize a design for criteria other than performance. Toward this end, we must investigate what
it takes to design and build commodity computing systems that achieve both high performance
and low cost today and in the future. Cost is a generic term we use as a placeholder for whatever
other design criteria matters beyond performance (e.g., power, packaging costs, power supply costs,
etc.). A holistic and collaborative solution enables cost-effective processor operation even in the
presence of dynamic variations. By having the higher layers influence or mitigate problems at the



8.1. SYSTEM-LEVEL RESILIENCY 109

circuit layer, the resulting costs and efficiencies help track future increases in sustained performance
by maintaining the price-to-performance ratio, an important principle in the commercial sector [9].

An added benefit of system-level resiliency is transparency from the application layer. Trans-
parency means that the programs running on the machine are unaware of the hardware emergencies
that avoid the catastrophic events. System-level resiliency maintains the hardware guarantees trans-
parently. The microcode, firmware, operating system, virtual machine layer, or compiler is notified
of the emergencies handled by the hardware, and the software stack is expected to reconfigure the
execution environment to avoid future occurrences of that emergency. To understand how designers
can build such a transparent system-level resiliency solution, numerous questions must be answered
in a systematic, cohesive, and collaborative manner. We have identified and listed a few of the most
important questions in the order of bottom-up design principles.

• What information should the circuit layer provide to the microarchitecture layer? This involves
sensing information at different points on the chip and during each quantum monitoring for
emergencies. Upon detecting an emergency, the sensors must signal the processor microarchi-
tecture of an emergency to take preventive or recovery action.

• How should we design the microarchitecture so that it can tolerate emergencies? Whenever we
detect an emergency, the system must roll back execution to some previously known safe state.
To enable this, we must understand whether we can leverage existing hardware checkpoint-
recovery logic, or if we require variation-specific mechanisms.

• What information should the microarchitecture capture? In order to mitigate emergencies at the
higher layers, the microarchitecture layer must identify the root cause of emergencies (i.e.,
context).Thus, it is important to identify all the microarchitectural events and types of program
activity that can lead to emergencies.

• What should the software layer look like? Propagating architecture-level information can enable
the software to eliminate emergencies. However, this requires us to identify whether a code-
transforming compiler is more suitable to the problem, or whether a hardware thread scheduler
is more applicable for eliminating emergencies.

• What techniques should the software utilize to eliminate emergencies? We must develop new
heuristics and algorithms that can aid software to smooth out emergencies, be it at the level
of transforming code or applying scheduling heuristics.

• What circuit and architecture knobs are required? Software might require hardware support to en-
able its optimizations, for instance to pass hints.Therefore, there needs to be a conjoined effort
at the hardware and software layers so that software can explicitly drive hardware execution
based on software’s global knowledge and analysis.

The work done so far shows the promise of the holistic-driven approach but much remains to
be done. We need a deeper understanding of how to integrate resiliency with today’s workflow of



110 8. FUTURE DIRECTIONS ON RESILIENCY

complex hardware and software running on real systems. We must learn to leverage the vast work on
hardware and software resiliency and develop systematic resiliency-aware design and optimization
solutions that abstract hardware faults to software and integrate with the full solution. We must
prototype, measure, evaluate, deploy, and revise.

8.2 APPLICATION-LEVEL RESILIENCY
Several large and important classes of applications can tolerate inaccuracies and errors in their
computation. Google Search is a classic example of an application domain where transparency is less
important. Google can detect and handle failures at the application level [10] because web search is
inherently resilient.The global search index is split into multiple shards and these shards are serviced
by multiple machines. Each of these shards is heavily replicated across numerous machines and, in
the event of a failure, control flow is dynamically redirected. Other good examples of error tolerant
applications are programs that come from the multimedia domain. A few bits errors in an image or
a video stream may still be acceptable, and probably not noticeable at the end-user level. Some other
examples include vision algorithms, machine learning, image processing, etc.

In order for application-level resiliency to succeed, we will need mechanisms that allow us
to clearly express the requirements in a flexible manner that can quantitatively indicate the room
for relaxing reliability constraints. For example, we need to have directives that capture the level
of deadline violations (of some form or another) that are tolerable. Also, different portions of the
programs may exhibit different degrees of resiliency and where and how to implement resiliency
features is largely a question of efficiency that we must study.

It is worth noting that it is now commonly understood in networking that the end-
user/application cannot avoid responsibility for overall correctness and reliability [84]. Decades of
research and and developments in communication resilience frameworks provide us with a basis of
confidence that the upper layers can systematically compensate for inherently error-prone low-level
physical layer and communication reliability issues. Notable are some fascinating and counterintu-
itive examples where end-to-end energy costs are minimized when the resilience requirements on
the lowest layers are deliberately relaxed.



111

Bibliography

[1] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: Towards
scalable large instruction window processors. In Proc. International Symposium on Microarchi-
tecture, (MICRO-36), 2003. DOI: 10.1109/MICRO.2003.1253246 56

[2] E. Alon and M. Horowitz. Integrated regulation for energy-efficient digital circuits. In Proc.
Custom Integrated Circuits Conference, 2007. DOI: 10.1109/JSSC.2008.925403 70

[3] H. Ando et al. A 1.3 ghz fifth-generation sparc64 microprocessor. In Proceedings of Design
Automation Conference, 2003. DOI: 10.1109/ISSCC.2003.1234286 49

[4] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T. Muta, T. Motokuru-
mada, S. Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and H. Sugiyama.
A 1.3ghz fifth generation SPARC64 microprocessor. In IEEE Journal of Solid-State Circuits,
2003. DOI: 10.1109/ISSCC.2003.1234286 56

[5] M. Annawaram, E. Grochowski, and P. Reed. Implications of Device Timing Varaiblity on
Full Chip Timing. In Proc. International Symposium on High-Performance Computer Architec-
ture, 2007. DOI: 10.1109/HPCA.2007.346183 67

[6] T.M.Austin. DIVA:A reliable substrate for deep submicron microarchitecture design. In Proc.
International Symposium on Microarchitecture,, 1999. DOI: 10.1109/MICRO.1999.809458 56

[7] K. Aygun, M. J. Hill, K. Eilert, R. Radhakrishnan, and A. Levin. Power delivery for high-
performance microprocessors. In Intel Technology Journal, 2005. DOI: 10.1535/itj.0904.02
14, 15, 58

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimization
system. In Proc. Programming Language Design and Implementation, 2000.
DOI: 10.1145/349299.349303 94

[9] L. A. Barroso. The price of performance: An economic case for chip multiprocessing. In
ACM Queue, 2005. DOI: 10.1145/1095408.1095420 109

[10] L.A.Barroso, J.Dean,and U.Holzle. Web search for a planet:The Google cluster architecture.
In IEEE Micro, 2003. DOI: 10.1109/MM.2003.1196112 110

http://dx.doi.org/10.1109/MICRO.2003.1253246
http://dx.doi.org/10.1109/JSSC.2008.925403
http://dx.doi.org/10.1109/ISSCC.2003.1234286
http://dx.doi.org/10.1109/ISSCC.2003.1234286
http://dx.doi.org/10.1109/HPCA.2007.346183
http://dx.doi.org/10.1109/MICRO.1999.809458
http://dx.doi.org/10.1535/itj.0904.02
http://dx.doi.org/10.1145/349299.349303
http://dx.doi.org/10.1145/1095408.1095420
http://dx.doi.org/10.1109/MM.2003.1196112


112 BIBLIOGRAPHY

[11] W. Becker, J. Eckhardt, R. Frech, G. Katopis, E. Klink, M. McAllister, T. McNamara,
P. Muench, S. Richter, and H. Smith. Modeling, simulation, and measurement of mid-
frequency simultaneous switching noise in computer systems. In IEEE Transactions on
Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, 1998.
DOI: 10.1109/96.673703 12

[12] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization
and architectural implications. In Proc. International Conference on Parallel Architectures and
Compilation Techniques, 2008. DOI: 10.1145/1454115.1454128 47

[13] D. Blaauw, R. Panda, and R. Chaudhry. In Design and analysis of power distribution networks.
IEEE Press, 2001. DOI: 10.1145/1454115.1454128 12

[14] S. Borkar. Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation. In IEEE Micro, 2005. DOI: 10.1109/MM.2005.110 1

[15] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter variations
and impact on circuits and microarchitecture. In Proc. Design Automation Conference, 2003.
DOI: 10.1109/DAC.2003.1219020 1

[16] K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S.-L. Lu, T. Karnik, and V. De.
Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance.
In IEEE Journal of Solid-State Circuits, 2009. DOI: 10.1109/JSSC.2008.2007148 53, 65

[17] K. Bowman, J. Tschanz, S. Lu, P. Aseron, M. Khellah, A. Raychowdhury, B. Geuskens,
C. Tokunaga, C. Wilkerson, T. Karnik, and V. De. A 45 nm resilient microproces-
sor core for dynamic variation tolerance. In IEEE Journal of Solid-State Circuits, 2011.
DOI: 10.1109/JSSC.2010.2089657 53, 54, 55, 65, 66, 67

[18] D. Bull, S. Das, K. Shivshankar, G. Dasika, K. Flautner, and D. Blaauw. A power-efficient 32b
arm isa processor using timing-error detection and correction for transient-error tolerance
and adaptation to pvt variation. In IEEE Solid-State Circuits Conference Digest of Technical
Papers, 2010. DOI: 10.1109/ISSCC.2010.5433919 65

[19] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez, and M. Valero.
Predictable performance in smt processors: Synergy between the os and smts. In IEEE
Transactions on Computers, 2006. DOI: 10.1109/TC.2006.108 50

[20] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache contention on
a chip multi-processor architecture. In Proc. International Symposium on High-Performance
Computer Architecture, 2005. DOI: 10.1109/HPCA.2005.27 50

[21] H. Chen and I. Nair. Power management and its impact on power supply noise. In Integrated
Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Lecture
Notes in Computer Science. 2010. DOI: 10.1007/978-3-642-11802-9_15 45

http://dx.doi.org/10.1109/96.673703
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/DAC.2003.1219020
http://dx.doi.org/10.1109/JSSC.2008.2007148
http://dx.doi.org/10.1109/JSSC.2010.2089657
http://dx.doi.org/10.1109/ISSCC.2010.5433919
http://dx.doi.org/10.1109/TC.2006.108
http://dx.doi.org/10.1109/HPCA.2005.27
http://dx.doi.org/10.1007/978-3-642-11802-9_15


BIBLIOGRAPHY 113

[22] Y. Chen, K. Roy, and C.-K. Koh. Current demand balancing: a technique for minimization
of current surge in high performance clock-gated microprocessors. In IEEE Transactions on
Very Large Scale Integration Systems, 2005. DOI: 10.1109/TVLSI.2004.840404 45

[23] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge. A
self-tuning dvs processor using delay-error detection and correction. In IEEE Journal of
Solid-State Circuits, 2006. DOI: 10.1109/JSSC.2006.870912 53

[24] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. Bull, and D. Blaauw.
Razor II: In Situ Error Detection and Correction for PVT and SER Tolerance. In IEEE
Journal of Solid-State Circuits, 2009. DOI: 10.1109/JSSC.2008.2007145 53, 65

[25] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman, J. Howard, J. Tschanz, V. Er-
raguntla, N. Borkar, V. De, and S. Borkar. Within-die variation-aware dynamic-voltage-
frequency-scaling with optimal core allocation and thread hopping for the 80-core teraflops
processor. In IEEE Journal of Solid-State Circuits, 2011. DOI: 10.1109/JSSC.2010.2080550
6

[26] A. Drake, R. Senger, H. Deogun, G. Carpenter, S. Ghiasi, T. Nguyen, N. James, M. Floyd,
and V. Pokala. A distributed critical-path timing monitor for a 65nm high-performance
microprocessor. In IEEE International Solid-State Circuits Conference, 2007.
DOI: 10.1109/ISSCC.2007.373462 72

[27] W. El-Essawy and D. Albonesi. Mitigating inductive noise in SMT processors. In Proc.
International Symposium on Low Power Electronics and Design, 2004.
DOI: 10.1109/LPE.2004.1349361 15, 98, 99, 100, 101

[28] A. El-Moursy and D. Albonesi. Front-end policies for improved issue efficiency in smt
processors. In Proc. International Symposium on High-Performance Computer Architecture, 2003.
DOI: 10.1109/HPCA.2003.1183522 101

[29] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, K. F. C. Ziesler D. Blaauw, T. Austin,
and T. Mudge. Razor: A low-power pipeline based on circuit-level timing speculation. In
Proc. International Symposium on Microarchitecture, 2003.
DOI: 10.1109/MICRO.2003.1253179 62

[30] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw,
T. Austin, K. Flautner, and T. Mudge. Razor: a low-power pipeline based on circuit-
level timing speculation. In Proc. International Symposium on Microarchitecture, 2003.
DOI: 10.1109/MICRO.2003.1253179 53, 65

[31] A. Fedorova. In Operating system scheduling for chip multithreaded processors. PhD thesis,
Harvard University, 2006. 50

http://dx.doi.org/10.1109/TVLSI.2004.840404
http://dx.doi.org/10.1109/JSSC.2006.870912
http://dx.doi.org/10.1109/JSSC.2008.2007145
http://dx.doi.org/10.1109/JSSC.2010.2080550
http://dx.doi.org/10.1109/ISSCC.2007.373462
http://dx.doi.org/10.1109/LPE.2004.1349361
http://dx.doi.org/10.1109/HPCA.2003.1183522
http://dx.doi.org/10.1109/MICRO.2003.1253179
http://dx.doi.org/10.1109/MICRO.2003.1253179


114 BIBLIOGRAPHY

[32] P. Franco and E. McCluskey. On-line delay testing of digital circuits. In Proc. IEEE VLSI
Test Symposium, 1994. DOI: 10.1109/VTEST.1994.292318 53

[33] P. Franco and E. J. McCluskey. Delay testing of digital circuits by output waveform analysis.
In Proc. IEEE International Test Conference, 1991. DOI: 10.1109/TEST.1991.519745 53

[34] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in the design of the alpha
21264 microprocessor. In Proceedings of Design Automation Conference, 1998.
DOI: 10.1145/277044.277226 45

[35] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural simulation and control of di/dt-
induced power supply voltage variation. In Proc. International Symposium on High-Performance
Computer Architecture, 2002. DOI: 10.1109/HPCA.2002.995694 69, 70

[36] M. Gupta, V. Reddi, G. Holloway, G.-Y. Wei, and D. Brooks. An event-guided approach to
reducing voltage noise in processors. In Proc. Design, Automation and Test in Europe, 2009.
DOI: 10.1109/DATE.2009.5090651 36, 78, 79, 82

[37] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. Brooks. Understanding voltage
variations in chip multiprocessors using a distributed power-delivery network. In Proc. Design,
Automation and Testing in Europe, 2007. DOI: 10.1109/DATE.2007.364663 14, 44

[38] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks. Towards a Software
Approach to Mitigate Voltage Emergencies. In Proc. International Symposium on Low Power
Electronics and Design, 2007. DOI: 10.1145/1283780.1283808 30, 31, 34, 37, 39, 86

[39] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. Brooks. DeCoR: A Delayed Com-
mit and Rollback mechanism for handling inductive noise in processors. In Proc. International
Symposium on High-Performance Computer Architecture, 2008.
DOI: 10.1109/HPCA.2008.4658654 49, 58

[40] K. Hazelwood and D. Brooks. Eliminating voltage emergencies via microarchitectural voltage
control feedback and dynamic optimization. In Proc. International Symposium on Low Power
Electronics and Design, 2004. DOI: 10.1145/1013235.1013315 30, 36, 39, 57, 85, 94, 96

[41] R. Heald, K. Aingaran, C. Amir, M. Ang, M. Boland, P. Dixit, G. Gouldsberry, D. Greenley,
J. Grinberg, J. Hart, T. Horel, W.-J. Hsu, J. Kaku, C. Kim, S. Kim, F. Klass, H. Kwan,
G. Lauterbach, R. Lo, H. McIntyre, A. Mehta, D. Murata, S. Nguyen, Y.-P. Pai, S. Patel,
K. Shin, K. Tam, S. Vishwanthaiah, J. Wu, G. Yee, and E. You. A third-generation sparc v9
64-b microprocessor. In IEEE Journal of Solid-State Circuits, 2000. DOI: 10.1109/4.881196
12

[42] D. Herell and B. Becker. Modelling of power distribution systems for high-performance
microprocessors. In IEEE Transactions on Advanced Packaging, volume 22, 1999.
DOI: 10.1109/6040.784471 15, 16

http://dx.doi.org/10.1109/VTEST.1994.292318
http://dx.doi.org/10.1109/TEST.1991.519745
http://dx.doi.org/10.1145/277044.277226
http://dx.doi.org/10.1109/HPCA.2002.995694
http://dx.doi.org/10.1109/DATE.2009.5090651
http://dx.doi.org/10.1109/DATE.2007.364663
http://dx.doi.org/10.1145/1283780.1283808
http://dx.doi.org/10.1109/HPCA.2008.4658654
http://dx.doi.org/10.1145/1013235.1013315
http://dx.doi.org/10.1109/4.881196
http://dx.doi.org/10.1109/6040.784471


BIBLIOGRAPHY 115

[43] D.Herrell and B.Beker. Modeling of power distribution systems for high-performance micro-
processors. In IEEE Transactions on Advanced Packaging, 1999. DOI: 10.1109/6040.784471
12

[44] H. L. Ho, J. John E. Barth, R. Divakaruni, W. F. Ellis, J. E. Faltermeier, B. A. Anderson, S. S.
Iyer, D.-K. Kim, R. W. Mann, and P. C. Parries. Low-cost deep trench decoupling capacitor
device and process of manufacture. United States Patent 7,193,262, 2007. 45

[45] Intel. Intel Pentium 4 processor in the 423 pin/package /Intel 850 chipset platform, 2002.
14

[46] International Technology Roadmap for Semiconductors. In Process integration, devices and
structures, 2002. 47

[47] International Technology Roadmap for Semiconductors. In Process integration, devices and
structures, 2007. 5

[48] International Technology Roadmap for Semiconductors. In Process integration, devices and
structures, 2007. 44

[49] N. James, P. Restle, J. Friedrich, B. Huott, and B. McCredie. Comparison of split-versus
connected-core supplies in the POWER6 microprocessor. In Proc. International Solid-State
Circuits Conference, 2007. DOI: 10.1109/ISSCC.2007.373412 43

[50] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate voltage emergen-
cies in high performance processors. In Proc. International Symposium on High-Performance
Computer Architecture, 2003. DOI: 10.1109/HPCA.2003.1183526 36, 37, 69, 70, 76, 77

[51] S. Kanev, T. M. Jones, G.-Y. Wei, D. Brooks, and V. J. Reddi. Measuring code optimization
impact on voltage noise. In Workshop on Silicon Errors in Logic - System Effects, 2013. 88, 92

[52] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. In Workshop on Memory
Performance Issues, 2002. 99

[53] T. Karnik. Embedded error correction using resilient circuits: is this for real? In ISAT Workshop
on Resilient Computing Frameworks, 2013. DOI: 10.1145/1687399.1687414 66

[54] Y. Kim, L. K. John, S. Pant, S. Manne, M. Schulte, W. L. Bircher, and M. S. S. Govindan.
Audit: Stress testing the automatic way. In Proc. International Symposium on Microarchitecture,
2012. 40, 41

[55] N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez. Checkpointed early load retirement.
In Proc. International Symposium on High-Performance Computer Architecture, 2005.
DOI: 10.1109/HPCA.2005.9 49, 56

http://dx.doi.org/10.1109/6040.784471
http://dx.doi.org/10.1109/ISSCC.2007.373412
http://dx.doi.org/10.1109/HPCA.2003.1183526
http://dx.doi.org/10.1145/1687399.1687414
http://dx.doi.org/10.1109/HPCA.2005.9


116 BIBLIOGRAPHY

[56] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations to improve
performance in multicore systems. In IEEE Micro, 2008. DOI: 10.1109/MM.2008.48 50

[57] J. U. Knickerbocker, P. S. Andry, B. Dang, R. R. Horton, M. J. Interrante, C. S. Patel, R. J.
Polastre,K.Sakuma,R.Sirdeshmukh,E. J.Sprogis,S.M.Sri-Jayantha,A.M.Stephens,A.W.
Topol, C. K. Tsang, B. C. Webb, and S. L. Wright. Three-dimensional silicon integration. In
IBM Journal of Research and Development, 2008. DOI: 10.1147/JRD.2008.5388564 45

[58] C. R. Lefurgy, A. J. Drake, M. S. Floyd, M. S. Allen-Ware, B. Brock, J. A. Tierno, and J. B.
Carter. Active management of timing guardband to save energy in POWER7. In Proc.
International Symposium on Microarchitecture, 2011. DOI: 10.1145/2155620.2155622 69

[59] M. Mack, W. Sauer, S. Swaney, and B. Mealy. IBM POWER6 reliability. In IBM Journal of
Research and Development, 2007. DOI: 10.1147/rd.516.0763 55, 62

[60] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. Contention aware execution: online
contention detection and response. In Proc. International Symposium on Code Generation and
Optimization, 2010. DOI: 10.1145/1772954.1772991 50

[61] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrellas. Cherry: Checkpointed
early resource recycling in out-of-order microprocessors. In Proc. International Symposium on
Microarchitecture, 2002. DOI: 10.1109/MICRO.2002.1176234 49, 56

[62] A. A. Merchant, D. J. Sagger, and D. D. Boggs. Computer processor with a replay system.
United States Patent 6,163,838, 2000. 63

[63] T. N. Miller, R. Thomas, X. Pan, and R. Teodorescu. Vrsync: characterizing and eliminating
synchronization-induced voltage emergencies in many-core processors. In Proc. International
Symposium on Computer Architecture, 2012. DOI: 10.1145/2366231.2337188 101, 103

[64] F. Mohamood, M. B. Healy, S. K. Lim, and H.-H. S. Lee. Noise-direct: A technique for
power supply noise aware floorplanning using microarchitecture profiling. In Proc. Asia and
South Pacific Design Automation Conference, 2007. DOI: 10.1109/ASPDAC.2007.358085 45

[65] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin. Measuring architectural
vulnerability factors. In IEEE Micro, 2003. DOI: 10.1109/MM.2003.1261389 56

[66] S. Mutoh, T. Matsuya, Y. Aoki, T. Shigematsu, S. Yamada, and J. Kanagawa. 1-V power
supply high-speed digital circuit technology with multithreshold voltage CMOS. In IEEE
Journal of Solid-State Circuits, 1995. DOI: 10.1109/4.400426 59

[67] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging. In Proc. International Symposium on Computer
Architecture, 2005. DOI: 10.1145/1080695.1069994 49, 56

http://dx.doi.org/10.1109/MM.2008.48
http://dx.doi.org/10.1147/JRD.2008.5388564
http://dx.doi.org/10.1145/2155620.2155622
http://dx.doi.org/10.1147/rd.516.0763
http://dx.doi.org/10.1145/1772954.1772991
http://dx.doi.org/10.1109/MICRO.2002.1176234
http://dx.doi.org/10.1145/2366231.2337188
http://dx.doi.org/10.1109/ASPDAC.2007.358085
http://dx.doi.org/10.1109/MM.2003.1261389
http://dx.doi.org/10.1109/4.400426
http://dx.doi.org/10.1145/1080695.1069994


BIBLIOGRAPHY 117

[68] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue nanometer technologies.
In Proc. IEEE VLSI Test Symposium, 1999. DOI: 10.1109/VTEST.1999.766651 53

[69] M. D. Pant et al. An architectural solution for the inductive noise problem due to clock-
gating. In Proc. International Symposium on Low Power Electronics and Design, 1999.
DOI: 10.1145/313817.313938 69

[70] M. D. Pant, P. Pant, and D. S. Wills. On-chip decoupling capacitor optimization using
architectural level prediction. In IEEE Transactions on Very Large Scale Integration Systems,
2002. DOI: 10.1109/TVLSI.2002.1043335 45

[71] M. Popovich, A. Mezhiba, and E. G. Friedman. In Power Distribution Networks with On-Chip
Decoupling Capacitors. Springer, first edition, 2007. 45

[72] M. Powell and T. N. Vijaykumar. Exploiting resonant behavior to reduce inductive noise. In
Proc. International Symposium on Computer Architecture, 2004.
DOI: 10.1145/1028176.1006726 27, 69, 70, 76, 77

[73] M. D. Powell and T. N. Vijaykumar. Pipeline damping: A microarchitectural technique
to reduce inductive noise in supply voltage. In Proc. International Symposium on Computer
Architecture, 2003. DOI: 10.1145/871656.859628 70

[74] M. D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori current ramping: architec-
tural techniques to reduce high-frequency inductive noise. In Proc. International Symposium
on Low Power Electronics and Design, 2003. DOI: 10.1145/871506.871562 69, 70

[75] V.Reddi,M.Gupta,M.Smith,G.yeon Wei,D.Brooks, and S.Campanoni. Software-assisted
hardware reliability: Abstracting circuit-level challenges to the software stack. In Proc. Design
Automation Conference, 2009. DOI: 10.1145/1629911.1630114 39, 96

[76] V. J. Reddi, S. Campanoni, M. S. Gupta, M. D. Smith, G.-Y. Wei, D. Brooks, and K. Hazel-
wood. Eliminating voltage emergencies via software-guided code transformations. In ACM
Transactions on Architecture and Code Generation and Optimization, 2010.
DOI: 10.1145/1839667.1839674 97

[77] V. J. Reddi, M. Gupta, G. Holloway, M. D. Smith, G.-Y. Wei, and D. Brooks. Predicting
voltage droops using recurring program and microarchitectural event activity. In IEEE Micro,
2010. DOI: 10.1109/MM.2010.25 83

[78] V. J. Reddi, M. S. Gupta, G. Holloway, M. Smith, G.-Y. Wei, and D. Brooks. Voltage
emergency prediction: A signature-based approach to reducing voltage emergencies. In Proc.
International Symposium on High-Performance Computer Architecture, 2009. 30, 79, 83

http://dx.doi.org/10.1109/VTEST.1999.766651
http://dx.doi.org/10.1145/313817.313938
http://dx.doi.org/10.1109/TVLSI.2002.1043335
http://dx.doi.org/10.1145/1028176.1006726
http://dx.doi.org/10.1145/871656.859628
http://dx.doi.org/10.1145/871506.871562
http://dx.doi.org/10.1145/1629911.1630114
http://dx.doi.org/10.1145/1839667.1839674
http://dx.doi.org/10.1109/MM.2010.25


118 BIBLIOGRAPHY

[79] V. J. Reddi, M. S. Gupta, K. K. Rangan, S. Campanoni, G. Holloway, M. D. Smith, G. yeon
Wei, and D. Brooks. Voltage noise: Why it’s bad, and what to do about it. In Workshop on
Silicon Errors in Logic - System Effects, 2009. 44

[80] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y. Wei, and D. Brooks.
Voltage smoothing: Characterizing and mitigating voltage noise in production processors via
software-guided thread scheduling. In Proc. International Symposium on Microarchitecture,
2010. DOI: 10.1109/MICRO.2010.35 35, 36, 40, 44, 47, 48, 90, 102

[81] A. Rogers, D. Kaplan, E. Quinnell, and B. Kwan. The core-c6 (cc6) sleep state of the amd
bobcat x86 microprocessor. In Proc. International Symposium on Low Power Electronics and
Design, 2012. DOI: 10.1145/2333660.2333745 22

[82] E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Micropro-
cessors. In Proc. International Symposium on Fault-Tolerant Computing, 1999.
DOI: 10.1109/FTCS.1999.781037 56

[83] S. Rusu et al. A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache. In IEEE
Journal of Solid-State Circuits, 2006. DOI: 10.1109/ISSCC.2006.1696062 60

[84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. In ACM
Transactions on Computer Systems, 1984. DOI: 10.1145/357401.357402 110

[85] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin. Ultra Low-Cost De-
fect Protection for Microprocessor Pipelines. In Proc. Architectural Support for Programming
Languages and Operating Systems, 2006. DOI: 10.1145/1168919.1168868 49, 56

[86] T. Slegel et al. IBM’s S/390 G5 microprocessor design. In IEEE Micro, 1999.
DOI: 10.1109/40.755464 49

[87] L. Smith, R. E. Anderson, and T. Roy. Chip-package resonance in core power supply struc-
tures for a high power microprocessor. In Proc. International Electronic Packaging Technical
Conference and Exibition, 2001. 15, 16

[88] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous mutlithreading
processor. In Proc. International Symposium on Architectural Support for Programming Languages
and Operating Systems, 2000. DOI: 10.1145/378995.379244 50

[89] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast checkpoint/recovery
to support kilo-instruction speculation and hardware fault tolerance. Computing science
technical report, University of Wisconsin-Madison, 2000. 49, 56

[90] L. Spainhower and T. Gregg. G4: A fault-tolerant CMOS mainframe. In Proc. International
Symposium on Fault-Tolerant Computing, 1998. DOI: 10.1109/FTCS.1998.689495 56

http://dx.doi.org/10.1109/MICRO.2010.35
http://dx.doi.org/10.1145/2333660.2333745
http://dx.doi.org/10.1109/FTCS.1999.781037
http://dx.doi.org/10.1109/ISSCC.2006.1696062
http://dx.doi.org/10.1145/357401.357402
http://dx.doi.org/10.1145/1168919.1168868
http://dx.doi.org/10.1109/40.755464
http://dx.doi.org/10.1145/378995.379244
http://dx.doi.org/10.1109/FTCS.1998.689495


BIBLIOGRAPHY 119

[91] X. Tang, V. De, and J. Meindl. Intrinsic mosfet parameter fluctuations due to random dopant
placement. In IEEE Transactions on Very Large Scale Integration Systems, 1997.
DOI: 10.1109/92.645063 1

[92] M. Toburen. Power analysis and instruction scheduling for reduced di/dt in the execution
core of high-performance microprocessors. Master’s thesis, NC State University, USA, 1999.
93

[93] D. M.Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous multithreading
processor. In Proc. International Symposium on Microarchitecture, 2001.
DOI: 10.1109/MICRO.2001.991129 99

[94] A. Uht. Achieving typical delays in synchronous systems via timing error toleration. Electrical
and computer engineering tech report 032000-0100, University of Rhode Island, 2000. 62

[95] X. Vera, O. Unsal, and A. Gonzalez. X-pipe: An adaptive resilient microarchitecture for
parameter variations. In Proc. Workshop on Architectural Support for Gigascale Integration, 2006.
62

[96] N. J.Wang and S. J.Patel. ReStore: Symptom-Based Soft Error Detection in Microprocessors.
In IEEE Transactions on Dependable and Secure Computing, 2006.
DOI: 10.1109/TDSC.2006.40 49, 56

[97] S. Wijeratne, N. Siddaiah, S. Mathew, M. Anders, R. Krishnamurthy, R. Anderson, J. S.
Hwang,M.Ernest, and M.Nardin. A 9Ghz 65nm intel pentium 4 processor integer execution
core. In IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 2006.
DOI: 10.1109/ISSCC.2006.1696066 59

[98] H.-S.Yun and J. Kim. Power-aware modulo scheduling for high-performance vliw processors.
In Proc. International Symposium on Low Power Electronics and Design, 2001.
DOI: 10.1109/LPE.2001.945369 93

[99] W. Zhao and Y. Cao. New generation of predictive technology model for sub-45nm early
design exploration. In IEEE Transactions on Electron Devices, 2006.
DOI: 10.1109/TED.2006.884077 43, 83

[100] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention in
multicore processors via scheduling. In Proc. Architectural Support for Programming Languages
and Operating Systems, 2010. 50

http://dx.doi.org/10.1109/92.645063
http://dx.doi.org/10.1109/MICRO.2001.991129
http://dx.doi.org/10.1109/TDSC.2006.40
http://dx.doi.org/10.1109/ISSCC.2006.1696066
http://dx.doi.org/10.1109/LPE.2001.945369
http://dx.doi.org/10.1109/TED.2006.884077




121

Authors’ Biographies

VIJAY JANAPA REDDI
Vijay Janapa Reddi is an Assistant Professor in the Department
of Electrical and Computer Engineering at The University of
Texas in Austin. His research interests are in the area of computer
systems, focusing on the interactions between hardware and soft-
ware. He explores new opportunities and synergies for cross-layer
solutions that improve processor- and system-level power, perfor-
mance and reliability. He has co-authored over 30 papers in these
areas, and has papers selected as IEEE Micro Top Picks and re-
ceived Best Paper Awards.

Dr. Janapa Reddi has also worked in the computer industry, specifically focusing on processor
architecture and compiler aspects at companies such as Intel, VMware, AMD Research, and Mi-
crosoft Research. One of his most significant contributions to the community is the Pin dynamic
compiler that he co-authored on a 4-year stint at Intel. Pin is widely used in academia and industry
for program introspection and analysis.

Dr. Janapa Reddi received his Ph.D. in Computer Science from Harvard University. He has
a M.S. degree from the Department of Electrical and Computer Engineering at the University of
Colorado at Boulder. His B.S. degree is from the Computer Engineering department at Santa Clara
University.



122 AUTHORS’ BIOGRAPHIES

MEETA S. GUPTA
Meeta S. Gupta is a Research Staff Member in the Reliabil-
ity and Power-Aware Microarchitecture department at IBM T.
J. Watson Research Center. Her research interests include high-
performance computing, reliability, and power-aware computer
architecture design. Dr. Gupta is involved in general areas of pro-
cessor reliability, inductive noise, and Exascale systems. Microar-
chitectural techniques for reliability enhancement have also been
part of her research focus.

Dr. Gupta received her Ph.D. degree in Electrical and
Computer Engineering from Harvard University. She received a Master’s in EE from the Uni-
versity of Southern California, Los Angeles, and a Bachelor’s degree in Electrical Engineering from
the Indian Institute of Technology, Delhi. Dr. Gupta also held positions in Advanced Mobile Net-
working Group at Lucent Bell Labs and in the High-Performance Computing group at IBM India
Research Labs, Delhi. Dr. Gupta was the recipient of the IBM Ph.D. Fellowship.


	Preface
	Acknowledgments
	Introduction
	Parameter Variations
	Worst-Case Design
	Design for the Typical Case
	Scope of the Book

	Modeling Voltage Variation
	A Quick Primer
	The Power-Delivery Network (PDN) Subsystem
	Distributed Grid Model
	Impulse-Response-Based Model
	Sparse Grid Model

	Summary

	Understanding the Characteristics of Voltage Variation
	Current Pulses
	PDN Charactierstics
	Microarchitectural Events
	Program Behavior
	Summary

	Traditional Solutions and Emerging Solution Forecast
	Traditional Static Techniques
	Voltage Margins
	Decoupling Capacitors
	Floorplanning

	Toward Dynamic Techniques
	Tolerance
	Avoidance
	Elimination

	Summary

	Allowing and Tolerating Voltage Emergencies
	Error Detection
	Global Recovery
	Checkpoint Recovery
	Delayed Commit and Rollback

	Local Recovery
	Razor
	Summary

	Predicting and Avoiding Voltage Emergencies
	Sensor-Based Throttling
	Design
	Challenges

	Event-Based Throttling
	Single-Event Predictors
	Signature-Based Prediction

	Summary

	Eliminiating Recurring Voltage Emergencies
	Opportunities and Challenges
	Opportunities
	Challenges

	Compiler Techniques
	Static Compiler
	Dynamic Compiler

	Thread Scheduling
	Interthread Interference
	Voltage Smoothing
	Benefits and Tradeoffs

	Summary

	Future Directions on Resiliency
	System-Level Resiliency
	Application-Level Resiliency

	Bibliography
	Authors' Biographies

