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Abstract—
Transient faults are emerging as a critical concern in the relia-

bility of general-purpose microprocessors. As architectural trends
point towards multi-core designs, there is substantial interest in
adapting such parallel hardware resources for transient fault
tolerance. This paper presents process-level redundancy (PLR), a
software technique for transient fault tolerance which leverages
multiple cores for low overhead. PLR creates a set of redundant
processes per application process, and systematically compares
the processes to guarantee correct execution. Redundancy at
the process level allows the operating system to freely schedule
the processes across all available hardware resources. PLR uses
a software-centric approach to transient fault tolerance which
shifts the focus from ensuring correct hardware execution to
ensuring correct software execution. As a result, many benign
faults that do not propagate to affect program correctness
can be safely ignored. A real prototype is presented that is
designed to be transparent to the application and can run on
general-purpose single-threaded programs without modifications
to the program, operating system, or underlying hardware. The
system is evaluated for fault coverage and performance on 4-way
SMP machine, and provides improved performance over existing
software transient fault tolerance techniques with an 16.9%
overhead for fault detection on a set of optimized SPEC2000
binaries.

Index Terms—fault tolerance, reliability, transient faults, soft
errors, process-level redundancy

I. INTRODUCTION

TRANSIENT faults, also known as soft errors, are emerg-
ing as a critical concern in the reliability of computer

systems [1], [2]. A transient fault occurs when an event (e.g.
cosmic particle strikes, power supply noise, device coupling)
causes the deposit or removal of enough charge to invert the
state of a transistor. The inverted value may propagate to cause
an error in program execution.

Current trends in process technology indicate that the fu-
ture error rate of a single transistor will remain relatively
constant [3], [4]. As the number of available transistors per
chip continues to grow exponentially, the error rate of for
an entire chip is expected to increase dramatically. These
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trends indicate that to ensure correct operation of systems, all
general-purpose microprocessors and memories must employ
reliability techniques.

Transient faults have historically been a design concern
in specific computing environments (e.g. spacecrafts, high-
availability server machines) in which the key system char-
acteristics are reliability, dependability, and availability. While
memory is easily protected with error-correcting code (ECC)
and parity, protecting the complex logic within a high-
performance microprocessor presents a significant challenge.
Custom hardware designs have added 20-30% additional logic
to add redundancy to mainframe processors and cover up-
wards of 200,000 latches [5], [6]. Other approaches include
specialized machines with custom hardware and software
redundancy [7], [8].

However, the same customized techniques can not be
directly adopted for the general-purpose computing do-
main. Compared to the ultra-reliable computing environments,
general-purpose systems are driven by a different, and often
conflicting, set of factors. These factors include:

• Application Specific Constraints: In ultra-reliable en-
vironments, such as spacecraft systems, the result of
an transient error can be the difference between life or
death. For general-purpose computing, the consequences
of faulty execution may greatly vary. While a fault during
the execution of bank transaction software would be
disastrous, there are many cases in which the result of
a fault is much less severe. For instance, in graphics
processing, or audio decode and playback, a fault results
in a mere glitch which may not even be noticed by the
user. Thus, the focus for reliability shifts from providing
a bullet-proof system to improving reliability to meet user
expectations of failure rates.

• Design Time and Cost Constraints: In the general-
purpose computing market, low cost and a quick time
to market are paramount. The design and verification of
new redundant hardware is costly and may not be feasible
in cost-sensitive markets. In addition, the inclusion of
redundant design elements may negatively impact the
design and product cycles of systems.

• Post-Design Environment Techniques: A system’s sus-
ceptibility to transient faults is often unplanned for
and appears after design and fabrication. For example,
during the deployment of the ASC Q supercomputer,
the scientists at the Los Alamos National Laboratory
documented a high incidence of failures due to transient
faults [2]. Also, Sun Microsystems documented a case in
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which faults to unprotected memories have caused system
crashes at customer sites [1]. It is not difficult to imagine
history repeating itself with unforeseen problems during
hardware design manifesting themselves after deploy-
ment. Likewise, conditions such as altitude, temperature,
and age can cause higher fault rates [9]. In these cases,
it is necessary to employ reliability techniques which are
able to augment systems after deployment.

With such pressures driving general-purpose computing,
software reliability techniques are an attractive solution for
improving reliability in the face of transient faults. While
software techniques cannot provide a level of reliability
comparable to hardware techniques, they significantly lower
costs (zero hardware design cost), and are very flexible in
deployment. Existing software transient fault tolerant ap-
proaches use the compiler to insert redundant instructions for
checking computation [10], control flow [11], or both [12].
The compiler-based software techniques suffer from a few
limitations. First, the execution of the inserted instructions
and assertions decreases performance (∼1.4x slowdown [12]
for fault detection). Second, a compiler approach requires
recompilation of all applications. Not only is it inconvenient
to recompile all applications and libraries, but the source code
for legacy programs is often unavailable.

This paper presents process-level redundancy (PLR), a
software-implemented technique for transient fault tolerance.
PLR creates a set of redundant processes per original appli-
cation process and compares their output to ensure correct
execution. The redundant processes can be freely scheduled
by the operating system (OS) to available parallel hardware
resources. PLR scales with the architectural trend towards
large many-core machines and leverages available hardware
parallelism to improve performance without any additional
redundant hardware structures or modifications to the sys-
tem. In computing environments which are not throughput-
constrained, PLR provides an alternate method of leveraging
the hardware resources for transient fault tolerance.

This paper makes the following contributions:

• Introduces a software-centric paradigm of transient fault
tolerance which views the system as software layers
which must execute correctly. In contrast, the typical
hardware-centric paradigm views the system as a collec-
tion of hardware that must be protected. We differentiate
between software-centric and hardware-centric views us-
ing the commonly accepted sphere of replication concept.

• Demonstrates the benefits of a software-centric approach.
In particular, we show how register errors propagate
through software. We show that many of the errors
result in benign faults and many detected faults prop-
agate through hundreds or thousands of instructions. A
software-centric approach is able to ignore many of these
benign faults.

• Presents a real prototype PLR system which operates
transparently to the application, and leverages multiple
general-purpose microprocessor cores for for transient
fault tolerance. We evaluate the fault coverage and per-
formance of of the prototype and find that it runs a set

of the SPEC2000 benchmark suite with only a 16.9%
overhead on a 4-way SMP system. This represents a sig-
nificant performance improvement over previous software
implemented transient fault tolerance techniques.

• Maintaining determinism between redundant processes is
the biggest challenge in implementing PLR. We present
and evaluate software-only approaches for deterministi-
cally handling asynchronous signals and shared memory
accesses across the redundant processes. We also evaluate
the performance impact of using these techniques for
maintaining determinism.

The rest of this paper is organized as follows. Section II
provides background on transient fault tolerance. Section III
describes the software-centric fault detection model and Sec-
tion IV describes the PLR architecture. Section V shows
results from the PLR prototype. Section VI discusses related
work. Section VII concludes the paper.

II. BACKGROUND

In general, a fault can be classified by its effect on system
execution into the following categories [13]:

• Benign Fault: A transient fault which does not propagate
to affect the correctness of an application is considered
a benign fault. A benign fault can occur for a number
of reasons. Examples include a fault to an idle functional
unit, a fault to a performance-enhancing instruction (i.e. a
prefetch instruction), data masking, and Y-branches [14].
Wang [15] shows that less than 15% of faults injected into
a register transfer level (RTL) model of a processor result
in software visible errors indicating that many transient
faults are benign faults.

• Silent Data Corruption (SDC): A transient fault which
is undetected and propagates to corrupt program output is
considered a SDC. This is the worst case scenario where
an application appears to execute correctly but silently
produces incorrect output.

• Detected Unrecoverable Error (DUE): A transient fault
which is detected without possibility of recovery is con-
sidered a DUE. DUEs can be split into two categories. A
true DUE occurs when a fault which would propagate to
incorrect execution is detected. A false DUE occurs when
a benign fault is detected as a fault. Without recovery, a
false DUE will cause the system to unnecessarily halt
execution and with recovery, a false DUE will cause
unwarranted invocations to the recovery mechanism.

A transient fault in a system without transient fault tolerance
will result in a benign fault, SDC, or true DUE (e.g. error
detected by raising a trap). A system with only detection
attempts to detect all of the true DUEs and SDCs. However,
the system may inadvertently convert some of the benign faults
into false DUEs and unnecessarily halt execution. Finally,
a system with both detection and recovery will detect and
recover from all faults without SDCs or any form of DUE.
In this case, faults which would be false DUEs may cause
unwarranted invocations to the recovery mechanism.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

PLR SoRProcessor

Cache

DevicesMemory

Application Libraries

Operating System

(a) Hardware−centric (b) Software−centric

Processor SoR

Fig. 1. Hardware-centric and software-centric transient fault detection
models. A software-centric model (e.g., PLR) views the system as the software
layers and places the sphere of influence around particular software layers.

III. SOFTWARE-CENTRIC FAULT DETECTION

The sphere of replication (SoR) [16] is a commonly ac-
cepted concept for describing a technique’s logical domain of
redundancy and specifying the boundary for fault detection
and containment. Any data which enters the SoR is replicated
and all execution within the SoR is redundant in some form.
Before leaving the SoR, all output data is compared to
ensure correctness. All execution outside of the SoR is not
covered by the particular transient fault techniques and must
be protected by other means. Faults are contained within the
SoR boundaries and detected in any data leaving the SoR.

The original concept of the SoR is used for defining the
boundary of reliability in redundant hardware design. We
call this traditional model a hardware-centric fault detection
model which uses a hardware-centric SoR. The hardware-
centric model views the system as a collection of hardware
components which must be protected from transient faults.
In this model, the hardware-centric SoR is placed around
specific hardware units. All inputs are replicated, execution
is redundant, and output is compared.

While the hardware-centric model is appropriate for
hardware-implemented techniques, it is awkward to apply
the same approach to software. The reason is that software
naturally operates at a different level and does not have full
visibility into the hardware. Nevertheless, previous compiler-
based approaches attempt to imitate a hardware-centric SoR.
For example, SWIFT [12] places its SoR around the proces-
sor as shown in Figure 1(a). Without the ability to control
duplication of hardware, SWIFT duplicates at the instruction
level. Each load is performed twice for input replication and
all computation is performed twice on the replicated inputs.
Output comparison is accomplished by checking the data of
each store instruction prior to executing the store instruction.
This particular approach works because it is possible to
emulate processor redundancy with redundant instructions.
However, other hardware-centric SoRs would be impossible
to emulate with software. For example, software alone cannot
implement an SoR around hardware caches.

Software-centric fault detection is a paradigm in which the
system is viewed as the software layers that must execute
correctly. A software-centric model uses a software-centric
SoR which is placed around software layers, instead of hard-
ware components. Defining the SoR in terms of software
provides software-implemented technique with more natural

boundaries for fault detection. Also, the software-centric mode
makes this key insight: although faults occur at the hardware
level, the only faults which matter are the faults which affect
software correctness. By changing the boundaries of output
comparison to software, a software-centric model shifts the
focus from ensuring correct hardware execution to ensuring
correct software execution. Benign faults are safely ignored.
A software-centric system with only detection coverts errors
than would propagate into incorrect software output as DUEs.
A software-centric system with both detection and recovery
will not need to invoke the recovery mechanism for faults
which do not affect correctness.

Figure 1(b) shows an example software-centric SoR which
is placed around the user space application and libraries
(as used by PLR). A software-centric SoR acts exactly the
same as the hardware-centric SoR except that it acts on the
software instead of the hardware. Again, all input is replicated,
execution within the SoR is redundant, and data leaving the
SoR is compared.

While software has limited visibility into hardware, it is able
to view a fault at a broader scope and determine its effect on
software execution. Thus, software-implemented approaches
which are hardware-centric are ignoring the potential strengths
of a software approach. In Section V-A, we demonstrate PLR’s
ability to ignore many benign faults through a fault injection
campaign.

IV. PROCESS-LEVEL REDUNDANCY (PLR)

PLR is a software approach to transient fault tolerance
that is designed to run transparently on general-purpose ap-
plications without modifications to the application, operating
system, or underlying hardware. These specific characteristics
are described in detail below:

• Transparency: PLR operates transparently to the user
and the application. Even though PLR creates multiple
redundant processes per original application process, it
maintains all user-expected process semantics. The ap-
plication is also unaware of PLR and does not need to
be modified or recompiled to run with PLR.

• Software-implemented: PLR is implemented entirely in
software and runs in user space under the application.
In this manner, PLR is able to provides transient fault
tolerance without requiring modifications to the operating
system or underlying hardware. In addition, software im-
plementation makes PLR extremely flexible. Applications
which must be reliable can be run with PLR, while other
applications run regularly.

• Software-centric: PLR uses a software-centric approach
to fault detection with an SoR around the user-space
application and its associated shared libraries. All user-
space execution is redundant and faults are only detected
if they result in incorrect data exiting user space. This
extends the checking boundaries for fault detection as
compared to most other transient fault tolerance tech-
niques and allows PLR to ignore many benign faults.

• Replica-based: PLR uses process replicas to provide
redundancy. PLR replicates the entire process virtual
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address space as well as the process meta-data such as file
descriptors. In addition, PLR automatically creates and
coordinates among the redundant processes to maintain
determinism among the processes, detect transient faults,
and recover from detected faults. Operating at the process
level has a distinct advantage in that processes are also
a basic abstraction of the OS. Therefore, PLR can lever-
age multiple hardware resources such as extra hardware
threads or cores by simply allowing the OS to schedule
the replicas across all available hardware resources.

A. PLR Overview

An overview of the PLR system is shown in Figure 2.
PLR gains control of an application before it begins to
execute and begins its initialization phase. First, PLR creates
a monitor process and then initializes meta-data including a
shared memory segment used for inter-process communica-
tion. Then, PLR forks the application N times, with N=2 as
the minimum for fault detection and N=3 as the minimum
for fault detection and fault recovery. These processes are the
redundant processes, which actually perform the execution of
the application. One of the redundant processes is labeled the
master process and the others are labeled the slave processes.
During execution of the redundant processes, the system call
emulation unit coordinates system I/O among the redundant
processes. In general, the master process is allowed to perform
system I/O while the slave processes emulate system I/O.
The system call emulation unit also enforces the software-
centric fault detection model and implements transient fault
detection and recovery. A watchdog timer is attached to the
system call emulation unit which is used to detect cases in
which a fault causes one of the redundant processes to hang
indefinitely. After initialization and the redundant processes
are created, the original process becomes a figurehead process.
The figurehead process does not do any real work. It only waits
for the redundant processes to finish execution, and forwards
signals to the redundant processes.

The following subsections describe the PLR system in
further detail and discuss issues with transparency, maintaining
determinism among process replicas, and transient fault detec-
tion and recovery. While describing the implementation details

and challenges, we attempt to stay as general as possible
but because our specific system implementation, we often
use IA32-specific and Linux-specific features and terminology.
However, other operating systems and computer architectures
typically have their own equivalents and we believe our
experience can mostly be translated to other systems.

B. Maintaining Process Semantics

PLR creates an entire group of processes per original
application process. However, it is important to maintain the
process semantics expected by the user, and other applications
in the case of inter-process communication. Specifically, we
are interested in maintaining the following expected process
semantics when running an application:

1) When an application is invoked, it is given a specific
process identifier (pid). The pid exists during the entire
duration of the application and is relinquished to the OS
afterwards.

2) When the application exits, it returns with the correct
exit code of the program.

3) A signal sent a valid pid will have the intended effects.
For example, a SIGKILL will kill the process.

In a previous version of PLR, we simply fork the application
multiple times and compare execution behavior using the
system call emulation unit [17]. However, when assessing the
transparency of such an approach, we quickly realized that
it violates process semantics. Suppose an original application
begins with pid of 100 and we fork twice for redundant
processes with pids of 101, and 102. If a transient fault causes
the original pid 100 to die, it is impossible to maintain process
semantics; although execution of the application continues in
pids 101 and 102, the original pid 100 does not exist during
execution, it does not return the correct return code, and is
impossible to signal.

In order to maintain process semantics, PLR uses a fig-
urehead process. After creating the redundant processes, the
original process is relegated to a figurehead process. The
figurehead performs three functions, which match the three
rules of expected process semantics listed above. First, it sleeps
and waits on the redundant processes to complete execution.
Second, upon completion, it receives the application’s exit
value from the system call emulation unit and exits properly.
Third, it performs signal forwarding. Because every signal
intended for the application reaches the figurehead process (it
has the correct pid), the figurehead process needs to forward
the signals to the children. Thus, a SIGTERM will cause the
figurehead process, as well as the redundant processes to all
terminate execution and ensure the third rule in maintaining
process semantics.

There is one complication on Linux systems with the
signal forwarding in the figurehead process; the SIGKILL
and SIGSTOP signals cannot be caught with a signal handler.
Therefore, with just a figurehead process, a SIGKILL would
kill the figurehead process but leave the redundant processes
running. To handle this, PLR uses a monitor process which
intermittently polls the state of the figurehead process. If
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the process does not exist, it assumes a SIGKILL and kills
itself, along with the rest of the redundant processes. If the
parent is in a stopped state, it issues a SIGSTOP to all the
redundant processes to emulate the effect of a SIGSTOP signal
within the application. The figurehead and monitor processes
introduce a delay in receiving signals. However, signals are
mostly asynchronous by nature and a slight delay is not a
problem.

It should be noted that although maintaining process seman-
tics helps with transparency from the user perspective, and
from the perspective of other applications that may interact
with the target application via inter-process communication.
PLR does not maintain any transparency from the system per-
spective. For example, a listing of the active system processes
will produce figurehead process, as well as the monitor process
and redundant processes.

C. Process Replicas

Process-level redundancy (PLR) is a technique which uses
the software-centric model of transient fault detection. As
shown in Figure 1(b), PLR places its SoR around the user
address space by providing redundancy at the process level.
PLR replicates the application and library code, global data,
heap, stack, file descriptor table, etc. Everything outside of the
SoR, namely the OS, must be protected by other means. Any
data which enters the SoR via the system call interface must
be replicated and all output data must be compared to verify
correctness.

Providing redundancy at the process level is natural as it is
the most basic abstraction of any OS. The OS views any hard-
ware thread or core as a logical processor and then schedules
processes to the available logical processors. PLR leverages
the OS to schedule the redundant processes to take advantage
of hardware resources. With massive multi-core architectures
on the horizon, there will be a tremendous amount of hardware
parallelism available in future general-purpose machines. In
computing environments where throughput is not the primary
concern, PLR provides a way of utilizing the extra hardware
resources for transient fault tolerance.

During execution, one of the redundant processes is logi-
cally labeled the master process and the others are labeled the
slave processes. At each system call, the system call emulation
unit is invoked. The system call emulation unit performs
the input replication, output comparison, and recovery. The
emulation unit also ensures that the following requirements
are maintained in order for PLR to operate correctly:

• The execution of the redundant processes must be trans-
parent to the system environment with the redundant
processes interacting with the system as if only the
original process is executing. System calls which alter
any system state are only executed once by the master
process. The slave processes emulate the system call.

• Execution among the redundant processes must be de-
terministic. System calls which return non-deterministic
data, such as a request for system time or resources, must
be emulated to ensure all redundant processes use the

same data for computation. Other sources of determinism
such as asynchronous interrupts and shared memory
accesses must also be intercepted and emulated.

• All redundant processes must be identical in address
space and any other process-specific data, such as the
file descriptor table. At any time, a transient fault could
render one of the redundant processes useless. With
identical processes, any of the processes can be logically
labeled the master process at any given invocation of the
emulation unit.

On occasion, a transient fault will cause the program to
suspend or hang. The watchdog alarm is employed by the
emulation unit to detect such faults. Upon entrance to the
system call emulation unit, a timer begins. If the redundant
processes do not all enter the emulation unit in a user-specified
amount of time, the watchdog alarm times out, signaling an
error in execution.

D. Input Replication

As the SoR model dictates, any data which enters the SoR
must be replicated to ensure that all data is redundant within
the SoR. Any data which passes into the processes is received
once by the master process, and then passed to the slave
processes. During system call emulation, any read data (such
as a read from a file descriptor) is replicated and copied to the
slave processes. Also, the return value from all system calls
is considered as input data and is also replicated.

E. Output Comparison

All data which exits the redundant processes must be
compared for correctness before proceeding out of the SoR. If
the output data does not match, a transient fault is detected and
a recovery routine is invoked. During system call emulation,
any write buffers which will be passed outside of the SoR
must be compared. Also, any data passed as a system call
parameter can be considered an output event which leaves the
SoR and must also be checked to verify program correctness.

Most output comparisons deal with small amounts of data
and are accomplished by simply copying the data to a shared
memory segment and comparing the bytes. For larger write
buffers, such as the write buffer when checking the write()
system call, a 32-bit CRC is computed locally, and then CRC
value is compared through shared memory. The local CRC
computation avoids copying large chunks of memory through
shared memory which can significantly increase overhead.

F. Emulating System Calls

The emulation unit is responsible for the input replica-
tion, output comparison, and system call emulation. The data
transfer during input replication and output comparison is
accomplished through a shared memory segment between all
of the redundant processes.
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At the beginning of each call to the emulation unit during
the output comparison of the system call parameters, the type
of system call is also compared to ensure that all redundant
processes are at a common system call. If not, a fault is
assumed which caused an error in control flow to call an errant
system call.

Depending upon the system call, the system call emulation
unit will perform different tasks. System calls which modify
any system state, such file renaming and linking, are only
executed once by the master process. In other cases, the system
call will be actually called by all processes; once by the
master process in its original state, and once by each redundant
process to emulate the operation. For example, in emulating a
system call to open a new file, the master process will create
and open the new file, while the redundant processes will
simply open the file without creating it.

G. Shared Memory

Shared memory accesses present a source of potential non-
determinism between redundant processes. A read from shared
memory represents input data which should be replicated, and
a write to shared memory represents output data which should
be compared for correctness. The problem is that shared
memory accesses masquerade as arbitrary load and/or store
instructions. Therefore, only handling system I/O through the
system call interface will not suffice. Memory-mapped device
I/O shares the same problem as shared memory accesses.

PLR handles shared memory I/O by borrowing the trap-
and-emulate technique from virtual machines and dynamic
binary optimizers. Virtual machines trap on the execution
of privileged instructions and defer to a virtual machine
monitor to emulate the privileged instruction [18]. Dynamic
binary optimizers, which interpret/recompile the application
and execute out of a code cache, use the same technique for
detecting self-modifying code. In this case, the text section is
marked read-only and any self-modifying code will cause an
immediate trap to notify the dynamic binary optimizer [19].
Along these lines, there are two ways to handle shared memory
accesses:

• Trap-and-emulate: PLR treats any system calls regard-
ing shared memory regions as a special case. These
include shared memory calls such as shmat(), or shared
memory mapping functions such as mmap() called with
the MAP SHARED flag. While emulating these system
calls, PLR also performs two extra functions. First, PLR
updates a shared memory map (SMM) which includes
all of the shared memory regions including meta-data
such as the protection mode of the pages. Second, PLR
switches the protection of all of the shared memory pages
to disallow both reading and writing. Upon a read, or
write to one of the shared memory regions, a trap will
occur. The trap handler in PLR decodes and begins to
emulate the instruction at which the trap occurred. If the
instruction accesses data within the SMM, the emulation
continues along with the correct input replication and/or
output comparison. If not, the original trap handler is
invoked.

• Trap-and-emulate-and-probe: The trap-and-emulate
approach incurs a high overhead by requiring a trap to the
OS on every read or write instruction to a shared memory
region. The trap-and-emulate-and-probe approach avoids
this overhead by placing a probe at the offending instruc-
tion after a trap and emulation of a specific instruction.
A probe is simply a branch instruction which overwrites
the original instruction and branches to emulation code.
Emulation begins by using the memory access address to
lookup into the SMM. If the instruction accesses a shared
memory region, it is emulated appropriately with input
replication and output comparison. If not, a copy of the
original instruction is executed and control branches back
to the original program after the probe. Trap-and-emulate-
and-probe pays a one-time-cost of a trap and then avoids
the trap on subsequent executions of the same instruction.

H. Asynchronous Signals

Asynchronous signals present another form of potential non-
determinism among the redundant processes. The figurehead
process takes care of the first part of signal processing; it
provides the correct pid to signal and then forwards all of the
the signals it receives to the redundant processes. However,
there is still a problem during execution of the signal handlers
in the redundant processes. The problem is that signal handlers
are called asynchronously and may read or write any data
in the process’s address space. If the redundant processes do
not all call the signal handlers at precisely the same point
in their dynamic instruction streams, they may become non-
deterministic.

To handle asynchronous signals, PLR inserts probes and
marks specific points in the code as epoch boundaries [20],
[21]. An epoch is a timeslice of a program in which the start
and end points are known, and identical across the redundant
processes. Each redundant process maintains a local epoch
counter which stores of number of epoch boundaries passed
during execution. Signal handling is deferred and handled at
epoch boundaries.

Specifically, signal handling proceeds as follows:
1) The figurehead process represents the entire group of

processes (it has the correct pid) and receives the asyn-
chronous signal.

2) The figurehead process sends a SIGSTOP to all the
redundant processes to temporarily stop their execution.

3) The figurehead inspects the epoch counter of each redun-
dant process. A pending signal is set up to be serviced at
an epoch count equal to the largest current epoch counter
plus one.

4) The figurehead processes resumes the execution of all
redundant processes.

5) The redundant processes execute and at each epoch
boundary, check if there is a pending signal to be
handled. If there is a pending signal, and the current
epoch count matches the epoch count set for signal
handling, then the redundant process transfers control
to the signal handler.
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There exists a tradeoff between program overhead and the
timeliness of signal handling. For example, if epoch bound-
aries are placed at each instruction, signals will be handled
immediately, but performance will significantly degrade due
the the checking instructions at epoch boundaries. On the
other hand, if epochs are too large, performance impact will
be negligible, but the delay until signal handling may not meet
user expectations.

We have implemented three policies for the placement of
epoch boundaries; at each system call (SYSCALL ), function
call (FUNC ), or backwards branch (BACK BRANCH ). Dif-
ferent policies will be suitable for different application types.
For example, the SYSCALL policy will work well for an
application which frequently uses system calls. Applications
which have many function calls, such programs developed
with object-oriented languages, would work well with the
FUNC policy. Compute-intensive programs which execute
in tight kernels within a function will need fined-grained
approach such as the BACK BRANCH approach. The three
policies are managed with a command line switch specifying
the policy to use.

I. Transient Fault Detection

A transient fault is detected in one of three ways:
1) Output Mismatch: A transient fault which propagates

to cause incorrect output will be detected with the
output comparison within the emulation unit at the point
which the data is about to exit the SoR. An output
mismatch may occur during system call emulation, or
during the handling of an instruction which accesses
shared memory.

2) Watchdog Timeout: There are two scenarios in which
the watchdog timer will time out. The first case is when
a fault causes an error in control flow which calls an
errant system call. The faulty process will cause an
entrance into the emulation unit which will begin waiting
for the other processes. If the other processes enter the
emulation unit, an error will be detected if the system
calls mismatch, or if there is a mismatch in data. If
the other processes continue execution, a timeout will
occur. The second case is when a transient fault causes
a process to hang indefinitely (e.g. an infinite loop). In
this case, during the next system call, all the processes
except the hanging process will enter the emulation unit
and eventually cause a watchdog timeout. A drawback
to the watchdog alarm is that a timeout period exists
in which the application does not make any progress.
In our experience, on an unloaded system, a timeout
of 1-2 seconds is sufficient. The timeout value is user
specified and can be increased on a loaded system.
On a loaded system, spurious timeouts will not affect
application correctness, but will cause unnecessary calls
to the recovery unit.

3) Program Failure: Finally, a transient fault may cause
a program failure due to an illegal operation such as a
segmentation violation, bus error, illegal instruction, etc.

Signals handlers are set up to catch the corresponding
signals and an error is be flagged. The next time the
emulation unit is called, it can immediately begin the
recovery process.

J. Transient Fault Recovery

Transient fault recovery mechanisms typically fit into two
broad categories: checkpoint and repair, and fault masking.
Checkpoint and repair techniques involves the periodic check-
pointing of execution state. When a fault is detected, execution
is rolled back to the previous checkpoint. Fault masking
involves using multiple copies of execution to vote on the
correct output.

PLR supports both types of fault recovery. If checkpoint
and repair functionality already exists, then PLR only needs
to use two processes for detection and can defer recovery
to the repair mechanism. Otherwise, fault masking can be
accomplished by using at least three processes for a majority
vote. If fault masking is used, the following schemes are
used for recovery (the examples use an assumption of three
redundant processes).

1) Output Mismatch: If an output data mismatch occurs
the remaining processes are compared to ensure cor-
rectness of the output data. If a majority of processes
agree upon the value of the output data, it is assumed
to be correct. The processes with incorrect data are
immediately killed and replaced by duplicating a correct
process (e.g. using the fork() system call in Linux).

2) Watchdog Timeout: As mentioned in Section IV-I,
there are two cases for a watchdog timeout. In the first
case, where a faulty process calling the emulation unit
while the other processes continue executing, there will
only be one process in the emulation unit during timeout.
The process in the emulation unit is killed and recov-
ery occurs during the next system call. In the second
case, where a faulty process hangs, all processes except
one will be in the emulation unit during timeout. The
hanging process is killed and replaced by duplicating a
correct process.

3) Program Failure: In the case of program failure, the
incorrect process is already dead. The emulation unit
simply replaces the missing process by duplicating one
of the remaining processes.

We assume the single event upset (SEU) fault model in
which a single transient fault occurs at a time. However, PLR
can support simultaneous faults by simply scaling the number
of redundant processes and the majority vote logic.

K. Windows of Vulnerability

A fault during execution of PLR code may cause an
unrecoverable error. Also, a fault which causes an erroneous
branch into PLR code could result in undefined behavior.
Finally, PLR is not meant to protect the operating system
and any fault during operating system execution may cause
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failure. The first and third windows of vulnerability can be
mitigated by compiling the operating system and/or PLR code
with compiler-based fault tolerance solutions.

To maintain process semantics, it is critical that the figure-
head stays alive throughout program execution. Although it
represents a single point of failure, the figurehead performs
almost no real work and the probability of a transient fault
affecting its execution is very low. A single monitor process
also represents a single point of failure. However, if the
monitor process is a concern, it can easily be replicated.

All fault tolerance techniques have windows of vulnerabil-
ity which are usually associated with faults to the checker
mechanism. Although not completely reliable, partial redun-
dancy [22], [23] may be sufficient to improve reliability
enough to meet user or vendor reliability standards.

V. EXPERIMENTAL RESULTS

This paper presents and evaluates a PLR prototype built us-
ing the Intel Pin dynamic binary instrumentation system [24].
The tool uses Pin to dynamically create redundant processes
and uses PinProbes (a dynamic code patching system for
program binaries) to intercept system calls.

The prototype is evaluated running a set of the SPEC2000
benchmarks compiled with gcc v3.4.6 and ifort v9.0. Fault
coverage is evaluated using a fault injection campaign similar
to [12]. One thousand runs are executed per benchmark. To
maintain manageable run times, the test inputs are used for
fault injection and fault propagation experiments. For each
run, a dynamic instruction execution count profile of the
application is used to randomly choose a specific invocation
of an instruction to fault. For the selected instruction, a
random bit is selected from the source or destination general-
purpose registers. To inject a simulated transient error, Pin
tool instrumentation is used to change the random bit during
the specified dynamic execution count of the instruction. The
specdiff utility included within the SPEC2000 harness is used
to determine the correctness of program output.

PLR performance is evaluated using the SPEC2000 refer-
ence inputs. Performance is measured by running the prototype
with both two and three redundant processes without fault
injection on a four-processor SMP system; specifically the
system has four 3.00Ghz Intel Xeon MP processors each with
4096KB L3 cache, has 6GB of system-wide memory, and is
running Red Hat Enterprise Linux AS release 4.

A. Fault Injection Results

A fault injection study is performed to illustrate the effec-
tiveness of PLR as well as the benefits of using a software-
centric model of fault detection. Figure 3 shows the results
of a fault injection campaign with the left bar in each cluster
showing the outcomes with just fault injection and the right
bar showing the outcomes when detecting faults with PLR.
The possible outcomes are:

• Correct: A benign fault which does not affect program
correctness.

• Incorrect: An SDC where the program executes com-
pletely and returns with correct return code, but the output
is incorrect.

• Abort: A DUE in which the program returns with an
invalid return code.

• Failed: A DUE in which the program terminates (e.g.
segmentation violation).

• Mismatch: Occurs when running PLR. In this case, a
mismatch is detected during PLR output comparison.

• SigHandler: Occurs when running PLR. In this case, a
PLR signal handler detects program termination.

Timeouts of the watchdog alarm are ignored because they
occurs very infrequently (∼.05% of the time).

PLR is able to successfully eliminate all of the Failed,
Abort, and Incorrect outcomes. In general, the output com-
parison detects the Incorrect and Abort cases, and turns each
error into detected Mismatch cases. Similarly, PLR detects the
Failed cases turning them into SigHandler cases. Occasionally,
a small fraction of the Failed cases are detected as Mismatch
under PLR. This indicates cases in which PLR is able to detect
a mismatch of output data before a failure occurs.

The software-centric approach of PLR is very effective at
detecting faults based on their effect on software execution.
Faults which do not affect correctness are generally not
detected in PLR, thereby avoiding false positives. In contrast,
SWIFT [12], which is currently the most advanced compiler-
based approach, detects roughly ∼70% of the Correct out-
comes as faults.

However, not all of the Correct cases during fault injec-
tion remain Correct with PLR detection as the software-
centric model would suggest. This mainly occurs with the
SPECfp benchmarks. In particular, 168.wupwise, 172.mgrid
and 178.galgel show that many of the original Correct cases
during fault injection become detected as Mismatch. In these
cases, the injected fault causes the output data to be different
than data from regular runs. However, the output difference
occurs in the printing of floating point numbers to a log
file. specdiff allows for a certain tolerance in floating point
calculations, and considers the difference within acceptable
bounds. PLR compares the raw bytes of output and detects
a fault because the data does not match. This issue has less
to do with the effectiveness of a PLR, or a software-centric
model, and is more related to the definition of an application’s
correctness.

B. Fault Propagation

Figure 4 shows the number of instructions executed between
fault injection and detection. Runs are shown as stacked bars
showing the breakdown of instructions executed before the
fault was detected. The leftmost bar labeled M shows the
breakdowns for the Mismatch runs shown in Figure 3. The
middle bar (S) shows the breakdown for the SigHandler runs
and the left bar (A) shows all of the detected faults including
both Mismatch and SegHandler.

In general, the Mismatch runs tend to be detected much
later than the point of fault injection with fault propagation
instruction counts of over 10,000 instructions for nearly all
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Fault Injection and Detection Results
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Fig. 3. Results of the fault injection campaign. The left bar in each cluster shows the outcomes with just fault injection and the right bar shows the breakdown
of how PLR detects the faults.
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Fig. 4. Distribution of the number of executed instructions between the injection and detection of a fault. Percentages are normalized to all the runs which
are detected via output mismatch (M ), program failure (S), or both combined (A).

of the benchmarks. On the other hand, the SegHandler runs
have a higher probability of being detected early. Across all of
the detected runs, there is a wide variety in amounts of fault
propagation ranging from 254.gap which has a low amount of
fault propagation, to 191.fma3d which has an even distribution
of runs among the various categories.

The software-centric model delays the detection of a fault
until an error is certain via program failure, or incorrect data
exiting the SoR. However, the delayed detection also means
that a fault may remain latent during execution for an un-
bounded period of time. Future work remains in characterizing
fault propagation as well as exploring methods for bounding
the time in which faults remain undetected. However, these
issues are outside the scope of this article.

C. Performance Results

Performance is evaluated using two redundant processes for
fault detection (PLR2), and three processes to support recov-
ery (PLR3). Figure 5 shows PLR performance on benchmarks

compiled with both -O0 and -O2 compiler flags. Performance
is normalized to native execution time. PLR provides transient
fault tolerance on -O0 programs with an average overhead of
8.1% overhead for PLR2 and 15.2% overhead for PLR3. On
-O2 programs, PLR2 incurs a 16.9% overhead for PLR2 and
41.1% overhead for PLR3. Overhead in PLR is due to the fact
that multiple redundant processes are contending for system
resources. Programs which place higher demands on systems
resources result in a higher PLR overhead. Optimized binaries
stress the system more than unoptimized binaries (e.g. higher
L3 cache miss rate) and therefore have a higher overhead.
As the number of redundant processes increases, there is an
increasing burden placed upon the system memory controller,
bus, as well as cache coherency implementation. Similarly,
as the emulation is called with more processes, the increased
synchronization with semaphores and the usage and shared
memory may decrease performance. At certain points, the
system resources will be saturated and performance will be
severely impacted. These cases can be observed in 181.mcf
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Fig. 5. Overhead of running PLR on a set of both unoptimized and optimized SPEC2000 benchmarks. The combinations of runs include -O0 compiled
binaries with PLR2 (A), -O0 with PLR3 (B), -O2 with PLR2 (C) and -O2 with PLR3 (D).

and 171.swim when running PLR3 with -O2 binaries. PLR
overhead and system resource saturation points are explained
in more detail in the next subsection.

D. PLR Overhead Breakdown

The performance overhead of PLR consists of contention
overhead and emulation overhead, shown as stacked bars in
Figure 5. Contention overhead is the overhead from simulta-
neously running the redundant processes and contending for
shared resources such as the memory and system bus. The
contention overhead is measured by running the application
multiple times independently and comparing the overhead to
the execution of a single run. This roughly simulates run-
ning the redundant processes without PLR’s synchronization
and emulation. Note that this overhead is purely from the
redundant processes. The figurehead and monitor processes
perform little computation and their performance overhead is
negligible. The rest of the overhead is considered emulation
overhead. Emulation overhead is due to the synchronization,
system call emulation, and mechanisms for fault detection
incurred by PLR.

For the set of benchmarks, contention overhead is signifi-
cantly higher than emulation overhead. Benchmarks such as
181.mcf and 189.lucas have relatively high cache miss rates
leading to a high contention overhead with increased memory
and bus utilization. On the other hand, 176.gcc and 187.facerec
substantially utilize the emulation unit and result in a high PLR
overhead.

1) Contention Overhead: Contention overhead mainly
stems from the sharing of memory bandwidth between the
multiple redundant processes. To study the effects of con-
tention overhead, we construct a program to generate memory
requests by periodically missing in the L3 cache. Figure 6
shows the effect of L3 cache miss rate on contention overhead
when running with PLR. For both PLR2 and PLR3, the L3
cache miss rate has a substantial affect on the contention

L3 Cache Misses/Sec vs. Overhead
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Fig. 6. PLR contention overhead for varying L3 cache miss rates.

overhead. With less than 5 million L3 cache misses per second,
the contention overhead is minimal. However, beyond that
point, the contention overhead increases greatly. At 10 million
L3 cache misses per second, PL2 incurrs a 13% overhead
and PLR3 incurs a 25%. These results indicate that the total
overhead for using PLR is highly impacted by the applications
cache memory behavior. CPU-bound applications can be pro-
tected from transient faults with a very low overhead while
memory-bound applications may suffer from high overheads.

2) Emulation Overhead: Emulation overhead mainly con-
sists of the synchronization overhead and the overhead from
transferring and comparing data in shared memory. To exam-
ine each aspect of emulation overhead, two synthetic programs
were designed and run with PLR. The first program calls the
times() system call at a user-controlled rate. times() is
one of the of simpler system calls supported by PLR and
is used to measure the emulation overhead from the barrier
synchronizations within the emulation unit. The second test
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Calls to Emulation Unit vs. Overhead
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Fig. 7. PLR overhead for varying system call rates demonstrating the
synchronization and emulation overhead for a simple system call.
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Fig. 8. PLR overhead for various data bandwidths demonstrating the
overhead of comparing shared memory during output comparison.

program calls the write() system call ten times a second
and writes a user-specified number of bytes per system call.
For each write() call, the emulation unit transfers and
compares the write data in shared memory.

Figure 7 shows the effect of synchronization on the PLR
overhead. Synchronization overhead is minimal up until about
300-400 emulation unit calls per second with less than 5%
overhead for using PLR with both two and three redun-
dant processes. Afterward, the emulation overhead increases
quickly. Overall, these results indicate that the PLR technique
might be best deployed for specific application domains with-
out significant system call functionality.

Figure 8 illustrates the effect of write data bandwidth on em-
ulation overhead. The experiment evaluates the amount of data
at each system call that must be compared between redundant
process techniques. The write data bandwidth has a similar
characteristics as system call synchronization, achieving low
overhead until a cut-off point. In this case, for the experimental
machines evaluated, the overhead is minimal when the write

Shared Memory Access Rate vs. Overhead
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Fig. 9. Additional PLR overhead for supporting shared memory accesses.

data rate stays less than 1MB per second but then increases
substantially after that point for both PLR2 and PLR3.

E. Shared Memory Support

To measure the performance of supporting shared memory,
we have developed a synthetic benchmark that periodically
writes to a shared memory region. Figure 9 shows the ad-
ditional performance overhead when running the synthetic
benchmark at various shared memory write rates for PLR
running with two redundant process using trap-and-emulate,
and trap-and-emulate-and-probe. With a very low rate of
shared memory accesses, lower than 1000 accesses per second,
the performance is negligible. As the shared memory access
rate increases to 10,000 accesses per second, the overhead
increases to a reasonable 5% overhead. Higher access rates
result in a large increase in performance overhead. It should
be noted that the overhead shown here is purely the overhead
due to supporting shared memory. In addition, as shared
memory write rates increase, the trap-and-emulate-and-probe
approach outperforms the trap-and-emulate approach. Over-
head is mostly dominated by the synchronization and inter-
process communication but the use of the probe is able to
reduce the trapping overhead.

F. Supporting Asynchronous Signals

PLR handles asynchronous signals by deferring signal
handling within the redundant processes until epoch bound-
aries. This approach introduces a delay between receiving
and handling asynchronous signals. Because these signals
are asynchronous by nature, a slight delay is manageable.
However, we would like to avoid large delays until signal
handling which may greatly impact the performance/behavior
of the application.

To provide an idea of the delay period before signal han-
dling, we study the number of instructions executed between
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Dynamic Instructions Between Events

Benchmark

16
4.

gz
ip

16
8.

wu
pw

ise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
6.

gc
c

17
8.

ga
lg

el

18
1.

m
cf

18
3.

eq
ua

ke

18
6.

cr
af

ty

18
7.

fa
ce

re
c

18
9.

lu
ca

s

19
1.

fm
a3

d

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

%
 D

ist
rib

ut
io

n

0

20

40

60

80

100

S S
S S S S S S S S S S S S S S S S S SS S S S S S S S S S S S S S S S S SS S S S S S S S S S S S S S S S S SF F F F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F F F FF F F F F F F F F F F F F F F F F FB B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B BB B B B B B B B B B B B B B B B B B

1000 100000 100000 1000000 10000000 5000000000 500000000+

Fig. 10. The number of dynamic instructions executed between epochs of the three policies for supporting asynchronous signals: SYSCALL (S), FUNC (F),
and BACK BRANCH (B).
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Fig. 11. Additional normalized PLR overhead incurred for supporting asynchronous system calls using epochs at the three policies: SYSCALL (S), FUNC (F),
and BACK BRANCH (B).

various epochs within our benchmarks. Figure 10 shows a
breakdown of the number of instructions between epochs
using the SYSCALL, FUNC, and BACK BRANCH policies
described in Section IV-H. SYSCALL is not a good policy
in general. While 176.gcc executes the most system calls, the
majority of epochs still are larger than one billion instructions.
FUNC performs much better reducing most of the epochs to
within a manageable range. However, a few of the benchmarks,
such as 171.swim and 172.mgrid, still have a significant
amount of large epochs. The reason is that these benchmarks
execute long running loops within function and do not hit
epoch boundaries often. Moving to the BACK BRANCH
policy removes this limitation and provides epochs within
1,000 instructions consistently.

We then analyze the additional performance overhead of
handling signals on a set of our benchmarks with two re-
dundant processes in Figure 11. The graph shows the nor-
malized overhead when using our three policies. Overall, the
SYSCALL and FUNC policies incur a negligible overhead
across all of the applications. The BACK BRANCH policy
incurs a higher overhead that varies across applications de-
pending on the rate of backwards branches per application.

For example, a branch-intensive application such as 176.gcc
has nearly a 2x overhead. The other applications vary greatly
with 300.twolf incurring almost negligible overhead. Overall,
the FUNC policy is the most attractive policy with the
ability to handle signals within 100,000 instructions for most
applications and with negligible performance overhead.

VI. RELATED WORK

PLR is similar to a software version of the hardware SMT
and CMP extensions for transient fault tolerance [25], [26],
[27], [16], [28]. PLR aims to provide the same functionality
in software. Wang [29] proposes a compiler infrastructure for
software redundant multi-threading which achieves 19% over-
head with the addition of a special hardware communication
queue. PLR attains similar overhead and only relies on the
fact that multiple processors exist. In addition, PLR does not
require source code to operate.

Executable assertions [30], [31] and other software detec-
tors [32] explore the placement of assertions within soft-
ware. Other schemes explicitly check control flow during
execution [33], [11]. The software-centric approach provides
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a different model for transient fault tolerance using a soft-
ware equivalent of the commonly accepted SoR model. The
pi bit [13] and dependence-based checking [34] have been
explored as methods to follow the propagation of faults in an
attempt to only detect faults which affect program behavior.
The software-centric model accomplishes the same task on a
larger scale.

The PLR approach is similar to a body of fault tolerant work
which explores the use of replicas for fault tolerance [35], [20],
[21], [36], [37], [8]. This body of work targets hard faults
(such as hardware or power failures) and assumes fail-stop
execution [38] in which the processor stops in the event of
failure. For transient faults, this assumption does not hold. As
far as we know, we provide the first performance evaluation,
and overhead breakdown, of using redundant processes on
general-purpose multi-core systems.

More recently, process replicas have been proposed for
general-purpose systems to provide services other than fault
tolerance. DieHard [39] proposes using replicas machines for
tolerating memory errors and Exterminator [40] uses process
replicas to probabilistically detect memory errors. DieHard and
Exterminator briefly mention using process replicas and do
not elaborate on the challenges of non-deterministic events.
Shadow profiling [41] and SuperPin [42] propose using pro-
cess replicas to parallelize dynamic binary instrumentation.
Using process replicas for profiling has the advantage that
correctness is not necessary for profiling – if the profile
information correctly follows execution trends, it is good
enough. As a result, they can get away with not completely
handling non-deterministic events. Other projects such as FT-
MPI [43], and MPI/FT [44] have extended MPI to implement
process replicas on MPI applications for hard faults. PLR
applies replicas for transient fault tolerance on general-purpose
multi-core machines. To the best of our knowledge, PLR is
the most robust software implementation of general-purpose
process replicas with the ability to deterministically handle
shared memory accesses and asynchronous signals.

There have been a number of previous approaches to pro-
gram replication. N-version programming [45] uses three dif-
ferent versions of an application for tolerating software errors.
Aidemark uses a time redundant technique which execute an
application multiple times and use majority voting [46]. Virtual
duplex systems combine both N-version programming and
time-redundancy [47], [48]. The Tandem Nonstop Cyclone [7]
is a custom system designed to use process replicas for
transaction processing workloads.

Chameleon [49] is an infrastructure designed for distributed
systems using various ARMOR processes to implement adap-
tive fault tolerance. The figurehead process is similar in some
respects to the fault tolerant manager, the monitor process is
similar to the heartbeat ARMOR, and the redundant processes
are similar to the execution ARMORs. However, the systems
are designed with different goals in mind. While Chameleon
is for providing an adaptive and configurable fault tolerance
on distributed systems, PLR is designed to provide transient
fault tolerance on general-purpose multi-core systems.

VII. CONCLUSION

This paper motivates the necessity for software transient
fault tolerance for general-purpose microprocessors and pro-
poses process-level redundancy (PLR) as an attractive alterna-
tive in emerging multi-core processors. By providing redun-
dancy at the process level, PLR leverages the OS to freely
schedule the processes to all available hardware resources.
In addition, PLR can be deployed without modifications to
the application, operating system or underlying hardware. A
real PLR prototype supporting single-threaded applications is
presented and evaluated for fault coverage and performance.
Fault injection experiments prove that PLR’s software-centric
fault detection model effectively detects faults which safely
ignoring benign faults. Experimental results show that when
running an optimized set of SPEC2000 benchmarks on a
4-way SMP machine, PLR provides fault detection with an
16.9% overhead. PLR performance improves upon existing
software transient fault tolerance techniques and takes a step
towards enabling software fault tolerant solutions with com-
parable performance to hardware techniques.
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