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Optimizing General-Purpose CPUs for Energy-Efficient Mobile
Web Computing

YUHAO ZHU and VIJAY JANAPA REDDI, The University of Texas at Austin

Mobile applications are increasingly being built using web technologies as a common substrate to achieve
portability and to improve developer productivity. Unfortunately, web applications often incur large perfor-
mance overhead, directly affecting the user quality-of-service (QoS) experience. Traditional techniques in
improving mobile processor performance have mostly been adopting desktop-like design techniques such
as increasing single-core microarchitecture complexity and aggressively integrating more cores. However,
such a desktop-oriented strategy is likely coming to an end due to the stringent energy and thermal con-
straints that mobile devices impose. Therefore, we must pivot away from traditional mobile processor design
techniques in order to provide sustainable performance improvement while maintaining energy efficiency.

In this article, we propose to combine hardware customization and specialization techniques to improve
the performance and energy efficiency of mobile web applications. We first perform design-space exploration
(DSE) and identify opportunities in customizing existing general-purpose mobile processors, that is, tuning
microarchitecture parameters. The thorough DSE also lets us discover sources of energy inefficiency in cus-
tomized general-purpose architectures. To mitigate these inefficiencies, we propose, synthesize, and evaluate
two new domain-specific specializations, called the Style Resolution Unit and the Browser Engine Cache.
Our optimizations boost performance and energy efficiency at the same time while maintaining general-
purpose programmability. As emerging mobile workloads increasingly rely more on web technologies, the
type of optimizations we propose will become important in the future and are likely to have a long-lasting
and widespread impact.
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1. INTRODUCTION

The proliferation of mobile devices and the fast penetration of web technologies (such as
HTML, CSS, and JavaScript) have ushered in a new era of mobile web computing. One
key driving force is the “write-once, run-anywhere” feature of web technologies that
greatly improves developers’ productivity and addresses the notorious device fragmen-
tation issue [Signal 2014]. To encourage developing mobile applications using web
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technologies, major mobile operation systems such as iOS and Android expose APIs to
allow easy integration of various web browser features into mobile applications. Such
a web-based development strategy has been widely adopted by popular mobile apps
such as Uber and Instagram. A recent study by Strategy Analytics shows that 63% of
all business mobile applications are now based on web technologies [Singh 2015].

The platform portability that web technologies bring, however, is often encumbered
by large performance overhead, which directly affects the user quality-of-service (QoS)
experience. Mobile users react to a poor QoS experience by abandoning web services,
which leads to severe consequences. For example, 25% of mobile users abandon web
services that take over 4 seconds to load [Kssmetrics 2011a]. Google estimated that
“a 400 ms delay leads to a 0.44% drop in search volume” [Hoelzle 2012]. Similarly,
a 1-second delay in webpage load time costs Amazon $1.6 billion annually lost in
sales [Eaton 2013].

Traditionally, web application performance has been network limited. However, this
trend is changing. Prior work has shown that over the past decade, network technology
advancements have managed to keep webpage transmission overhead almost stable,
whereas the client-side computational time has increased by as much as 10× [Zhu
and Reddi 2013]. This trend is partially caused by dramatic improvement in network
latency (e.g., about 10× improvement in round-trip time from 3G to LTE [Huang et al.
2012]), and partially caused by the ever-increasing computational requirement posed
by new web technologies (e.g., CSS3 and HTML5). The combined effects of faster
network performance and higher computation demand indicate that future mobile web
performance will be unattainable without improving mobile CPU performance [Zhu
et al. 2015b].

Conventional techniques in improving mobile CPU performance have largely been
simply adopting desktop-oriented design techniques both in terms of single-core and
multicore performance scaling [Halpern et al. 2016]. For example, mobile CPUs have
gone from in-order to out-of-order microarchitecture for single-core designs (e.g., ARM
Cortex-A8 to A15), and have also gone from single core to multicore (e.g., Exynos 5410
in Samsung Galaxy S4 has eight cores). However, such a desktop-like design strategy
is power hungry and is likely coming to its end because the performance benefits do not
sufficiently make up for the additional power consumption, leading to excessive energy
consumption. Recent studies suggested that the advancement in lithium-ion battery
density has slowed down significantly, and as such the energy budget for mobile devices
is unlikely to drastically increase in the short term [Schlachter 2013; Battery Univer-
sity 2011]. Meanwhile, current mobile CPU designs have already reached the thermal
constraints of mobile devices, further capping performance improvement [Halpern et al.
2016]. We must deviate away from traditional mobile CPU design techniques in order
to provide sustainable performance improvement without broaching against thermal
and energy barriers.

We see the domain-specific specialized architecture as a promising approach for
future mobile CPU designs. Domain-specific specialization has long been deemed as
extremely high performance and energy efficient because it aggregates hundreds of
operations in a few instructions, and therefore reduces major sources of inefficiencies
in general-purpose CPUs [Hameed et al. 2010; Lin et al. 2006; Woh et al. 2009]. The key
challenge of applying architectural specialization to web computing is how to retain
general-purpose programmability. The general-purpose programmability is a particu-
lar necessity for web technologies because they involve large pieces of software that are
written in a combination of different general-purpose programming languages. For ex-
ample, Google’s Chrome web browser is developed in 29 languages with over 17 million
lines of code [OpenHub 2017]. Recent work has demonstrated the importance and feasi-
bility of balancing general-purpose programmability and specialization in various data
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computation domains (e.g., H.264 encoding [Hameed et al. 2010], convolution [Qadeer
et al. 2013]).

Following the same architecture design philosophy, we propose the WebCore, a
general-purpose core customized and specialized for mobile web applications. In com-
parison to prior work that takes either a fully software approach on general-purpose
processors [Cascaval et al. 2013; Meyerovich and Bodik 2010] or a fully hardware
specialization approach [Bhatt et al. 2012], our design strikes a balance between the
two. On one hand, WebCore retains the flexibility and programmability of a general-
purpose core. It naturally fits in the multicore SoC that is already common in today’s
mainstream mobile devices. On the other hand, it achieves energy efficiency improve-
ment via modest hardware specializations that create a closely coupled datapath and
data storage.

We begin by examining existing general-purpose designs for mobile web applications.
Through exhaustive design-space exploration, we find that existing general-purpose
designs bear inherent sources of energy inefficiency. In particular, instruction delivery
and data feeding are two major bottlenecks. We show that customizing current designs
by properly sizing key design parameters achieves better energy efficiency. The cus-
tomization step ensures that further optimizations are performed upon an optimized
general-purpose baseline.

Building on the customized general-purpose baseline, we develop specialized hard-
ware to further overcome the instruction delivery and data feeding bottlenecks. We
propose two new optimizations: the “Style Resolution Unit” (SRU) and a “Software-
Managed Browser Engine Cache.” The SRU is a hardware accelerator for the critical
style-resolution kernel within the web browser engine. It is based on the observation
that the style-resolution kernel has abundant fine-grained parallelism that is hidden
in a software implementation but can be captured by a dedicated hardware structure.
The SRU employs a GPU-like multilane architecture to exploit the inherent paral-
lelism. Through exploiting the parallelism, the SRU aggregates enough computations
in a few operations, which effectively increases the arithmetic intensity and offsets the
instruction delivery and data feeding overhead.

The proposed browser engine cache structure improves data feeding efficiency by
exploiting the unique data access pattern of the browser engine’s principal data struc-
tures such as the DOM tree and the Render tree. Web applications typically operate on
one DOM/Render tree node heavily and traverse to the next one, indicating both heavy
data reuse and a predictable access pattern. The browser engine cache uses a small
and energy-conserving hardware memory to capture the heavy data reuse and uses
software to predict the access pattern and to manage the cache. Overall, the browser
cache achieves a high hit rate for the important data structures but with extremely
low accessing energy.

Our results show that customizations alone on the existing general-purpose mo-
bile processor design lead to 22.2% performance improvement and 18.6% energy sav-
ings. Our specialization techniques achieve an additional 9.2% performance improve-
ment and 22.2% overall energy savings; the accelerated portion itself achieves up
to 10× speedup. Finally, we also show that our specialization incurs negligible area
overhead. More importantly, such overhead, if dedicated to tuning already existing
general-purpose architectural features (e.g., caches), lead to much lower energy effi-
ciency improvements.

In summary, we make the following key contributions in this article:

(1) We perform thorough design-space exploration of mobile CPU designs and find that
existing mobile processors are ill-suited for mobile web applications. The major
sources of inefficiencies are the instruction delivery and data feeding.

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 1, Publication date: March 2017.



1:4 Y. Zhu and V. J. Reddi

Fig. 1. Web browser overview.

(2) We customize microarchitectural parameters of existing designs and propose two
specialization techniques, the SRU and Browser Engine Cache, that mitigate
the instruction delivery and data feeding inefficiency of existing general-purpose
designs.

(3) Combining customization and specialization techniques, we present WebCore, a
general-purpose mobile CPU architecture substrate that is tailored for mobile web
applications and achieves significant performance and energy efficiency improve-
ment over current mobile CPU designs.

The rest of the article is organized as follows. We first provide a brief background of
web applications and the web browser engine in Section 2. We describe our experi-
mental setup including software/hardware infrastructure and application selection in
Section 3. We then describe the design-space explorations that allow us to identify
sources of inefficiency in existing general-purpose processors and customize them for
mobile web applications in Section 4. Building on top of the customized general-purpose
designs, we further propose the two new specialization techniques in Section 5 and
Section 6. We show that our proposed WebCore achieves significant performance and
energy efficiency improvement over existing designs in Section 7. We review related
work in Section 8 and conclude with future work in Section 9.

2. BACKGROUND ON WEB APPLICATIONS AND WEB BROWSER

In this section, we first provide a background of web applications and the underlying
web browser architecture. We then focus on the computation kernels and their com-
munication schemes in a web browser. Such understanding helps us design effective
customizations and specializations, such as those described in the later sections. Almost
all modern web browser engines fit into our description. Furthermore, we show each
computation kernel’s performance and energy breakdown to demonstrate the coverage
of our study.

Web Applications. Web applications are applications developed using web lan-
guages including HTML, CSS, and JavaScript. To enable the “write-once, run-
everywhere” feature of web applications, the web browser acts as a “virtual machine”
that dynamically translates web applications to different target platforms. Figure 1
shows the overall flow of execution within any typical web browser. In general, a web
browser has two core components: the rendering engine (e.g., Blink for Google Chrome
and Gecko for Mozilla Firefox) and the JavaScript engine (e.g., V8 for Google Chrome
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Fig. 2. Execution time breakdown of the browser’s
kernels.

Fig. 3. Energy consumption breakdown of the
kernels.

and SpiderMonkey for Mozilla Firefox). The rendering engine translates HTML and
CSS, and the JavaScript engine executes JavaScipt code.

It is important to emphasize that the rendering engine and the JavaScript engine
are not completely isolated. Instead, JavaScript code may trigger rendering engine
computations by modifying rendering engine data structures, as we will discuss later.
In this work, we focus on the rendering engine, including those executions that are
triggered by JavaScript code. The JavaScript engine that involves the compiler, garbage
collector, and so forth is a separate issue beyond the scope of this work. Please refer to
the Related Work section (Section 8) for a more elaborate discussion about JavaScript.

Computation Kernels. The rendering engine mainly consists of four kernels: Dom,
Style, Layout, and Render. The kernels, shown in boxes in Figure 1, process web appli-
cation content and prepare pixels for a GPU to paint. Figure 1 also shows the important
data structures that the kernels consume. The DOM tree, CSS style rules, and Render
tree are those important data structures, and they are heavily shared across the ker-
nels. The data structures are shown in circles with arrows indicating information flow
between the kernels.

The Dom kernel is in charge of parsing the webpage contents. Specifically, it con-
structs the DOM tree from the HTML files and extracts the CSS style rules from the
CSS files. Given the DOM tree and CSS style rules, the Style kernel computes the web-
page’s style information and stores the results in the Render tree. Each Render tree
node corresponds to a visible element in the webpage. Once the style information of
each webpage element is calculated, the Layout kernel recursively traverses the Render
tree to decide each visible element’s position information based on each element’s size
and relative positioning. The final 〈x, y〉 coordinates are stored back into the Render
tree. Eventually, the Render kernel examines the Render tree to decide the z-ordering
of each visible element so that they can be displayed in the correct overlapping order.

JavaScript code can trigger rendering engine kernels. For instance, a JavaScript
function that implements an animated slideshow may change the source attribute of
an HTML < img > element in order to display different images. Changing the source
attribute modifies the DOM tree, and therefore triggers the Layout and Render kernels
to display a new image. Different JavaScript codes can modify different rendering
engine data structures, and therefore trigger different computation kernels. We refer
interested readers to more detailed discussions of the rendering engine pipeline [Lewis
2014] for a better understanding.

Kernel Performance. Figure 2 shows the average execution time breakdown of the
browser engine kernels. The measured data was gathered on a single-core Cortex-A15
processor in the Exynos 5410 SoC [Samsung 2015] while navigating the benchmarked
web applications using Google’s open-source Chromium browser [Google 2015]. The
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Exynos 5410 SoC is used in Samsung’s Galaxy S4 smartphone and is a representative
modern mobile SoC. We will describe the benchmarked web applications in Section 3.
On average, the four kernels contribute to 76% of the total execution time. The Style
kernel is the most time-consuming task. Please refer to Section 8 for discussion on
multicores for web browsing.

Kernel Energy. Figure 3 shows the average CPU energy consumption breakdown
of the different web browser engine kernels using the same experimental setup as
earlier. We measure CPU power using National Instruments’ X-series 6366 DAQ at
1,000 samples per second. Overall, the four kernels that we consider in this article
consume 81% of the total energy. In particular, the Style resolution kernel consistently
consumes the most energy, typically around 35%.

3. EXPERIMENTAL SETUP AND VALIDATION

Before we begin our investigation, we describe our software infrastructure, specifically
outlining our careful selection of representative webpages to study, and the processor
simulator.

Web Browser. We focus on the popular WebKit [2015] rendering engine used in
Google Chromium (Version 30.0) for our studies. WebKit is also widely used by other
popular mobile browsers, such as Apple’s Safari and Opera.

Benchmarked Web Applications. We pay close attention to the choice of webpages
to ensure that the WebCore design is not misled. We mine through the top 10,000
websites as ranked by Alexa [2017] and pick the 12 most representative websites.
All except one happen to rank among Alexa’s top 25 websites. The 12 benchmarked
websites also cover 10 of BBench’s 11 webpages [Gutierrez et al. 2011]. Please refer
to Section 8 for a discussion of BBench. Section 7 lists the website names.

We consider not only the mobile version of the 12 websites but also their desktop
counterparts. Many mobile users still prefer desktop-version websites for their richer
content and experience [Slocum 2011; Bixby 2011b]. Moreover, many mobile devices,
especially tablets, typically load the desktop version of webpages by default. As webpage
sizes exceed 1MB [Bixby 2011a], we must study mobile processor architectures that
can process more complex content and not just simple mobile webpages.

We study 24 distinct webpages in total. The 24 benchmarked webpages are repre-
sentative because they capture the webpage variations in both webpage-inherent and
microarchitecture-dependent features. To prove this, we performed principal compo-
nent analysis (PCA), which is a statistical method that reduces the number of inputs
without losing generality [Dunteman 1989]. PCA transforms the original inputs into
a set of principal components (PCs) that are linear combinations of the inputs. In our
study, PCA calculates four PCs from about 400 distinct features. These four PCs ac-
count for 70% of the variance across all of the original 10,000 webpages. Figure 4(a)
shows the results for two major components, PC1 and PC2. IPC (microarchitecture-
dependent feature) is the single most significant metric in PC1, and the number of
DOM tree nodes (webpage-inherent feature) is the most significant metric in PC2. The
triangular dots represent our webpages. They cover a very large spread of the top
10,000 webpages on the Internet.

Performance Metric. We focus on the initial loading of web applications. This is
because user QoS experience is strongly tied to the initial load time in web applications.
For instance, it is estimated that 79% of online shoppers will not return to a website
with a slow load time [Kssmetrics 2011b].

Unless stated otherwise, we define web application load time as the execution time
that elapses until the onload event is triggered by the web browser. It is worth noting
that during the loading phase (i.e., before the onLoad event is triggered), many web
applications execute JavaScript code such as ads and analytics. Therefore, our study not
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Fig. 4. Benchmark representativeness analysis.

only takes into account the initial loading of the webpage but also includes JavaScript
activity that is triggered automatically by web applications.

Simulators. We assume the x86 instruction set architecture (ISA) for our study.
Prior work shows that the ISA does not significantly impact energy efficiency for mo-
bile workloads [Blem et al. 2013]. Therefore, we believe that our microarchitecture
explorations are generally valid across ISAs. We use Marss86 [Patel et al. 2011], a
cycle-accurate simulator, in full-system mode to faithfully model all the network and
OS activity. Performance counters from Marss86 are fed into McPAT [Li et al. 2009]
for power estimation.

We do our best-effort validation of the simulator by comparing it with an ARM
platform because we do not have access to a measurable x86 mobile platform. We use
the ODroid XU+E development board [Hardkernel 2015] that hosts the Exynos 5410
SoC as the hardware platform. The Exynos 5410 SoC is known for powering Samsung’s
Galaxy S4 smartphone. The Exynos 5410 SoC contains an ARM Cortex-A15 processor.
In our measurements, single-core Cortex-A15 consumes 1.7J energy and 2 seconds to
load www.cnn.com. For comparison, we tune our simulator configurations to best match
the microarchitecture parameters of Cortex-A15. The simulation results report 1.2J
and 2.2 seconds for energy consumption and loading time, respectively.

4. CUSTOMIZING THE GENERAL-PURPOSE CORES

The industry has built both in-order (such as ARM Cortex A7 [ARM 2011] and Intel
Saltwell [Intel 2012]) and out-of-order (such as ARM Cortex A15 [ARM 2015a] and
Intel Silvermont [Intel 2013]) cores for mobile processors. By exploring the vast de-
sign space by varying design parameters (Section 4.1), we find that the out-of-order
designs provide more flexibility for energy versus performance tradeoffs than in-order
designs (Section 4.2). Within the out-of-order design space, we further observe that ex-
isting mobile processor configurations contain inherent sources of energy inefficiency
in instruction delivery and data feeding. We customize the general-purpose cores by
tuning corresponding design parameters to mitigate these inefficiencies (Section 4.3).
The customization step also allows us to derive a better general-purpose baseline for
further specialization.
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Table I. Microarchitecture Design-Space Parameters (i::j ::k Denotes
Values Ranging from i to k at Steps of j )

Parameters Measure Range
Issue width count 1::1::4
# Functional units count 1::1::4
Load queue size # entries 4::4::16
Store queue size # entries 4::4::16
Branch prediction size log2(#entries) 1::1::10
ROB size # entries 8::8::128
# Physical registers # entries 5::5::140
L1 I-cache size log2(KB) 3::1::7
L1 I-cache delay cycles 1::1::3
L1 D-cache size log2(KB) 3::1::7
L1 D-cache delay cycles 1::1::3
L2 cache size log2(KB) 7::1::10
L2 cache delay cycles 16,32,64

4.1. Design-Space Exploration

Design-Space Specification. We define the set of tunable microarchitectural param-
eters in Table I. We restrict each parameter’s range to limit the total exploration space.
For example, we restrict the values of functionally related parameters from reach-
ing a completely unbalanced design [Butler et al. 1991]. For example, the number of
functional units increases with the issue width so that the execution engine does not
become the processor’s bottleneck. In addition, we do not consider single-issue out-of-
order processors, which are known to be energy inefficient. Overall, we consider over
3 billion designs.

We intentionally relax the design parameters beyond the current mobile systems in
order to allow an exhaustive design-space exploration. For example, we consider up
to a 128KB L1 cache design, whereas most L1 caches in existing mobile processors
are 32KB in size. Also, we eliminate overly aggressive designs with more than 2W
TDP, which is a conservative estimation of mobile CPU TDP [Halpern et al. 2016].
We assume a fixed core frequency in our design-space exploration. We use 1.6GHz, a
common value in mobile processors, to further prune the exploration space. It is worth
noting that the latency of both the L1 and L2 caches can still vary, and therefore we
include different cache designs in the exploration space.

We use a constant memory latency to model the memory subsystem because we do
not observe a significant impact of the memory system on the mobile web browsing
workload. According to hardware measurements on the Cortex-A15 processor using
ARM’s performance monitoring tool Streamline [ARM 2015b], the MPKI for the L2
cache across all the webpages is below 5. We observe similarly low L2 MPKI (i.e.,
low main memory pressure) in our simulations. Therefore, we use a simpler memory
system to further trim the search space. However, it is also important to note that
our processor model can be readily integrated with the various analytical memory
models [Miftakhutdinov et al. 2012] or simulators [Wang et al. 2005] if a more detailed
memory system is required for analysis.

Statistical Inference Method. Because we consider billions of design points, it is
not feasible to simulate all of them owing to time constraints. Therefore, we leverage
the statistical inference technique that trains predictive models using a small number
of samples. Such models reflect how different microarchitecture parameters, both in-
dividually and collectively, influence performance and power consumption. Statistical
inference methods have been used successfully in the past for architecture design-space
exploration [Lee and Brooks 2006; Guo et al. 2011].
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Table II. Performance (IPC) and Power Prediction
Errors of Our Microarchitecture Design-Space
Exploration Using Statistical Inferential Models

Kernel IPC Error (%) Power Error (%)
Dom 7.98 5.64
Style 6.04 4.52
Layout 5.47 4.94
Render 5.68 4.37
Mix 5.47 4.76

In particular, we use linear regression modeling [Harrell 2001] to construct our pre-
dictive models. A linear regression model can be formulated as in Equation (1), where
y denotes the response, x = x1, . . . , xp denote p predictors, and β = β0, . . . , βp denote
corresponding coefficients of each predictor. The least squares method is used to solve
the regression model by identifying the best-fitting β that minimizes the residual sum
of squares (RSS) [Hastie et al. 2009]. In our case, the response y is either performance
(measured in terms of instruction per cycle, IPC) or power, and the predictors xi are
microarchitecture structures listed in Table I.

y = β0 +
p∑

i=1

xiβi (1)

We find that 2,000 uniformly at random (UAR) samples of microarchitecture config-
urations from the design space are sufficient in our case to construct robust models. We
also obtain 500 additional UAR samples from the cache design space (both L1 and L2)
to reinforce the credibility of instruction and data cache design predictions. We perform
cross-validation of the model (i.e., we partition a sample dataset into complementary
subsets and perform analysis on one subset and validate the analysis on the other
subset) and then obtain additional samples from the design space for full evaluation.

In order to derive general conclusions about the design space and optimize for the
common case, in this section we present only our in-depth analysis for the representa-
tive website www.cnn.com. Figure 4(b) compares www.cnn.com with other webpages to
demonstrate that it is indeed representative of the other benchmarked webpages. The
x-axis and y-axis represent the number of DOM tree nodes and the number of class
attributes in HTML. These are the two webpage characteristics that are most corre-
lated with a webpage’s load time and energy consumption [Zhu and Reddi 2013]. As
the figure shows, www.cnn.com is roughly the centroid of the benchmarked webpages,
and thus we use it as a representative webpage for the common case.

We construct the performance and power models for the four kernels described in
Section 2, as well as the entire web browser rendering engine. We construct predictive
models for out-of-order and in-order design space separately because microarchitecture
structures have a different impact on performance and power in in-order and out-of-
order pipelines. Table II shows the out-of-order model error rate for predicting both
performance and power consumption. In general, the out-of-order models’ error rates
are below 6.0%. The in-order models (not shown) are more accurate because of their
simpler design. On average, the in-order performance and power models’ errors are
within 5% and 2%, respectively.

4.2. In-Order Versus Out-of-Order Design-Space Exploration

In this section, we explore both the in-order and out-of-order space to identify the
optimal general-purpose design for the entire browser engine. We find that out-of-order
cores can better balance performance with energy, and are therefore better designs for
mobile web browsing. In order to understand the fundamental reasons, we study the
individual web browser engine kernels and demonstrate that the out-of-order logic can
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Fig. 5. In-order versus out-of-
order Pareto-optimal frontiers.

Fig. 6. In-order Pareto-optimal
frontier for each kernel.

Fig. 7. Out-of-order Pareto-
optimal frontier for each kernel.

cover the variances across the different kernels through its complex execution logic. In
contrast, in-order designs either overestimate or underestimate the hardware require-
ments.

Entire Rendering Engine. Design space exploration helps customization at the
“macro-architecture” level, that is, determining between in-order and out-of-order de-
signs. We understand the difference between in-order and out-of-order design space by
examining their Pareto-optimal frontiers. Design points on a Pareto-optimal frontier re-
flect different optimal design decisions given specific performance/energy targets. The
Pareto-optimal is more general than the (sometimes overly specific) EDP, ED2 P met-
rics, and so forth. Design configurations optimized for such metrics have been known
to correspond to different points on the Pareto-optimal frontier [Azizi et al. 2010].

Figure 5 shows the Pareto-optimal frontiers of both in-order and out-of-order designs
between energy and performance. We use energy per instruction (EPI) for the energy
metric and million instructions per second (MIPS) as the performance metric.

We make two important observations from Figure 5. First, the out-of-order design
space offers a much larger performance range (∼1 BIPS between markers P1 and P2,
see top x-axis) than the in-order design space (<0.5 BIPS), which reflects the out-of-
order’s flexibility in design decisions. Second, the out-of-order design frontier is flatter
around the 4-second webpage load time range (see marker P1) than in the in-order
design, which indicates that the out-of-order design has a much lower marginal energy
cost. The observation indicates that processor architects can make design decisions
based on the different performance goals without too much concern about the energy
budget. In contrast, the in-order design space quickly enters the region of diminishing
returns (i.e., sharp increase in energy consumption) as we push toward webpage load
times that are less than 4 seconds. In other words, the in-order design has a low
marginal performance value (or equivalently high marginal cost of energy).

To understand the major limitation of the in-order design, we compare the microar-
chitecture configurations of the in-order and out-of-order designs at the crossover point
P1 in Figure 5. The “P1:OoO” and “P1:InO” columns in Table III list the out-of-order
and in-order configurations, respectively. Even though both designs achieve the same
performance, the in-order design has much larger L1 and L2 cache sizes. Therefore,
the in-order design at P1 provides better instruction delivery and data feeding than
the out-of-order design. Thus, we conclude that it is the inability of the execution logic
of in-order designs that inhibits better performance than its out-of-order counterpart.

Examining the detailed microarchitecture configurations of design points beyond the
P1 crossover point (i.e., <4 seconds), we further find that the in-order design quickly
shifts toward a four-wide issue with a much larger L2 cache. However, such designs
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Table III. Microarchitecture Configurations for the Selected Design Points in Figure 5. They Represent
Different Energy-Delay Tradeoffs. For Comparison Purposes, We Also Show the Corresponding

Microarchitecture Parameters for ARM Cortex-A15, Whose Information Is Gathered from
Measurements Using the 7-Zip LZMA Benchmark [7-cpu 2017] and ARM’s

Public Presentation [ARM 2012]

P1:OoO P1:InO P2 Cortex-A15
Issue width 1 2 3 3
# Functional units 2 2 3 8
Load queue size (# entries) 4 N/A 16 16
Store queue size (# entries) 4 N/A 16 16
BTB size (# entries) 1,024 1024 128 64
ROB size (# entries) 128 N/A 128 40+
# Physical registers 128 N/A 140 N/A
L1 I-cache size (KB) 64 128 128 32
L1 I-cache delay (cycles) 1 2 2 N/A
L1 D-cache size (KB) 8 64 64 32
L1 D-cache delay (cycles) 1 1 1 4
L2 cache size (KB) 256 1,024 1,024 512–4,096
L2 cache delay (cycles) 16 16 16 21

have a very high marginal energy cost, which can lead to energy-inefficient designs as
compared to their corresponding out-of-order counterparts.

Individual Kernels. To further understand why the in-order design is unsuitable
for web browser workloads, we study the individual kernels’ behavior. Figure 6 and Fig-
ure 7 show the Pareto-optimal frontiers of the in-order and out-of-order design space for
each web browser engine kernel. The kernel behavior is remarkably different across
the two design spaces. In the in-order design, the kernel tradeoffs are sharper and
more distinct from one another. For example, to achieve the same performance level
at 800 MIPS, the EPI difference between the Style and Layout kernels is ∼300pJ. In
contrast, the difference is minimal (<50pJ) in the out-of-order design space.

Because the kernel difference in the in-order designs is more pronounced than in the
out-of-order designs, we conclude that the different kernels require different in-order
designs for a given fixed-performance goal. As we push toward more performance in the
in-order design space, some kernels stop scaling gracefully on the energy versus delay
curve. For example, among the four kernels, only the Layout kernel scales well beyond
850 MIPS. In contrast, the Render kernel’s MIPS range is severely limited between
460 MIPS and 650 MIPS. Since all kernels are on the critical path of webpage load per-
formance, the kernels that do not scale gracefully quickly become critical performance
bottlenecks, which results in the low marginal performance improvement for the entire
web browser engine.

As an example for the kernel variance in the in-order designs, our analysis shows that
to achieve 650 MIPS, the Render kernel requires four-wide issue, whereas the Layout
kernel only requires single issue. The reason for the large issue width difference is that
the Layout kernel mainly performs floating-point (FP) operations in order to calculate
the actual (x, y) coordinates of webpage elements. In contrast, the Render kernel mostly
performs control-flow instructions traversing trees without too much computation. The
high FP intensity in the Layout kernel results in better instruction-level parallelism
(ILP), which is easily exploited by a single-issue machine. Prior work has shown that FP
programs typically have a higher instruction retirement rate because they have larger
dependency distances between instructions [Phansalkar et al. 2006; Ye et al. 2006].

In contrast, such pronounced interkernel variance is not present in out-of-order
designs. For example, at 1,200 MIPS, which is the “knee of the curve(s),” all the
kernels have similar EPIs. This is because at 1,200 MIPS, all kernels have similar
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Table IV. Pareto-Optimal Microarchitecture Configuration of Out-of-Order Designs for Each
Rendering Engine Kernel at 1,200 MIPS. We Find That the Optimal Designs for Different

Kernels Have Similar Microarchitecture Configurations, Leading to a Similar
Energy-Performance Tradeoff as Shown in Figure 7

Dom Style Layout Render
Issue width 2 3 2 2
# Functional units 2 3 2 2
Load queue size (# entries) 16 12 16 12
Store queue size (# entries) 16 12 16 12
Branch prediction size (# entries) 512 2 1,024 2
ROB size (# entries) 128 128 128 128
# Physical registers 128 130 140 140
L1 I-cache size (KB) 128 128 64 64
L1 I-cache delay (cycles) 2 2 1 1
L1 D-cache size (KB) 32 128 64 8
L1 D-cache delay (cycles) 1 2 1 1
L2 cache size (KB) 128 1,024 256 128
L2 cache delay (cycles) 16 16 16 16

microarchitecture structure configurations. Table IV shows the optimal microarchitec-
ture configurations of the four kernels at 1,200 MIPS. We observe that the microar-
chitecture configurations of different kernels are similar. For example, all the kernels
require a large number of physical registers to resolve dependencies, and none of the
kernels need the widest issue width (i.e., four-wide). The similar microarchitecture
configurations of different kernels in the out-of-order design space indicate that out-
of-order cores can explore the ILP for each kernel without bias, and therefore enable
wider energy-performance tradeoff space.

4.3. Energy Inefficiency in the Customized Core Designs

Although the design-space exploration of general-purpose cores allows us to flexibly
trade performance and energy with each other for the mobile web browsing workload,
we find that they still contain inherent sources of energy inefficiencies. In this section,
we show that instruction delivery and data feeding are the most sensitive components
to energy efficiency in the out-of-order design.

We broke down the processor microarchitecture investigation into its three high-level
components: instruction delivery, data feeding, and execution engine [Patt et al. 1997].
All of these components must be optimized in order to achieve a balanced design that
does not suffer from performance and energy bottlenecks.

We focus on out-of-order designs because in-order designs are merely more effective in
extremely low-performance regions. In particular, we examine two specific optimization
points (i.e., P1 and P2) in Figure 5 that represent optimized designs for different
performance and power goals. P1 is an out-of-order design optimized for minimal energy
consumption. P2 focuses on minimal energy consumption at 1,500 MIPS; 1,500 MIPS
corresponds to an approximate webpage load time of 1.5 seconds.

The “P1:OoO” and “P2” columns in Table III summarize the microarchitecture pa-
rameters. For comparison purposes, we also show the corresponding microarchitecture
parameters for ARM Cortex-A15, whose information is gathered from measurements
using the 7-Zip LZMA Benchmark [7-cpu 2017] and ARM’s public presentation [ARM
2012]. Overall, as the design objective biases more toward performance (shifting from
P1 to P2), the microarchitecture configuration tends to be more complex and aggres-
sive. More importantly, we find that the P1 and P2 configurations are different from
current mobile processor designs in instruction delivery and data feeding aspects. Let
us explain our findings.
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Instruction Delivery. Delivering instructions for execution is a major issue in
both P1 and P2 designs. For example, current mobile processors have a small L1
instruction/data cache that is typically 32KB in size. However, both P1 and P2 require
a much larger L1 instruction cache of at least 64KB. In addition to large instruction
cache size, both P1 and P2 designs also require a large ROB as compared to what
is typically found in existing mobile CPUs (128 vs. 40) to provide a large instruction
window. Although a 64KB L1 instruction cache and a 128-entry ROB are already
excessively large for mobile CPU designs, the effective microarchitecture structure in
real systems would be even smaller due to resource contention from other concurrent
applications.

Data Feeding. Delivering data for computation is not a bottleneck when we optimize
for energy (i.e., P1). However, they become critical as we shift the design goal toward
performance (i.e., P2). Optimizing for P2 in Figure 5 necessitates a 64KB data cache.
It achieves a low miss ratio of only 7.7%. Similar to instruction delivery, a large data
cache is also more favorable to energy efficiency than having than a large L2 cache.
The reasons for a large data cache are twofold. First, processing webpages typically
involves a large footprint on the principal data structures (Section 2). For example,
profiling results show that the average data reuse distance for DOM tree accesses
(excluding other memory operations interleaved with DOM accesses) is about 4KB.
Second, different kernels are interleaved with each other during execution, which
increases the effective data reuse distances of the important data structures.

In summary, unusual design parameters in a processor core tuned for mobile web
applications indicate that both instruction delivery and data feeding are critical to
guarantee high performance while still being energy efficient. Our study motivates
specialization techniques to offset instruction and data supply overhead.

5. STYLE RESOLUTION UNIT

We propose specialized hardware mechanisms to mitigate the instruction delivery and
data feeding inefficiencies in the customized out-of-order core designs. In particular, we
introduce two new hardware structures: a Style Resolution Unit (SRU) and a Browser
Engine Cache (BEC). This section focuses on the SRU and the next section focuses on
the BEC.

The SRU is an accelerator for the critical Style kernel within the web browser ren-
dering engine. The SRU design is based on the observation that the Style kernel has
abundant fine-grained parallelism that is hidden in a software implementation but can
be captured by a dedicated hardware structure (Section 5.1). To exploit the inherent
fine-grained parallelism, the SRU employs a multilane parallel architecture, which
greatly reduces the instruction delivery overhead. To reduce the data feeding pressure,
the SRU is tightly coupled with a small scratchpad memory that brings operands closer
to the SRU (Section 5.2).

To maintain general-purpose programmability, these new hardware structures are
accessed via a set of high-level language APIs. The APIs are implemented through
a runtime library with only slight modification to the current browser implementa-
tion (Section 5.3). Figure 8 shows an overview of our proposed optimization frame-
work. Overall, the hardware supports fast and energy-efficient execution and data
communication, and the library hides the hardware complexity, manages the hard-
ware executions, and eases the software development effort.

5.1. Motivation

Optimizing the Style kernel would improve the overall energy efficiency the most for the
following reasons. The Style kernel is the most time-consuming task in the rendering
engine. As shown in Figure 2, it consumes 35% of the total rendering engine execution
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Fig. 8. Hardware-software codesign framework.

Fig. 9. Pseudo-code of the Style kernel. It consists of a matching phase and an applying phase. The SRU
accelerates the applying phase, which takes about two-thirds of the Style kernel execution time.

time. It also dominates the energy consumption by consuming 40% of the total energy
as shown in Figure 3.

In order to mitigate the instruction delivery and data communication overhead
of the Style kernel, we propose a special functional unit called the Style Resolution
Unit that is tightly coupled with a small scratchpad memory. The SRU exploits fine-
grained parallelism to reduce the amount of instructions and potential divergences.
The scratchpad memory reduces data communication pressure by bringing operands
closer to the SRU.

The Style kernel consists of two phases: a matching phase and an applying phase.
Figure 9 shows the pseudo-code of the two phases. Previous work [Cascaval et al. 2013;
Meyerovich and Bodik 2010] focuses on parallelizing the matching phase. However, in
our profiling, we find that the applying phase takes nearly twice as long to execute as
the matching phase. Therefore, we focus on the applying phase. The applying phase
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takes in a set of CSS rules (matchedRules) as input and iterates over each rule in the
correct cascading order [W3C 2014] to calculate each style property’s final value (e.g.,
the exact-color RGB values, font width pixels). The final values are stored back to the
Render tree (the RenderStyle array).

The key observation we make in the applying phase is that there are two types of
inherent parallelism: “rule-level parallelism” (RLP) and “property-level parallelism”
(PLP). Improving the energy efficiency of the Style kernel requires us to exploit both
forms of parallelism in order to reduce the control-flow divergence and data commu-
nication overheads. Our profiling results indicate that both control flow and memory
instructions put together constitute 80% of the total instructions that are executed
within the Style kernel.

RLP comes from the following. In order to maintain the correct cascading order,
each rule contained in the input data structure must be sequentially iterated from the
lowest priority to the highest, so that the higher-priority rules can override the lower-
priority rules. However, in reality, we could speculatively apply the rules with different
priorities in parallel and select the one with the highest priority. PLP follows RLP.
Each rule has multiple properties, and each property is examined by the engine to set
the corresponding data field in the Render tree according to its property ID. Because
properties are independent of one another, handling of their processing routines can
be dealt with in parallel.

It is worth noting that the RLP and PLP are not easily captured by SIMD hard-
ware in existing processors. This is because the computations associated with different
properties (e.g., FontHandler and ColorHandler in Figure 9) are different, and therefore
they do not conform with the “single instruction, multiple data” execution pattern.

5.2. Hardware Design

We propose a parallel hardware unit that exploits both RLP and PLP, called the Style
Resolution Unit. The SRU aggregates enough computations to reduce control-flow
divergences and increase arithmetic intensity. It is accompanied by data storage units
for both input and output. Note that it is not easy to exploit software-level parallelism
for PLP and RLP because of the complex control flow, memory aliasing, and severe
loop-carried dependencies.

In addition, we noticed that the input to the applying phase, matchedRules, is an
intrakernel shared data structure between the matching and applying phases. Storing
such short-lived data into the memory hierarchy, and accessing it through traditional
load and store instructions, results in slow computation. It also wastes energy. There-
fore, we provide a scratchpad memory for the input. Similarly, we store the output
structure (i.e., RenderStyle) in a separate scratchpad memory.

Figure 10 shows the structure of the SRU with scratchpad memory for input and
output data. The SRU has multiple lanes, with each lane dealing with one CSS prop-
erty. Assume Rule i and Rule j are two rules from the input that are residing in the
scratchpad memory. Rule i has higher priority than Rule j. Prop l and Prop m are
two properties in Rule i. Similarly, Rule j has properties Prop k and Prop m. Prop l
and Prop k can be executed in parallel using different SRU lanes because they do not
conflict with each other. However, Prop m is present in both rules, and as such it causes
an SRU lane conflict, in which case the MUX selects the property from the rule with
the highest priority, which in our example is Rule i.

Design Considerations. A hardware implementation can have only a fixed amount
of resources. Therefore, the number of SRU lanes and the size of the scratchpad memory
is limited. Prior work [Zhu and Reddi 2013] shows that the number of matched CSS
rules and the number of properties in a rule can vary from one webpage to another.
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Fig. 10. SRU coupled with scratchpad memories.

Fig. 11. Analysis of RLP and CSS properties across webpages.

As such, a fixed design may overfeed or underfeed the SRU if the resources are not
allocated properly.

We profile the webpages to determine the appropriate amount of resource allocation
required for the SRU. Profiling indicates that 90% of the time, the RLP is below or
equal to 4 (Figure 11(a)). Therefore, our design’s scratchpad memory only stores up to
four styles. Similarly, 32 hot CSS properties cover about 70% of the commonly used
properties (Figure 11(b)). Thus, we implement a 32-wide SRU where each lane handles
one hot CSS property. Due to these considerations, the input and output scratchpad
memories are each 1KB in size.

Furthermore, not all of the properties are delegated to the SRU. For example, some
style properties require information on the parent and sibling nodes. To avoid complex
hardware design for recursions and loops with unknown iterations, we do not imple-
ment them in our SRU prototype. The runtime library performs these checks, which
we discuss later in Section 5.3. Despite the tradeoffs we make, about 72.4% of the style
rules across all the benchmarked webpages can utilize the SRU.
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Fig. 12. Pseudo-code of the Style kernel with the new API.

5.3. Software Support and Programmability

The SRU can be accessed via a small set of instruction extensions to the general-purpose
ISA. In order to abstract the low-level details away from application developers, we pro-
vide a set of library APIs in high-level languages. Application developers use the APIs
without knowing the existence of the specialized hardware. It is important to notice
that these software APIs are used by web browser rendering engine developers rather
than high-level web application developers. WebCore does not affect the programming
interface of web application developers, and therefore has no impact on the web appli-
cation development productivity.

Programmers trigger the style resolution task by issuing a Style_Apply(Id, Rules)
API, in which Id represents a DOM tree node ID and Rules represents matched CSS
rules produced by the matching phase. Figure 12 illustrates the pseudo-code of the
Style kernel using the provided API. Comparing against the original code in Figure 9,
we notice that the matching phase is not changed while the applying phase is greatly
simplified with the Style_Apply API.

One key task of this API implementation is to examine all the CSS properties of
a particular DOM node because not all of the CSS properties are implemented in
the SRU (as discussed in Section 5.2). For properties that can be offloaded to the
SRU, the API implementation loads related data into the SRU’s scratchpad memory.
For those “unaccelerated” properties, the runtime creates the necessary compensation
code. Specifically, we propose relying on the existing software implementation as a fail-
safe fall-back mechanism. Once the style resolution results are generated, the results
can be copied out to the output scratchpad memory.

6. BROWSER ENGINE CACHE

To further improve the energy efficiency of data feeding, we propose the browser engine
cache. It is based on the observation that web applications’ accesses to principal data
structures, such as the DOM tree and the Render tree, exhibit heavy data reuse and pre-
dictable access patterns (Section 6.1). Based on such an observation, the browser engine
cache uses a small hardware memory structure coupled with a lightweight software-
based cache management layer to provide energy-efficient data access (Section 6.2). In
addition, similar to the SRU, we also provide a set of high-level language APIs that
allow web browser developers to easily access the browser engine cache (Section 6.3).

6.1. Motivation

The DOM tree and Render tree are the two most important data structures because
they are shared across different kernels, as shown in Figure 1. We propose the Browser
Engine Cache to improve the energy efficiency of accessing them. Specifically, the
browser engine cache consists of a DOM cache and a Render cache for the DOM tree
and Render tree, respectively. We use the DOM to explain our locality observation.
Similar analysis and design principles also apply to the Render cache. Note that the
browser engine cache focuses on improving the energy efficiency of data feeding. We will
discuss techniques for improving the performance aspect of data accesses in Section 8.
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Fig. 13. DOM tree access behavior across webpages.

Fig. 14. Representative DOM tree access patterns.

The energy inefficiency of the traditional cache is best embodied in the performance-
oriented design P2 in Table III. P2 requires a larger data cache (64KB) compared to
a traditional mobile core. Although a large cache achieves a high hit rate of 93%, it
leads to almost one-fourth of the total energy consumption. However, through careful
characterizations, we find that accesses to the DOM/Render tree have strong locality
and regular access pattern such that they can benefit from a small and energy-efficient
cache memory, rather than the large power-hungry traditional caches. Let us explain
our observations next.

First, we find that data accesses to the DOM tree have heavy reuses. Figure 13(a)
shows the cumulative distribution of DOM tree node reuse. Each (x, y) point corre-
sponds to a portion of DOM tree nodes (y) that are consecutively reused at least a
certain number of times (x). About 90% of the DOM tree nodes are consecutively
reused at least two times (three times in total), which reflects strong data locality. This
indicates that a very small cache can achieve the similar hit rate as a regular cache,
but with much lower power.

Second, we find that the accesses to the DOM tree have regular stream-like patterns.
To illustrate this, Figure 14 shows two representative data access patterns to the DOM
tree from www.sina.com and www.slashdot.org. Each (x, y) point is read as follows.
The xth access to the DOM tree operates on the yth DOM node. We observe a common

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 1, Publication date: March 2017.

file:www.sina.com
file:www.slashdot.org


Optimizing General-Purpose CPUs for Energy-Efficient Mobile Web Computing 1:19

streaming pattern. Such a streaming pattern is due to the intensive DOM tree traversal
that is required by many rendering engine kernels. For example, in order to match CSS
rules with descendant selectors such as “div p,” which selects any <p> element that is
a descendant of <div> in the DOM tree, the Style kernel must traverse the DOM tree,
one node at a time, to identify the inheritance relation between two nodes. Similarly,
the Layout kernel must traverse the Render tree (recursively) to determine the size of
each webpage element, which in turn depends on the sizes of the elements contained
within it.

In summary, the rendering engine typically operates on one DOM tree node heavily
and traverses to the next one. After the rendering engine moves past a DOM node, it is
rarely re-referenced soon. Such a unique access behavior motivates the browser engine
cache design, as we describe later.

6.2. Hardware Design

We propose the DOM cache to capture the DOM tree data locality. It sits between
the processor and the L1 cache, effectively behaving as an L0 cache. Each cache line
contains the entire data for one DOM tree node, which is 698 bytes in our design.
Different from the data array in a regular cache, we implement each cache entry (both
in the DOM cache and in the Render cache) as a collection of registers instead of a wide
cache line. Each register holds one attribute of the DOM (Render) tree node and can
be individually accessed through special memory instructions from the software.

The motivations to split each DOM cache line into individually addressable registers
are as follows. First, not all the attributes of a node are accessed every time a node is
referenced such that preloading all the node data from L1 cache to the browser engine
cache leads to a performance and energy penalty. For example, a Render tree node most
often is of either RenderBlock or RenderInline type, each of which involves its own set
of attributes. The browser can decide what attributes to load depending on what type
a Render tree node is. Second, splitting the large memory array into small registers
also allows fast and more energy-conserving accesses.

We choose to implement the DOM cache as a “software-managed” cache—that is, the
data is physically stored in hardware memory, and the software performs the actual
cache management, such as insertion and replacement. Prior work has demonstrated
effective software-managed cache implementations [Hallnor and Reinhardt 2000]. It is
possible to implement the DOM cache entirely in hardware, similar to a normal data
cache. Our motivation for a software-managed cache is to avoid the complexity of a
hardware cache. Typically, the cache involves hardware circuitry whose overhead can
be high, especially for extremely small cache sizes.

The software overhead for the software-managed browser cache is relatively insignif-
icant for the following reasons. First, a simple replacement policy that always evicts the
earliest inserted line is sufficient. Due to the streaming pattern shown in Figure 14,
DOM tree nodes are rarely re-referenced soon after the browser engine moves past
them. Therefore, a simple FIFO design is almost as effective as the least recently used
policy, but with much less management overhead.

Second, a very small number of DOM cache entries guarantee a high hit rate. There-
fore, the cache-hit lookup overhead is minimal. Figure 13(b) shows how the hit rate
changes with the number of entries allocated for the DOM tree. The curve represents
the average hit rate, and the error bars represent the standard deviations across differ-
ent webpages. Across all the webpages, a four-entry design can achieve about an 85%
hit rate, and so we use this configuration. In this sense, the DOM cache is effectively
a single-set, four-way fully associative cache. Similarly, the render cache contains two
entries (i.e., two cache lines). On average, it achieves over a 90% hit rate.

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 1, Publication date: March 2017.



1:20 Y. Zhu and V. J. Reddi

Fig. 15. Using the DOMCache_ST() API in the rendering engine. The new DOM attribute store API replaces
the original attribute value assignment and performs cache management.

6.3. Software Support and Programmability

To access a particular DOM tree node in the rendering engine, developers issue
DOMCache_LD(Id, attr) and DOMCache_ST(Id, attr, data) for read and write opera-
tions, respectively. Similar APIs are also provided for the Render Cache. In the provided
APIs, Id represents the DOM tree node ID (similar to the Style_Apply() API), attr
represents a particular DOM node attribute, and data indicates the new data of the
specified attr. Recall that our DOM cache design allows each attribute of a DOM node
to be individually addressed (Section 6.2). The syntax of both APIs allows developers
to fully utilize this feature.

Figure 15 shows how the DOMCache_ST() API is used in the rendering engine. It
is used to set the value of any given attribute in the setValue() method of the
Attribute class. Specifically, DOMCache_ST() replaces the original value assignment.
The API implementation performs the actual hardware memory accesses as well as
cache management, such as replacement and insertion. For example, the API needs
to maintain an array, similar to the tag array in a regular cache, to keep track of
which DOM nodes are in the cache and whether they are modified. Effectively, the run-
time library of DOM cache APIs implements a cache simulator. However, the runtime
overhead is negligible due to the simple cache design as described in Section 6.2.

It is worth noting that using DOM cache APIs only affects the primitive classes of
a rendering engine (such as the Attribute class in Figure 15) while maintaining the
interface between primitive classes and the rest of the rendering engine unchanged.
For example, rendering engine developers can still use the same setValue() method to
update an attribute’s value. Therefore, we do not expect using the new APIs to affect
the development productivity.

7. WEBCORE EVALUATION

In this section, we first present the power and timing overhead analysis of the proposed
specialization techniques (Section 7.1). We then evaluate the energy efficiency implica-
tions of the SRU and the browser engine cache individually (Section 7.2, Section 7.3).
In the end, we show the energy efficiency improvement combining both customization
and specialization (Section 7.4). In particular, we show that our specializations can
achieve significantly better energy efficiency than simply dedicating the same amount
of area and power overhead to tune the conventional general-purpose cores.

We evaluate our optimizations against three designs, D1 through D3. D1 refers to
the energy-conscious design (P1) that we explored in Figure 5. Similarly, D2 refers
to the performance-oriented design (P2) in Figure 5. D3 mimics the common design
configuration of current out-of-order mobile processors. We configure D3 as a three-
issue out-of-order core with 32-entry load queue and store queue, 40 ROB entries, and
140 physical registers. It has a 32KB, one-cycle latency L1 data and instruction cache,
and a 1MB, 16-cycle latency L2 cache.
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7.1. Overhead Analysis

We use CACTI v5.3 [Thoziyoor et al. 2008] to estimate the memory structure overhead.
We implement the SRU in Verilog and synthesize our design in 28nm technology using
the Synposys toolchain.

Area. The size of the SRU’s scratchpad memory is 1KB. The DOM cache size is
2,792 bytes. The render cache size is 1,036 bytes. The hardware requirements for the
SRU are mainly comparators and MUXes to deal with control flow, and simple adders
with constant inputs to compute each CSS property’s final value. In total, the area
overhead of the memory structures and the SRU logic is about 0.59mm2, which is
negligible compared to typical mobile SoC size (e.g., Samsung’s Exynos 5410 SoC has
a total die area size of 122mm2 [Yogasingam 2013]).

Power. The synthesis reports that the SRU logic introduces 70mW total power
under typical stimuli. The browser engine cache and the SRU scratchpad memory add
7.2mW and 2.4mW to the dynamic power, respectively. They are insignificant compared
to power consumption for web browsing (in our measurements, a single-core Cortex-
A15 consumes about 1W for webpage loading). Clocking gating can reduce the power
consumption further [Li et al. 2005]. But we are conservative in our analysis and do
not assume such optimistic benefits.

Timing. Both the browser engine cache and SRU scratchpad memory can be accessed
in one cycle, which is the same as the fastest L1 cache latency in our design space. The
synthesis tool reports that the SRU logic latency is about 16 cycles under 1.6GHz.
Later in our performance evaluation, we conservatively assume the SRU logic is not
pipelined.

Software. The software overhead mainly includes cache management and SRU com-
pensation code creation. The overhead varies depending on individual webpage runtime
behaviors. We model these overheads in our performance evaluation and discuss their
impact along with the improvements.

7.2. Style Resolution Unit

Our SRU prototype design achieves on average 3.5×, and up to 10×, speedup for
the accelerated style applying phase. The improvements vary because of individual
webpage characteristics.

Figure 16 shows the SRU’s performance improvement for the Style kernel and the
entire webpage loading on the performance-oriented design D2 in Figure 5. The average
performance improvement of the Style kernel is 33.4% and 37.8% for desktop and
mobile webpages, respectively. Generally, we find that mobile webpages benefit slightly
more from the SRU because they tend to be less diversified in webpage styling, and
therefore the SRU has higher coverage.

The overall improvements vary across webpages because different webpages spend
different portions of time in the Style kernel. For example, cnn spends only 14% of its
execution time in the Style kernel during the entire run. Therefore, its 62% improve-
ment in the Style kernel translates to an overall improvement of only 7%. On average,
the SRU improves the entire webpage load time by 13.1% on all the webpages.

The SRU not only improves performance but also reduces energy consumption. The
right y-axis of Figure 16 shows the energy savings for the entire webpage loading.
Webpages are sorted according to the energy savings. On average, the SRU results in
13.4% energy savings for all webpages.

Figure 16 also shows the oracle improvement if the entire applying phase can be
delegated to the SRU (i.e., no hardware resource constraints). Desktop webpages have
much higher oracle gain than mobile webpages. The software fall-back mechanism is
more frequently triggered in desktop-version webpages due to their diversity in styling
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Fig. 16. Performance and energy improvement of the SRU.

webpages. This also implies the potential benefits of reconfiguring the SRU according to
different webpages. An SRU that is customized for mobile webpages could potentially
be much smaller.

We apply the SRU to different designs to show its general applicability. For loading
an entire webpage, on a current mobile processor design (D3), the SRU improves per-
formance by 10.0% and reduces energy consumption by 10.3%. On an energy-conscious
design (D1), it improves performance by 8.4% and reduces energy consumption by
11.6%.

7.3. Browser Engine Cache

Figure 17 shows the energy reduction from using the browser engine cache. The browser
engine cache can serve data more energy efficiently because of the high hit rate of its
cache (as shown in Figure 13(b)). Mobile webpages achieve less energy savings than
desktop-version webpages because of their smaller memory footprint. On average, the
performance-oriented design (D2) achieves 14.4% energy savings. Since the energy-
conscious (D1) and current design (D3) have smaller caches, the energy consumption
caused by the data cache is less, and therefore benefits less from the browser engine
cache. On average, their energy consumption reduces by 5.9% and 9.3%, respectively.

We find that the DOM tree and Render tree access intensity largely determines the
amount of energy savings. The right y-axis in Figure 17 shows the amount of L1 data
cache traffic that is attributed to accessing both data structures. In the most extreme
case, about 80% of the data accesses for loading cnn touch the DOM tree and the Render
tree. Therefore, it achieves the largest energy savings.

There are some outliers in desktop webpages where the energy savings are not
proportional to DOM/Render tree access intensity. For example, sina has a much
higher traffic (∼60%) than twitter (∼40%), but with similar energy savings. This
is because sina has a much lower DOM cache hit rate than twitter. Figure 18 shows
the DOM cache and Render cache hit ratio for desktop webpages. We observe that sina
has a DOM cache hit rate at ∼70%, lower than twitter at ∼97%. A lower DOM cache
hit ratio indicates the sina does not fully use the low-energy browser engine cache. In

ACM Transactions on Computer Systems, Vol. 35, No. 1, Article 1, Publication date: March 2017.



Optimizing General-Purpose CPUs for Energy-Efficient Mobile Web Computing 1:23

Fig. 17. Energy savings with a browser engine cache.

Fig. 18. DOM cache and Render cache hit rate for desktop webpages.

contrast, we find that mobile webpages all have a high browser engine cache hit rate,
and therefore their energy savings closely track the DOM/Render tree traffic.

Due to the software cache management overhead, the browser engine cache incurs
performance overhead. Figure 19 shows the desktop webpages’ execution time of the
three designs with the browser engine cache. The values are normalized to each design’s
baseline configuration without the browser engine cache. We find that the performance
slowdown is minimal, primarily because the design decisions that we made (as de-
scribed in Section 6.2) minimize the software management overhead. On average, the
slowdown for D2 with a 64KB L1 data cache is only 2.7%. The slowdown for D1 and
D3 with smaller L1 data caches (8KB and 32KB, respectively) is slightly smaller—only
1.6% and 2.1%, respectively. We speculate that the reason is that both D1 and D3 have
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Fig. 19. Execution time with the browser engine cache of the three designs. Values are normalized to each
design’s baseline configuration without the browser engine cache.

slower performance than D2, and as such, they amortize the overhead of the software
cache management.

7.4. Combined Evaluation

Figure 20 shows the energy efficiency improvement for the entire webpage loading
on all three designs by progressively adding the two optimization techniques. The
dotted curve represents the Pareto-optimal frontier of the design space discovered
in Section 4.2. The circles represent original designs in this energy-performance space.
The triangles represent the new energy-performance tradeoff points after applying
the software-managed browser engine cache optimization. The squares show the new
energy-performance points when the SRU is added atop the caching optimization.

Comparing the energy-conscious design (D2) with an existing mobile processor design
(D3), we observe that customization of the general-purpose architecture alone without
applying any specialization allows us to achieve 22.2% performance improvement and
18.6% energy savings.

After applying the browser engine cache, the performance slightly degrades due to its
software management overhead. Therefore, all the triangles move slightly to the right
despite the energy savings. However, applying the SRU optimization improves both
performance and energy consumption. All the squares move toward the left corner. In
effect, we push the Pareto-optimal frontier in the original design space to a new design
frontier with significantly better energy efficiency.

In addition, we also observe that D3 with our specializations can now approach the
original Pareto-optimal frontier. This implies that it is possible to apply specializations
to existing mobile processors to achieve a similar level of energy efficiency as processors
that are optimized for the mobile web browsing workloads.

On average, the energy-conscious design (D1) benefits by 6.9% and 16.6% for per-
formance improvement and energy reduction, respectively. The performance-oriented
design (D2) benefits by 9.2% and 22.2% for performance improvement and energy re-
duction, respectively. Lastly, the existing mobile processor design (D3) benefits by 8.1%
and 18.4% for performance improvement and energy reduction, respectively.

Our specializations incur area overhead. To quantitatively assess the effectiveness
of the area overhead, we compare our results with general-purpose designs that simply
use the same area overhead to scale up microarchitecture resources. In our evaluation,
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Fig. 20. Energy-efficiency improvement over three
designs.

Fig. 21. Allocating area for caches versus special-
izations.

we use the additional area to improve the I-cache and D-cache sizes because instruction
delivery and data feeding are the two major bottlenecks, as discussed in Section 4.3.
The additional area would be most justified to improve the I-cache and D-cache sizes.

As an example, Figure 21 compares our combined specializations (WebCore) with
designs that increase the I-cache size by 24KB (I$), D-cache size by 24KB (I$), and both
caches by 12KB (I+D$) based on the D2 design. The figure normalizes the webpage
loading time and energy consumption to the D2 design without any specializations.
We see that simply improving the cache sizes in general-purpose cores achieves only
negligible performance improvement (<1%) with a slightly higher energy consumption.
However, WebCore specializations provide significantly better energy efficiency.

8. RELATED WORK

Web Browser Optimizations. Prior software work focuses on parallelizing browser
kernels/tasks for improving performance [Badea et al. 2010; Meyerovich and Bodik
2010, 2012; Cascaval et al. 2013; Meyerovich et al. 2013; Mai et al. 2012; Mozilla 2015].
Although such parallelized algorithms can achieve speedups ranging from 4× to 80×
for specific tasks, they typically do not scale well beyond four cores/threads. None of the
mainstream web browsers, such as Chrome and Firefox, explicitly parallelize browser
rendering engine computations for multiple cores. Multithreading is mostly only used
for resource loading, such as network prefetching and TCP connections, rather than
computation, which is the focus of this article. Our measurement results on the Exynos
5410 SoC show that going from two to four cores doubles the power consumption
while improving performance by only 10%. In addition, our optimizations target both
performance and energy, and can therefore readily improve the per-thread/task energy
efficiency.

Zhu and colleagues propose scheduling techniques that leverage the big/little hetero-
geneous system for optimizing the energy efficiency of mobile web applications [Zhu and
Reddi 2013; Zhu et al. 2014, 2015a]. Big/little scheduling trades off performance with
energy consumption. In contrast, WebCore customization and specialization improve
both performance and energy consumption at the same time. In addition, WebCore en-
riches the heterogeneity at the core and system level, thus creating more opportunity
for the compiler and operating system scheduling.

GreenWeb [Zhu and Reddi 2016] is a set of programming language support that
allows developers to specify constraints about user QoS experience while delegating
to the runtime system how to make calculated tradeoffs between energy consumption
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and QoS experience. In comparison, WebCore is an architecture-level mechanism that
does not rely on programming language support.

Similar to our work, SiChrome [Bhatt et al. 2012] performs aggressive specializations
that map much of the Chrome browser into silicon and achieves EDP improvement.
The key difference is that we retain general-purpose programmability while still being
energy efficient. Also, our Pareto-optimal analysis provides a more generic optimization
view than the EDP-based evaluation.

ESP [Chadha et al. 2015] and EFetch [Chadha et al. 2014] also propose special-
ized hardware structures on top of general-purpose cores to improve the performance
and energy efficiency of web applications. They view web application execution has
a sequence of events, while we view web application execution as a mix of different
kernels. Both views are complementary in that per-event execution can benefit from
kernel-level improvement that WebCore provides and vice versa.

Other works take a system-level perspective on improving web browsing per-
formance, such as asynchronous rendering, resource prefetching, and refactoring
JavaScript and CSS files [Wang et al. 2011, 2012; Lymberopoulos et al. 2012; Zhang
et al. 2010; Thiagarajan et al. 2012]. Our work is complementary to them because they
can all benefit from kernel-level efficiency improvements.

Web Application Characterization. BBench [Gutierrez et al. 2011] is a webpage
benchmark suite that includes 11 hot webpages. Its authors perform microarchitec-
tural characterizations of webpage loading on an existing ARM system. Although the
authors show that the 11 webpages have distinctly different characteristics from SPEC
CPU 2006, they do not quantify the comprehensiveness and representativeness of the
webpages against the vast number of webpages “in the wild.” In stark contrast, our
analysis in Section 3 systematically proves the broad coverage of our webpages, which
is needed for robustly evaluating the impact of the optimizations that we propose.
For example, we find that BBench does not include significantly complex webpages,
and our analysis led to including two webpages of that sort, that is, www.163.com
and www.sina.com.cn. Their webpage sizes are about 4× larger than the average
BBench webpage, and as such are needed to increase the coverage of our benchmark-
ing suite.

MobileBench [Pandiyan et al. 2013] characterizes the performance impact of var-
ious microarchitecture features on mobile workloads. Our article quantifies the
performance-energy tradeoff and focuses specifically on web applications. Complemen-
tary to our design-space exploration, MobileBench results show that more aggressive
customizations of other microarchitecture structures such as the prefetcher are worth
exploring.

JavaScript. Our work is not about JavaScript execution. However, we found that
a significant amount of JavaScript execution time is spent in the browser’s kernels
(∼40%). Our work indirectly studies how the browser engine can improve JavaScript
performance and energy efficiency. There are prior works on the JavaScript lan-
guage engine itself, including analysis [Ratanaworabhan et al. 2009] and optimiza-
tions [Mehrara et al. 2011; Mehrara and Mahlke 2011; Guckert et al. 2013]. They are
separate and complementary to our work involving the browser engine.

Specialization Alternatives. L0 caches and scratchpad memories [Kin et al. 1997;
Banakar et al. 2002] have long been used to reduce data communication overhead by
acting as small, fast, and energy-conserving data storage. The browser engine cache
proposed in this article demonstrates the effectiveness of such an idea for mobile web
browsing workloads. We propose to implement the browser engine cache as a collection
of registers where each register holds exactly one DOM (render) tree attribute. In
contrast, the typical L0 cache in mobile SoCs [Klug and Shimpi 2011] is agnostic to
the application-level data structures. Each L0 cache line, thus, holds more than one
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DOM attribute, leading to excessive energy consumption when accessing individual
attributes.

In addition, the strong locality of the principal data structures revealed in our anal-
ysis can potentially be captured by dedicating cache ways to the web browser appli-
cation [Fajardo et al. 2011; Kluter et al. 2013]. The streaming access pattern of the
DOM tree shown in Figure 14 indicates that a dynamic cache insertion policy such as
DIP [Qureshi et al. 2007] or an intelligent linked data structure prefetcher [Ebrahimi
et al. 2009] on L1 data cache are also worth exploring. However, the browser engine
cache we propose aims at saving energy with minimal loss in performance, which the
prior performance-oriented techniques have not been proven/claimed to provide. Fi-
nally, hardware support for index walking and list traversal [Kocberber et al. 2013]
could also potentially be useful for accelerating DOM tree walking.

9. CONCLUSION

The demise of graceful Dennard scaling and, consequently, the dark silicon phe-
nomenon have been widely recognized in our community as an urgent challenge threat-
ening the next generation of computing advancements. Improving energy efficiency is
now becoming the first-class design consideration. Among all techniques, hardware cus-
tomization and specialization is deemed an extremely effective approach to improve
energy efficiency.

One of the most important questions to address as we enter the dark silicon era
is to identify what application domains benefit the most from dedicated hardware re-
sources and design efforts. In retrospect, software computational kernels that made
their way into today’s hardware have had a strong usage base and long-standing
impact. Examples from recent proposals cover important domains such as scientific
computing [Qadeer et al. 2013], video processing [Hameed et al. 2010], and signal
processing [Woh et al. 2009], but none specifically targets the web application domain.

WebCore is the first attempt to comprehensively customize and specialize for the
mobile application domain. Specifically, it identifies the web software infrastructure
(HTML, CSS, and JavaScript) as a promising target for hardware customization and
specialization in the complex mobile software ecosystem. Customizations identify the
general-purpose baseline architecture that uniquely matches the web workload’s needs.
Specializations further pack enough domain-specific computations (SRU) and support
energy-efficient data communication across kernels (browser engine cache). Altogether,
they push the energy efficiency frontier of general-purpose mobile processor designs
to a new level for mobile web browsing workloads. Such designs are warranted given
current mobile processor architecture trends in a battery-constrained energy envelope.

Longevity. As we see it, the longevity of the WebCore lies in the following aspects.
First, the web platform is, and will continue to be, the substrate of many web appli-
cations due to its “write-once, run-anywhere” feature that tackles the notorious device
fragmentation issue [Signal 2014]. Exemplifying this design philosophy is Google’s
Portable Native Client (PNaCl). It supports the porting of native C/C++ applications to
the Chrome browser [Gigaom 2013]. SkyFire Technology shows that web applications
based on browser technologies still far outweigh native apps, excluding games [Glueck
2011]. Even for gaming, we see a burst of advanced browser-based games owing to the
emergence and widespread adoption of HTML5 technologies. New gaming libraries
such as Construct2 [2015] make it possible to port entire real-time physics engines
such as the Unreal Engine into a browser [Lardinois 2013].

Principled Approach. WebCore is not specific to a particular browser implemen-
tation; rather, it targets important computation and communication patterns that are
fundamental to any web browser. Those patterns are generally found across different
web browser engines, such as WebKit and Gecko. In addition, the kernel algorithms
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and data structures remain largely unchanged across browser versions. For example,
the algorithm we study in the Style kernel has remained almost identical over the past
2 years, which includes over 10 versions of Chromium. Therefore, we do not expect
software changes to dramatically impact our hardware design.

Balancing Programmability and Specialization. Unlike prior research that
takes either a fully software approach on general-purpose processors [Cascaval et al.
2013; Meyerovich and Bodik 2010] or a fully hardware approach [Bhatt et al. 2012], We-
bCore strikes a balance between the two. On one hand, WebCore retains the flexibility
and programmability of a general-purpose core. The general-purpose programmability
is essential to support the complex browser software system and allows fast prototyping
of new ideas and implementations. On the other hand, it incorporates modest hardware
specializations that create closely coupled datapath and data storage to achieve energy
efficiency improvements.

Heterogeneous Architecture. Our vision of the WebCore is that it is one core of
a heterogeneous multicore SoC, tuned specifically for web workloads. Normal work-
loads can use regular cores. Different from the typical big/little type of heterogeneous
processors, WebCore increases the system heterogeneity by providing domain-specific
hardware specialization. Recent industry efforts, such as hardware support for We-
bRTC in Tegra 4 [NVidia 2013], reinforce this emerging new trend. WebCore can be
integrated with other heterogeneous proposals that improve web browsing efficiency
(such as via scheduling [Zhu and Reddi 2013]).
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