Persistence in Dynamic Code Transformation Systems

Vijay Janapa ReddiT, Dan ConnorsT, Robert S. Cohn®

JrDepaurtment of Electrical and Computer Engineering

fntel Corporation

University of Colorado, Boulder

{janapare, dconnors}@colorado.edu

Abstract

Dynamic code transformation systems (DCTS) can
broadly be grouped into three distinct categories: opti-
mization, translation and instrumentation. All of these
face the critical challenge of minimizing the overhead in-
curred during transformation since their execution is in-
terleaved with the execution of the application itself. The
common DCTS tasks incurring overhead are the iden-
tification of frequently executed code sequences, costly
analysis of program information, and run-time creation
(writing) of new code sequences. The cost of such work is
amortized by the repeated execution of the transformed
code. However, as these steps are applied to all general
code regions (regardless of their execution frequency and
characteristics), there is substantial overhead that im-
pacts the application’s performance. As such, it is chal-
lenging to effectively deploy dynamic transformation un-
der fixed performance constraints. This paper explores a
technique for eliminating the overhead incurred by ex-
ploiting persistent application execution characteristics
that are shared across different application invocations.
This technique is implemented and evaluated in Pin, a
dynamic instrumentation engine. This version of Pin is
referred to as Persistent Pin (PPin). Initial PPin ex-
perimental results indicate that using information from
prior runs can reduce dynamic instrumentation overhead
of SPEC applications by as much as 25% and over 90%
for everyday applications like web browsers, display ren-
dering systems, and spreadsheet programs.

1 Introduction

Dynamic code transformation systems (DCTS) have the
potential to impact the design and use of modern com-
puter systems since they can perform a number of tasks at
runtime, such as profiling, optimization, and translation.
DCTS have an inherent advantage over static techniques
because they can access and collect execution characteris-
tics that, in turn, can be used to adapt the code execution
of the target application. However, since DCTS execution
is interleaved with the execution of an application, there
is a substantial overhead penalty during code transforma-
tion. In the context of performance analysis and program
behavior tools, the overhead of a DCTS may be accept-
able. Nonetheless, the overhead of DCTS is a major bar-
rier to runtime transformation in real systems and for use
in large-scale application environments.

The execution overhead of an application running un-
der any DCTS is determined primarily by two things:
(1) transformation overhead and (2) performance of the
translated code. The transformation overhead is deter-

robert.s.cohn@intel.com

mined by the level of complexity of run-time analysis and
transformation components applied to the code. Like-
wise, the overhead of each DCTS component is not fixed,
but depends on the run-time characteristics of the ap-
plication. At startup, most programs have tremendous
amounts of code that are executed only once or a few
times, a DCTS will not be able to amortize the run-time
overhead costs for these code sequences. The performance
of the translated code is controlled by factors such as
whether optimization was applied or whether instrumen-
tation code was added during transformation.

Traditionally, DCTS designs have primarily focused on
achieving a given transformation task on a single ex-
ecution instance of a program. Repeated invocations
do not exploit persistent characteristics such as fre-
quent /identical code paths or other runtime information
from previous executions. This is a significant drawback
since applications tend to exhibit identical characteris-
tics across executions as shown in [5]. Exploiting shared
behavior can dramatically reduce the run-time overhead
since the time spent doing the same analysis and opti-
mization in a repeated invocation can be avoided.

In this paper, a solution that addresses the transforma-
tion overhead issue is proposed. This strategy aims at ex-
ploiting persistent characteristics of the application that
are recurring across independent invocations. By caching
information from prior executions, the cost of transfor-
mation is minimized since subsequent invocations of the
application may only require limited amounts of new code
generation. While persistence support can be directed to
cache many types of information (optimization, program
state, etc), the target of this paper is to illustrate the fun-
damental challenges in materializing persistent caching of
instrumentation information in a DCTS.

An experimental framework for capturing persistent
code transformations, PPin, has been implemented and
evaluated in the Pin dynamic instrumentation system.
PPin is capable of caching instrumented executions, re-
using previously cached runs and increasing the size of
the cache execution as new paths are generated due to a
new input set. PPin is also capable of supporting large,
multithreaded applications. Persistence in Pin reduces
the instrumentation overhead of SPEC programs by as
much as 25% and as much as 90% for the start-up cost
of everyday applications such as web browsers, graphics
rendering systems, spreadsheets and text editors.

The remainder of the paper is organized as follows:
Section 2 presents a detailed argument that supports
the caching of dynamic program executions. Section 3
presents an overview of the solution along with an elab-

oration of the challenges in deploying persistence in a
real run-time system. Section 4 is an evaluation of the
persistence in a run-time binary instrumentation system.
Finally, Section 5 summarizes the contributions of this

paper.

2 Dynamic code transformation
Dynamic code transformation is a well known topic in
the domain of instrumentation, debugging, performance
analysis, and optimization. Jalapeno [1], Dynamo [2],
DynamoRIO [3], Mojo [4] and Adore [6] are examples
of native-to-native performance optimizers that monitor
the application execution behavior and apply optimiza-
tions as best suited to improve the native binary perfor-
mance. [A32EL, HP-Aries, Daisy, BOA and Transmeta
are binary translators that execute binaries complied for
one architecture on another. Pin [7] and Valgrind [8] are
systems that use run-time compilation to perform appli-
cation introspection via the use of instrumentation.

All of the above systems focus on accomplishing their
task by monitoring a single instance of the program. They
do not attempt to leverage information from past exe-
cutions to reduce the overhead in subsequent executions
or to further improve the application performance. The
challenges faced by dynamic code transformation systems
executing in a single execution instance are presented in
the next section.

2.1 DCTS challenges

DCTS experience the primary challenge of overhead since
their execution is interleaved with the execution of the
application itself. The overhead is a summation of the
time spent executing the generated code (translated code
overhead) and the overhead involved in generating the
code (transformation overhead).

Translated code overhead is determined by a num-
ber of factors that include the original code, modifica-
tion to the code (optimization or added instrumentation),
and transformation artifacts for transparently maintain-
ing the original application’s functionality. In the absence
of code optimization and instrumentation, the dynamic
execution count of translated code can still have signifi-
cant overhead. Code that includes branches with varying
targets requires special DCTS handling that amounts to
overhead from run-time checking of branch targets, as
well as directing the application execution to the DCTS
system for new code compilation. Overhead can also be
added based on the layout of the translated code in mem-
ory since this determines the I-cache, TLB, and memory
system performance. DCTS overhead of applications such
as 253.perlbmk, 252.eon and 255.vortex is primarily dom-
inated by translated code execution costs.

Transformation overhead is determined by the run-
time compilation steps and the amount of code that re-
quires run-time compilation. The cost varies based on
the execution characteristics of the application. Programs
with large footprints, such as 176.gcc, tend to stress the
infrastructure more heavily than their counterparts like,
181.mcf, 164.gzip and 256.bzip, all of which have rela-
tively smaller code sizes (small footprint) and fewer exe-
cuted unique paths through code (less control intensive).

Start-up (initialization) transformation overhead: Fig-
ure 1 shows the usage of Pin’s Just-In-Time (JIT) com-

—e— Input 1
—=— Input 2
Input 3
Input 4

4
i —— Input 5

Elapsed time

T T T T 1
15000 20000 25000 30000 35000

Dizpatch count

1} EEI‘EIEI 1EIEIIEIEI
Fig. 1: Time spent in the Pin system for 176.gcc benchmark for
the various reference SPEC input sets. Every point represents
the compilation of a new trace. A straight line reflects the
time spent running translated code.

Cumulative Hot Trace Counts

100 T —
90 —
80 /
/ —175.vpr
70 —176.
1774 oo
/ — 186.crafty

50 /;f 197.parser
40 7

— 253.perlbmk
30

164.gzip

I

Counts(%)

— 254.gap
255.vortex
256.bzip2

— 300.twolf

20
10
0 -

Percent of Total Trace Execution

T

51 101 151 201 251 301 351 401 451
Number of Hot Traces

Fig. 2: Cumulative percentage of the number of traces that
dominate program execution.

piler infrastructure by the 176.gcc benchmark for all five
of the SPEC reference input sets. The vertical axis is
time and the horizontal axis is the number of times the
Pin virtual machine was entered across the entire run of
the program. A straight line without a data point indi-
cates that time is being spent in the code generated by
the JIT (translated code), where as a point signifies the
JIT is compiling a new program path that has not previ-
ously been seen (code transformation). From the figure it
is evident that a lot of time is spent compiling new code
paths. Only near the end is the majority of the time spent
executing the translated application. This data corrobo-
rates a 3x slowdown for 176.gcc in the Pin system. Re-
peated code transformation degrades performance since
the effects of invoking the JIT on the architecture are
similar to a process context switch. The insight gained
from this data is that a benchmark with a large footprint
will consume a substantial transformation time and that
a significant amount of transformation time is spent on
infrequently executed code. Another interesting charac-
teristic evident from the figure is that the compiled ap-
plication exhibits identical transformation behavior in the
usage of the JIT compiler for the different inputs. Only
at around JIT invocation 23000 do the different inputs to

Graphic Translated code Transformation
Applications ezecution time (%) time (%)

Gnumeric 1% 96%
Emacs 7% 93%
Xpdf 26% 76%
Wts (MT) 2% 58%
Gtv (MT) 87% 13%
Xlogo 14% 86%
Gv 10% 90%

Table 1: Distribution of translated code execution time ver-
sus transformation overhead for the startup phase of graphic
applications

176.gcc deviate and cause different code transformation
behavior.

Infrequently executed code transformation overhead:
Another source of transformation overhead for run-time
systems is the result of a trait common to most applica-
tions: cold code - code executed once or a few times.
Cold code execution is a challenging problem for run-
time systems because such systems rely on amortizing
the cost of the transformation overhead by repeated exe-
cutions of the translated code sequences. Figure 2 shows
the sorted distribution of code sequences generated by
Pin’s JIT compiler to cover the complete execution of
each program. It is evident from the data that most of
the execution time is spent in just a few traces, except
in a few applications. On average, benchmarks spend
the majority of execution time in fewer than 150 traces.
The 176.gcc application has the largest code footprint,
and therefore requires the most individual traces (greater
than 500) to cover its entire execution.

Table 1 shows the distribution of the time spent execut-
ing the translated code versus generating it for the startup
phase of graphic applications. A significant amount of
time is spent transforming the code; even a faster JIT
compiler will not be able to overcome this transforma-
tion overhead because the code consists of paths that are
executed infrequently.

From Table 1 and Figure 2 it can be concluded that the
transformation overhead for Pin is due to a large number
of infrequently executed traces requiring transformation.
Addressing this problem is therefore critical to improving
the performance of code transformation systems.

The work in this paper aims at reducing the overhead
of the transformation cost in a run-time code transfor-
mation system. The suggested strategy to minimize the
overhead is to cache the program executions at the end
of the run to a database maintained by the system. This
methodology is referred to as Persistence. In [5] it has
been shown that applications tend to share common code
paths across multiple invocations. Thus it is believed that
our approach is a practical and effective solution to min-
imize the incurred transformation overheads.

To evaluate persistence and its benefits, a working so-
lution has been implemented in a binary instrumentation
system. Persistent caching of instrumentation is particu-
larly beneficial for large software systems under develop-
ment. Complex software systems are usually put through
some form of daily regression tests to ensure that develop-
ment changes to the source do not break the application.
They are fed with multiple input sets to ensure enough of
the code is touched to ensure robustness. Such applica-

tions, due to their complexity, tend to stress the instru-
mentation systems aggressively. For instance, a database
program under a memory checking Pin Tool experiences
a 1.4x slowdown simply due to transformation overhead.
Separate invocations of the program with different input
sets would all therefore result in an identical transfor-
mation slowdown. By using persistence, only the first
invocation of the application needs to incur the perfor-
mance penalty. The rest of the invocations may reuse a
cache generated from the first invocation. This results in
incurring minimal amounts of transformation overhead as
a result of any new paths taken by the application due to
the input variation.

3 Persistence

3.1 A persistent run-time system

Figure 3 illustrates the control flow of a persistent run-
time system. When the system is started, it may proceed
with some basic initialization steps. Past the initializa-
tion phase, it checks to see if a prior execution exists in
the persistence cache database. If a prior execution cache
does not exist it proceeds to initialize modules that are
persistent-specific, such as memory allocators that allo-
cate space for run-time data structures and the translated
code from memory pools that are live across application
invocations. These memory pools are cached in the per-
sistence database and are made available for reuse when
the same binary is re-invoked.

Basic initialization

- Derai BN .~ “Persistent’~~
--7 Persistence “~. __Yes - - S
«l o= »__execution image _>-==-+5
~ mode? . ~3 . - '
hR .- ~._exists?_,-

in translation
cache?

Transformcode: | | [ToTToomoossoosssess
Fetch Initialize Persistence
Allocators

Memory pools

Compile
Link

) Generate persistent

mode? execution image

Fig. 3: Overview of a persistent code transformation system.
Dotted lines indicate Persistence specific states.

Past the initialization phase, the system defaults to
steps normally taken by any dynamic binary code trans-
former such as those taken by systems explained in Sec-
tion 2. At the end of the execution, the translated code
sequences and their relevant datastructures are stored in
the persistence database.

Subsequent invocations of the system on the same ap-
plication trigger the system to check the database for a
prior execution instance that has been cached. If one
exists, the system initializes itself with the required state

that allows it to reuse the cached execution and proceeds.
Program paths previously seen demand no code trans-
formation and translation since the paths already exist
in memory. The system gets invoked only for new ex-
ecution sequences. At the end of the program, all new
code sequences generated may be appended to the al-
ready cached execution in the database or a new persis-
tent cache file may be created.

3.2 Challenges

Realizing persistence in a dynamic system lends itself to
many complex problems that need to be addressed to
make it a practical solution. In this section, some of the
fundamental challenges that are believed to be generic to
any DCTS are elaborated.

Consistency: A cached execution cannot be reused if
the application binary has been modified since its last
invocation. If the application has been modified then all
the cached executions for that particular application have
to be invalidated and a new persistent cache file has to
be generated. Identifying changes requires a signature
for the current execution instance. This signature has
to be generated and verified prior to executing the first
instruction of the cached execution. Signatures may be
generated using generators such as mddsum and shalsum.

Randomized address space (RAS) [9]: Operating sys-
tems that support randomized address space are capable
of loading shared libraries at different addresses across
executions. This is a problem since all run-time systems
maintain a translation mapping between the original and
translated instructions. A scenario where this is problem-
atic for a system is when two shared libraries, A and B,
originally loaded at addresses X and Y, are swapped and
loaded at addresses Y and X respectively in the second
run. This interchange will break the application in the
second run if a cached execution is reused. This is be-
cause the mappings will be incorrect - if the first instruc-
tion address of A is looked up in the cached execution, it
will incorrectly return the translated instruction address
as X when it is really Y during the second run.

A possible solution is to update the mappings at pro-
gram start-up time so that all mapping lookups return
valid results for the current execution instance.

Absloute addresses in translated code: The loading of
executables at different addresses across executions cre-
ates yet another problem that is specific to translated in-
structions. For example, a run-time system may translate
a CALL 0x8048494 instruction into a (PUSH 0x8048499,
JUMP 0x8048494) pair (the PUSH instruction is placing
the return address onto the stack) to maintain trans-
parency. If the CALL instruction is relocated in a sub-
sequent run due to RAS then the literal in the PUSH in-
struction needs to be updated to reflect the new return
address after the CALL instruction.

A possible solution is to generate translated code that
is of the position-independent-code form, so that regard-
less of where the code is loaded, the translated code will
work correctly. Another solution is to generate relocation
entries for the translated code and to fix-up the code prior
to execution. This technique is similar to what the loader
does at program start-up.

Memory constraints for the run-time system: Trans-
lated code is cached in a special area of memory in the

address space. Applications that have a very large foot-
print tend to exhaust the allocated space quickly. Most
systems respond to this by reclaiming the space allocated
for all the code translations generated in the current in-
stance. If the execution is cached only at program ter-
mination, it will limit the performance of persistence be-
cause all the paths initially seen will not be in the cached
version. Therefore, in the subsequent runs the system
will have to regenerate the lost paths which results in
transformation overhead again.

Rather than losing the paths, prior to space reclama-
tion, it is better to generate a persistent cache every time
the allocated space is being reclaimed. These multiple
caches can be reused individually by the system in later
executions.

Self modifying code: Code that dynamically modifies
itself cannot be cached in the persistent database if the
cache is generated only at the end. This is because it only
contains the final version of the code which may have been
modified through the life-time of the program.

Generations of code may have to be maintained in the
persistent executions so that they may be swapped in
when SMC is detected.

Optimization: Certain optimizations performed by the
code transformation system during one execution in-
stance cannot be propagated across executions since they
might be dependent on the inputs. For example, constant
propagation often tends to be input dependent. There-
fore, in order to reuse an already existing execution the
inputs may have to match, in case the system applied
that optimization.

Persistent run-time system design: While the above
are all important challenges a persistent run-time system
must handle, the design of the system itself cannot be
overlooked. Persistence relies not only on the state of the
application but also on state that corresponds to the run-
time system. Most systems are developed simultaneously
by multiple coders. Requiring all coders to comprehend
persistence and to cater for it is likely to diminish the rate
of development and increase system complexity. There-
fore it is important to design the system in a manner that
its presence is constrained in the codebase.

Object oriented programming features have proven to
be an important concept to exploit. They ease the imple-
mentation of persistence in a system that is being actively
developed. Developers only had to register their classes
with a persistent memory manager which ensured that
run-time objects were cached properly and available for
accesses/modifications in subsequent runs.

4 Evaluation of Persistence
4.1 Persistence in a binary instrumenta-
tion system

Pin is a JIT based instrumentation engine that supports
instrumentation on the [A32, EM64T, IPF and XScale
platforms via the use of Pin Tools that export a rich
user interface for performing application introspection.
Pin performs various optimizations such as code caching,
trace linking, inlining, register allocation and liveness
analysis on the generated code to minimize the overhead
incurred at run-time.

Persistent Pin (PPin) is specifically designed to reduce
the overhead of dynamic instrumentation. The overhead

m Original @PPin @Pin

500

400

300 —

Exesution time (5)

200 —

100 —

0 L L LL

Fig. 4: Persistent Pin’s performance in comparison to native
and Pin’s performance

is the result of Pin generating new traces for paths be-
ing executed by the application that have not been seen
yet and for generating the required instrumentation in-
trospection code. The impact of the overhead on the
architecture may be viewed as being similar to the ef-
fect of a regular operating system context switch. The
overhead reduction is a two-step process that involves a
warm-up phase of generating a cache file on disk that is
later made available for reuse in subsequent invocations
of the application under Pin, with either an identical or
varying input. A cache file consists of the translated code
in memory and the necessary data structures to support
code reuse across executions. Thus by reusing as much
of the code as possible from a prior run, PPin guaran-
tees smaller overhead because paths that have been seen
before will not require Pin’s compilation.

PPin was evaluated on SPEC and everyday applica-
tions. The latter is a suite of interactive graphics appli-
cations comprising of a spreadsheet, text-editors, ps/pdf
viewers, a virtual desktop manager and a media player.
The last two are multi-threaded applications. They were
chosen to characterize and reflect their more aggressive
and demanding start-up behavior in comparison to SPEC
programs, which are poor indicators of everyday applica-
tion characteristics on DCTS. The results were gathered
on an Intel 3.0GHz machine with 2GB main memory run-
ning RedHat 7.0 operating system. While Pin supports
various platforms we have evaluated our preliminary de-
sign only on the TA32 platform.

The experiments performed are divided into two groups
to characterize the (1) effectiveness of persistence in re-
ducing the overhead over the lifetime of programs and its
(2) effectiveness in minimizing start-up costs. The moti-
vation for doing this is to clearly present the benefits of
persistence.

4.2 Overhead reduction over program
lifetime

Traditional dynamic code transformation systems rely on
amortizing their overhead by repeated executions of the
code already translated in the current execution instance.
Therefore, once the system covers enough of the program
footprint, its overhead becomes negligible. Thus, it is
essential to carefully analyze how effective persistence is
over the length of the program execution.

The first evaluation of persistence in Pin was to run

100000

5 O FPin
2 i
S .
20000 A @ Pin
. 80000
i
3 70000
B
2 &0000
z
%
= smm w
28 &
& 2
2 40000
3
S 3mm
® 2 8
20000 = =
= =
o -1 o
ooy ed LB o 2 - 2 a8 =8 2
7 & el 38 g5 2% R EE Y-
ool S EL @ Em Em oo Be
g & & - T S
%@“ & 25 %ﬁ"\ & 35“ %&’ F %,_4}? &
& 3 9 & & o & o
b

Fig. 5: Pin service requests from the translated code.

Pin without instrumentation. Without instrumentation,
Pin is highly representative of a generic DCTS. This can
be seen as Pin functioning as a native-to-native trans-
lator with Pin’s default optimizations and transforma-
tions. Some transformations are for transparency and
incur overhead.

Figure 4 shows the execution times of the SPEC bench-
marks running the original binary, under Pin, and us-
ing an already cached uninstrumented execution (PPin).
Only SPEC Integer benchmark performance is reported
since it has been shown in [7] that Pin does affect
SPEC Floating point benchmarks performance signifi-
cantly. The data shows two things. First, PPin is effective
across all benchmarks in reducing the code transforma-
tion overhead. Second, the performance improvement of
PPin is limited by the performance of the translated code.

The code transformation overhead reduction is con-
firmed by the reduced number of Pin service requests
evident in Figure 5. A service request occurs when Pin
is called to generate new code paths and handle system
calls. In PPin, these services are still likely to occur based
on the execution characteristics of the application and the
environment. 176.gcc benefits most from persistence with
an improvement of 30% in execution time. This shows
that Persistence is most effective on benchmarks that are
complex in control flow with large footprints since that
tends to stress the infrastructure heavily during the code
transformation phase as shown in Figure 1. Other bench-
marks do not exhibit dramatic gains because they have
relatively smaller footprints. Small footprints are easy to
work with for code transformation systems because once
the code is translated and cached in memory, the system
is not frequently invoked for code transformation. There-
fore, it can easily amortize the initial cost over repeated
executions of the cached code sequences.

253.perlbmk and 255.vortex benchmarks also show dra-
matic reductions of 80% in service requests. However
Figure 4 does not confirm execution time improvement.
This is because the applications are affected by the per-
formance of the translated code. The two benchmarks
have a very high dynamic execution of indirect branches.
Indirect branches are challenging to handle in a dynamic
code transformation system and contribute a significant
amount of overhead. The challenges in handling such
branches are elaborated in detail in [2] and [7]. This
is not the task of the proposed solution and thus is not

OPPin BPin

3000

2000

1000 : T +% 23% : i
IFT Y
0 W

& &
R NS

Execution time (s)
®
2

Fig. 6: Execution time for BBL instrumentation using Persis-
tent Pin vs. Pin. Percentage improvements of PPin over Pin
are shown.

W PPin (BBL

B Original @PPIn (Na OPin (No BPin (B8

GV (MT) Xiogo o

Grumerlc Emacs. Xpat

Fig. 7: Execution time of Persistent Pin vs. Pin for BBL
instrumentation of everyday applications. Applications were
started and immediately shutdown, this is the worst case sce-
nario and illustrates the benefits of caching cold code.

discussed further.

Proceeding to the evaluation of persistence in instru-
mentation, basic block (BBL) profile instrumentation was
applied to the SPEC Integer benchmarks. Figure 6 indi-
cates an average saving of 26% execution time over the
regular Pin by re-using cached executions for subsequent
invocations of the program. This proves that the caching
of instrumented program executions is beneficial and wor-
thy of further investigation.

4.3 Start-up cost reduction

The start-up phase is the most difficult part for any DCTS
because the system is constantly invoked to generate new
code paths that have not been seen yet. Applying DCTS
to interactive programs is difficult because users do not
tolerate especially long pauses at start-up. This slowdown
is a result of a lot of shared library initialization, cold code
that is bad for DCTS because there is no way to amortize
the overhead incurred during the start-up phase.

Figure 7 shows the execution time to start the graphic
programs and to shut them down once they are com-
pletely ready for user interaction for the cases when no
instrumentation is applied as well as when basic block
profile is collected. The run-times show that persistence
is highly effective in handling the start-up overhead with
an average improvement of 90% execution time savings
for both instrumented and uninstrumented executions.
This dramatic improvement is possible because graphics
programs exhibit tremendous amounts of initialization se-
quences. For instance, Gnumeric is a Linux spreadsheet
program that relies on interacting with over 50 shared
libraries and Emacs with 18 libraries. All of these li-
braries have to be loaded into memory and initialized to
be ready for user interaction. This initialization code is
rarely reused and thus, this overhead cannot be amortized
by any DCTS that does not use persistence-like services.

5 Conclusion

In this paper, Persistence is proposed as a solution to re-
duce the overhead incurred by dynamic binary code trans-
formation systems. Persistence is the process of caching
executions in a database to be re-used in subsequent in-
vocations.

Persistence was evaluated in the Pin run-time binary
instrumentation engine, to create a system known as Per-
sistent Pin (PPin). PPin is capable of caching instru-
mented program executions and reusing the cached in-
strumented executions in separate invocations. It is also
capable of caching new code paths in subsequent execu-
tions if the application changes behavior from prior ex-
ecutions and supports multi-threaded applications. The
Persistence model has proven to be very effective for Pin.
Experimental data shows code transformation overhead
reductions of up to 90% for interative graphic program
start-up costs and up to 25% for SPEC benchmarks for
instrumented executions.

References

[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the jalapeno JVM.
In Conference on Object-Oriented, pages 47-65, 2000.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo:
A transparent dynamic optimization system. In Pro-
ceedings of the ACM SIGPLAN 00 Conference on
Programming Language Design and Implementation,
pages 1-12; June 2000.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
CGO ’03: Proceedings of the international symposium
on Code generation and optimization, pages 265-275.
IEEE Computer Society, 2003.

[4] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies.
Mojo: A dynamic optimization system. In 8rd ACM
Workshop on Feedback-Directed and Dynamic Opti-
mization (FDDO-8), December 2000.

[5] K. Hazelwood and M. D. Smith. Characterizing inter-
execution and inter-application optimization persis-
tence. In Workshop on Exploring the Trace Space for
Dynamic Optimization Techniques, pages 51-58, San
Francisco, CA, June 2003.

[6] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-
C. Yew, and D.-Y. Chen. The performance of run-
time data cache prefetching in a dynamic optimization
sytem. In Proceedings of the 36th International Sym-
posium on Microarchitecture(MICRO-36), December
2003.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-
wood. Pin: Building customized program analy-
sis tools with dynamic instrumentation. In Pro-
ceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation,
June 2005.

[8] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In Proceedings of the S3rd
Workshop on Runtime Verification, July 2003.

[9] PAX. Web site: http://pax.grsecurity.net/.

