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Abstract— The intrinsic robustness of an algorithm and 
architecture depends highly on the combined ability tolerate 
noise. In this paper, we present an alternative approach for 
energy reduction for near threshold computing based on a 
statistical modeling of computational noise induced from noisy 
memory and non-ideal interconnects. We present this approach 
as a complement to the standard approximate computing 
approaches. We show results of the lightweight error checks and 
recovery based on several design considerations on data value 
speculation. 
 

Index Terms—Approximate computing, noise resiliency, 
computation noise, near threshold computing 

I. INTRODUCTION 
Research has shown that the most power efficient region of 

operation for a circuit is at near its threshold voltage, and that 
lowering supply voltage, possibly beyond safe-operation 
region is a viable option to reduce power consumption [1,2]. 
This NTV (near threshold voltage) operating region is 
beneficial for power efficiency due to low voltage swings and 
quick logic transition. However, circuits operating in NTV 
may not be deterministic as state transitions may occur due to 
current noise or transistor mismatches. 

In this paper, we advocate an alternative approach that 
considers the statistical distribution rather than the 
instantaneous occurrence of the error or noise. That is, certain 
level noise can and should be acceptable as part of the normal 
operating region, especially when an algorithm can safely 
operate at that noise level. In this approach, we do not have to 
detect and correct for hardware errors at every instance, but 
instead, we check for the statistical distribution and noise 
levels to be within tolerable levels. For instance, we can lower 
operating voltages at various levels to reduce power while 
allowing algorithms to operate in different levels of hardware 
errors. We introduce the notion of a “computation noise” 
which is analogous to “sensor noise”, whereby the processor 
and memory subsystem introduces errors in the form of noise 
that the algorithms can tolerate. 

Traditional methods for error recovery such as 
checkpointing (re-compute if there is an error) are often a 
computationally and power expensive proposition. Other 
hardware mechanisms such as ECC (error correcting codes) 
also has high overhead, especially if we purposefully operate 
in regions with higher error levels. While previous studies rely 
explicitly on the resiliency of an algorithm [3] or new 
circuits/architecture to support NTV [1] or approximate 
computing [2], they do not explore how algorithms would 
operate in different levels of detected errors. More 

specifically, while we understand that lowering voltages can 
reduce power and raising them when the severity of detected 
errors exceeds a threshold, there has not been a thorough 
exploration on how algorithms can operate beyond the “safe-
operating region”. 

By studying algorithmic performance based on probability 
of detected errors, we can define the range of voltage settings 
that can be used based on the resiliency of the algorithms. 
That is, we first quantify regions of operation whereby safe-
operation is defined by negligible levels of errors. Naturally if 
the voltage continues to drop, algorithm performance would 
degrade at a rate dependent on its construction. In this region 
of operation, we offer a number of lightweight architectural 
mechanisms that maintains its algorithmic performance. These 
lightweight mechanisms range from the simple bit-parity 
check and simple use-last-copy buffer.  

In this paper, we focus specifically on lightweight 
mechanisms that detect and correct for memory bit-flip errors. 
Our paper contributions include: 1) a method to dynamically 
inject computation noise into specified regions of the 
compiled binary, 2) a set of architectures mechanisms for 
lightweight detection and recovery of errors, and 3) an 
analysis of algorithm performance that quantifies resilience in 
presence of errors. Our results show how algorithm resiliency 
can already be provided for “free” (i.e. without hardware 
support), and how we can extend operation with additional 
lightweight mechanisms. These results reinforce the need to 
study algorithms to direct and/or inspire architecture 
approaches. 

This paper is organized as follows: in Section II, we present 
examples of now algorithm resilience is impacted by 
computational noise. In Section III, we define a set of 
lightweight architectural mechanisms to allow the algorithms 
to operate in different levels of injected errors. In Section IV, 
we describe our simulation setup for selected set of 
algorithms, including a methodology to inject computation 
noise. In Section V, we provide a detailed set of analysis that 
evaluates the resilience of the architecture and the 
performance offered by the proposed lightweight mechanisms. 
Finally in Section VI, we present our conclusions and discuss 
our future work in this space. 

II. ANALYZING COMPUTATIONAL NOISE 
In this section, we show the statistical nature of an error 

distribution (i.e. shape of the noise) to illustrate how 
algorithms are impacted. In Figure 1, we show a statistically 
generated distribution of image pixel values due to bit flip 
errors for any bit in 8-bit pixel. That is, we generate this graph 
over millions of pixels in an image with each bit in a pixel 
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having a probability of corruption. We show that the 
distribution of errors to the original image, for each pixel, has 
a Gaussian shape for three different cases. The shape is data 
dependent, and can be considered as the convolution of the 
individual bit error rate (shown in the Figure 1 inset) against 
the data values. 

For the “No Correction” case, the distribution of errors is 
flat with equal spread, representing random output over the 
data range. This means that the algorithm is faced with low 
signal-to-noise ratio because the entropy of data is at a point 
where results are no longer useful. For the “1MSB” case, we 
show a distribution of errors when the most significant bit is 
corrected. The noise shape shows that we can expect our 
algorithms to be more resilient because most errors are within 
a smaller range of values centered on zero. For the “4MSB” 
case, we show a very narrow distribution of error where there 
is only a small deviation from zero-mean for high error 
resilience. Using this approach, we can understand how 
computational noise can modify the entropy of data to a point 
where the results are no longer useful. It is this understanding 
of data entropy that can offer insights into opportunities to 
increase power efficiency with computational noise.  

It is straightforward to understand that the more bit errors 
corrected, the better the performance of the algorithm. It is 
also easy to understand that the MSB has more value 
significance than the LSB (least-significant-bit). It is 
important to note, however, that from an error distribution 
perspective, by correcting the MSBs, we are preserving the 
mean-center distribution. That is, as the entropy of data is 
greater (i.e. flatter distribution), we can remove the tail end of 
the distribution by correcting the MSB bits. Here, we use bit 
error correction to illustrate a point on noise distribution, and 
there are other mechanisms to correct the bit errors. 

 
Figure 1. Statistical distribution of pixel values due to injected bit 

errors. Mean centered around zero indicates approximate data 
value range as well as algorithmic resilience. 

We describe a case study that evaluates the efficacy of the 
computational noise approach. We choose a video 
stabilization algorithm because it has some of the 
characteristics of neural algorithms, namely, iterative and 
converging. We simulated this algorithm in C++ reading in 
raw image files from memory. We then simulated soft errors 
for the internal data structure to emulate computational noise 

induced by memory. Figure 2 illustrates the effects of 
computation noise on the processed image. An original image 
is read to generate a Laplacian image [4], and then a motion 
vector is generated. We show in Figure 2 (right most) effects 
of computational noise at 10% probability of bit flip for each 
bit in a pixel.  

 
Figure 2. Level-1 Laplacian Pyramid [4] images showing the effects 

of computational noise (memory bit flips). 
 
Figure 3 describes the algorithmic results for different 

levels of computational noise (represented by bit flip 
probability). The output of the global-motion estimation 
(GME) algorithm is a motion vector, representing camera 
movement. We calculate the error against a ground truth by 
calculating the Euclidean distance among the motion vectors, 
which is described as transformed position of the image corner 
and the center point. Zero pixel error would be ideal but single 
to low digit pixel errors are tolerable, which is represented by 
slight camera jitter with only a few pixel shift. 

The results show a range of algorithmic operation based on 
computational noise. Certainly, without any error correction, 
the algorithm would not tolerate beyond 5% noise. However, 
there is still a range of safe-operational conditions since there 
are negligible levels of errors. With simple error corrections 
for the top-most or top four MSB, the algorithm can operate in 
higher levels of computational noise.  

 
Figure 3.  Noise resilience of video stabilization algorithm under 
different levels of computational noise and lightweight recovery 

mechanisms (e.g. MSB corrections) 
To further enforce the notion of algorithmic resiliency, we 

provide evidence with respect to the key sources of data 
redundancy that enables robustness against noise. As others 
have noted, recognition, mining, synthesis (RMS) applications 
are the emerging important probabilistic applications [5,6], 
with opportunities for optimization. For this paper, we would 
describe data redundancy in the context of computer vision 
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applications for object recognition. 
Spatial redundancy. Spatial redundancy refers to the well-

known property that an image pixel has similar value to its 
neighboring pixels. This property is already used by some 
image compression technique such as JPEG. Spatial 
redundancy provides error resilience for image processing 
algorithms since the error occurred for processing one pixel 
can be corrected based on values from neighboring pixels. 

Temporal redundancy. Similar to spatial redundancy, 
where redundancy exists in a single image, the adjacent image 
frames in a video also carry similar pixel values [7,8]. 
Temporal redundancy also provides error resilience for certain 
computer vision algorithms. For example, in the human 
tracking surveillance applications, errors occurred in the 
processing of one frame can be disregarded, and the 
processing of following sequences can still track the human. 

Kinematic redundancy. Kinematic redundancy comes 
from an understanding of the physical object being detected 
and tracked. An object model with physical attributes such as 
speed and behavior can be used to remove false alarms from 
spurious noise and incorrect inferences from other algorithmic 
elements. For example, because we understand the maximum 
speed of a human on foot, we can remove detected objects as 
non-humans if they exceed the speed criterion. In examples 
for gesture recognition, the connectivity between our body 
parts using human skeleton modeling can be used to 
distinguish and narrow down body poses based on what is 
physically possible. 

III. ARCHITECTURAL MECHANISMS 
In this section, we describe the hardware mechanisms to 

support lightweight detection and recovery. We begin by 
noting existing research in approximate computing and 
voltage scaling. For example, there is prior work [5,9] that 
proposes to approximate original code region using neural 
processing unit for better performance and energy efficiency. 
Other researchers have proposed to build the logic elements 
with lower precision or accuracy [10]. There is also a body of 
research involving lowering of the operating voltage. Prior 
work [11] proposed a dual-voltage design where components 
can run in a high voltage that supports a precise and reliable 
operation. Some microarchitectural components such as 
register file, functional units and data caches can run in the 
lower voltage for better energy efficiency. The effect of 
running at a lower voltage is the reduced reliability of the 
hardware: the read and write accesses to SRAM array might 
fail and the functional units might produce the wrong values. 

For brevity, we describe our design as having a simple error 
check and value speculation (or prediction) to recover from 
errors. Figure 4 shows a high level diagram of a Data 
Speculation Logic module, comprising of a simple error check 
(e.g. bit parity) and a buffer. The history value buffer stores 
the operands for the approximate instructions only. Similarly 
to register renaming, the entry in the buffer for approximate 
instruction can be allocated in the decoding stage. Once the 
error is detected, instead of supplying the faulty value, the 
value stored in the history buffer is supplied. If no error is 

detected, the corresponding entry in the history buffer is 
updated with the correct value. Depending on whether we 
want to rely on spatial, temporal, or kinematic redundancy, we 
can create a set of heuristic mapping for the history buffer. We 
can also simply turn off the data speculation logic and let the 
error peculate through.  

As we’ve noted in the previous sections, noise is acceptable 
part of the computation.  We describe the use of a history 
buffer, but other value prediction logic can be used instead. 
The intent of this study is to show a mechanism where the 
amount of noise and the data value can be controlled. 

 
Figure 4.  Generic diagram of a Data Speculation Logic module 

From a higher level architecture perspective, we anticipate a 
example configuration that adopts the dual-voltage design, as 
shown in Figure 5. Components filled with white color, such 
as instruction fetch & decode, out of order execution engine, 
functional units and load store queue, can only run in the high 
voltage mode, i.e. run in precise mode. In contrast to that, 
components filled in yellow color can run both high voltage 
(precise mode) and lower voltage (approximate mode). Blue 
components are special component that we propose to include 
the data speculation logic. Although the design is very similar 
to dual-voltage approach [11], we note the main difference in 
using data speculation for improvements based on our 
understanding of data redundancy. This allows the 
miroarchitectural elements such as register files to run 
exclusively in lower voltage mode. 

 
Figure 5.  Generic architectural diagram using the Data 

Speculation Logic module 

IV. EXPERIMENTAL SETUP 
In our initial evaluation for the Data Speculation Logic 

module, we consider several orthogonal design decisions. 
First, we consider the mapping for the history buffer, i.e. 
which data value to copy. In this paper, we show results where 
we (a) copy value from the adjacent pixel location, and (b) 

error assumed in the their work [JW says: needs to confirms
that] is appropriate for memory access errors. But it is not a
good fit for functional units since not all bits have the same
probability for random flipping: most significant bits typically
carry the critical path thus have higher probability for error
than least significant bit. The second key difference is that
we treat the Truffle design as a baseline. We propose a new
microarchitecture-level technique to harness the algorithm
resilience to improve the result quality with small overhead.
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Figure 3: Data speculation logic in our design.

Harnessing Algorithm Resilience As discussed in Sec-
tion 2, there are three sources for the error resilience prop-
erty of computer vision algorithm: (1) spatial redundancy, (2)
temporal redundancy and (3) output flexibility. Our design
aims to leverage the spatial redundancy in the computer vision
algorithms.

Our design relies on light-weight error check and value
speculation to recover from errors. Figure 3 shows the data
speculation logic that we add to leverage the spatial redun-
dancy to improve the result quality. We require to add light-
weight protection codes for the memory and registers. The
history value buffer stores the operands in only for the approx-
imate instructions. Similarly to register renaming, the entry

in the buffer for approximate instruction can be allocated in
the decoding stage. Once the error is detected, instead of sup-
plying the faulty value, the value stored in the history buffer
is supplied. If no error is detected, the corresponding entry in
the history buffer is updated with the correct value.

Which Value to Protect and Which Value to Copy For
our design, there are two orthogonal design decisions: which
part of bits to protect and which value to use for recovery. This
leads to four possible design choices as shown in Figure 4. For
the protection, the whole variable can be protected, or the high
part of bits can be protected. For the recovery, the adjacent
memory location can be used, or the memory location used
in the previous instance of the same instruction can be used.
Our experiment shows the protection of higher half part of the
value performs better than protection of whole value. In the
other side, copying the value from the adjacent pixel location
and from the previous instance of the same instruction almost
perform the same. We choose the copying from previous
instance of the instruction since it provides more flexibility to
algorithms that do not have data structures stored in the form
of matrix such as a graph used in the map search benchmark.
We provide detailed discussion and evaluation of these design
choices in Section 5.
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4. Methdology

4.1. Error Injection

Our error injection framework is based on Pin [10] as shown
in Figure 5. Since Pin shares the same virtual memory address
space with the instrumented program, the program can directly
specify which region of memory can be injected with errors.

There are two phases of execution for better performance.
The first phase consists a single run to collect information for
instructions to inject errors. Based on the profiling results, the
second phase consists multiple run of the instrument program
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space with the instrumented program, the program can directly
specify which region of memory can be injected with errors.
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copy from the previous instance of the same instruction. In 
exploring these mapping choices, we are hoping to find the 
impact of noise resilience based on speculating data from 
spatial redundancy. Because the software is often coded where 
image data is accessed in raster-scan, spatial locality is often 
maintained within a window of data access. 

Second, we consider the level of “data protection”. That is, 
we can (a) protect the entire word such that the buffer will 
always provide data without any noise, and (b) partial 
protection of the high order MSB whereby the LSB is allowed 
to contain noise. We choose to explore this aspect in order to 
expand on the notion of shaping the statistical distribution of 
injected noise, as shown previously in Figure 1. 

In this section, we describe our simulation methodology 
using an error injection mechanism directly during program 
execution. We describe the algorithms under evaluation and 
the associated metrics. Then we show our evaluation of the 
proposed architectural mechanisms. 

A. Error Injection 
Our error injection framework is based on Pin [12] as 

shown in Figure 6. Since Pin shares the same virtual memory 
address space with the instrumented program, the program can 
directly specify which region of memory can be injected with 
errors. 

There are two phases of execution for better performance. 
The first phase consists of a single run to collect information 
for instructions to inject errors. Based on the profiling results, 
the second phase consists of multiple run of the instrument 
program for statistical data collection. As such, the data collect 
time is reduced considerably. 

 

 
Figure 6.  Pin Based Error Injection Framework Overview 

 
The data error is only injected for instructions defined in 
nested loops. In these regions, matrix based access to data is 
common, e.g. row and column access to pixel data in image 
processing and computer vision algorithms. We anticipate that 
these instructions are destined for “approximate mode”, we 
inject memory read errors using Pin in this area. Please see 
Figure 7 for an example code snippet.  

It is important to note that the Pin error-injection method is 
used here to facilitate simulation only. There is certainly a line 
of research and development available towards automatic 
detection of code snippets for NTV operation, and other 
methods to select the MSB and LSB of bit lengths in different 

data types. Although right now we manually label instructions 
as approximate, prior work [3,9] on high level programming 
language for approximate computing would also suit our 
framework. 

 

 
Figure 7.  Example codes snippet for error injection 

 

B. Evaluated Algorithms 
We focus on video stabilization application, which consists of 
multiple algorithmic components. For each access to memory 
buffers in these algorithmic elements, we inject data error 
based on a set probability of error per bit. 
Pyramid. An image pyramid is a type of multi-scale signal 
representation of the original image. It consists of a sequence 
of copies of an original image in which both sample density 
and resolution are decreased in regular steps, as shown in 
Figure 7. Each level of the pyramid images consists a 
Gaussian and Laplace image. The bottom, or zero level of the 
pyramid, G0, is equal to the original image. This is low-pass 
filtered and subsampled by a factor of two to obtain the next 
pyramid level, G1. G1 is then filtered in the same way and 
subsampled to obtain G2. Further repetitions of the filter 
subsample steps generate the remaining pyramid levels. 
Pyramid [4,13] is very important in computer vision area since 
it provides a common framework for implementing highly 
efficient analysis algorithms as well as an architecture for 
special purpose image processing hardware. 

Global Motion Estimation. Global motion estimation (GME) 
is widely used for video stabilization [14] and compression 
[15]. GME benchmark implements the hierarchical algorithm 
described in [16], as shown in Figure 8. The motion estimation 
is performed on difference levels of pyramid images instead of 
the source image level. Hierarchical approach adopts a coarse-
fine refinement strategy, i.e. the estimation is performed at the 
lower resolution pyramid images first then higher resolution 
levels for better accuracy. Thus the pyramid-based approach is 
more computation efficient than algorithms processing the 
original image. 

Output Quality Metric. For each benchmark, we have a 
metric for deciding the quality of its result. For Pyramid, the 
signal to noise ratio (SNR) is used. For GME, to derive the 
quality metric, we first apply the estimated motion vector to 
selected five points (four corners and one center). Then we 
apply the ground truth motion vector to the same points. The 
result quality is derived by calculating the Euclidean distance 
among transformed position of these points with estimated 
motion vector and ground truth motion vector.  
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Figure 5: Pin Based Error Injection Framework Overview.

for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.

for ( unsigned i = 0; i < height, i ++ ) {

for ( unsigned j = 0; j < width, j ++ ) {

// Approximate region: start noise injection

}

}

Figure 6: Example code snippet for approximate computing re-
gion.

4.2. Evaluated Algorithms

The evaluated benchmarks are all computer vision algorithms.
They range from video stabilization, geo-registration & track-
ing, video compression and navigation category. Those bench-
marks are summarized in Table 1.

Benchmark Decription

Pyramid Video Stablization

Global Motion Estimate (GME) Video Stablization

Map Search Navigation

Table 1: Evaluated Benchmarks and Description.

Motion
Vector

Frame 1Frames

Gaussian
Filter

Sub-
sampling

-

Level 
1 Level

2 ...

Level 
1 Level

2 ...

Gaussian pyramids

Laplace pyramids

Global Motion Estimation

Pyramid Generation

Figure 7: Overview of Global Motion Estimation Algorithm.

Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [ says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among
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for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.
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Table 1: Evaluated Benchmarks and Description.
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Figure 7: Overview of Global Motion Estimation Algorithm.

Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [ says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among
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Figure 8. Algorithmic Overview of Video Stabilization 

V. RESULTS AND EVALUATION 
We first present the evaluation of the algorithm resilience of 

selected algorithms described earlier. We analyze the error 
resilience property by inspecting how the output result quality 
changes with different bit flip probability when running in the 
approximate mode. We consider the four different design 
options to map the buffers in the Data Speculation Logic 
module. 

In Figure 9, we show the simulation results for different bit 
flip probability against output quality metric. In general, result 
errors in the order of a single pixel are tolerable. We show 
three baseline comparisons with the first two graphs. The 
“Baseline” represents computational noise injected without 
any checking or recovery. The “Error in source image” 
represents sensor-oriented noise at the input without any 
computational noise, representing the traditional computing 
without NTC (and obviously, without the power benefits of 
NTC). The “ECC-Single Error Detection” represents 
traditional ECC applied as error recovery.  

We evaluate two versions of benchmark GME: using only 
level 1 of the pyramid images (Figure 9a) and using multiple 
levels (Figure 9b). From the two plots, we see that single level 
GME’s output is less resilient compared to the GME using 
multiple levels, which we anticipated based on spatial 
redundancy. We see and anticipated that, in comparison with 
base line, computational noise is more demanding than just 
sensor noise (our base line data). That is, without NTC and 
higher power computation, the algorithm can tolerate sensor 
noise up to these levels. For multi-level GME, we also 
injected errors in every level of the pyramid, so the intrinsic 
robustness of the algorithm can maintain resiliency from input 
sensor noise up to p=0.04 (4% bit flip probability). 

Based on our results, we find that there is negligible 
difference in performance for cases where the Data 
Speculation Logic module gathers data from adjacent memory 
location or from data used previous instruction. This confirms 
our anticipation that the image access pattern is raster-scan 
and spatial locality is therefore maintained within a window of 
data access. From this, we can also conclude that the Data 
Speculation Logic module can be simplified because the 
history buffer is tied closely with instruction stream rather 
than memory access. More specifically, we are suggesting that 
the logic to maintain the mapping in the history buffer is 
greatly simplified when we are just considering data from 
most recently used instructions.  

 

 
Figure 9. Evaluated resiliency under different data speculation 

schemes 
With respect of the design choice related to level of protection 
for the bits, we find that it is fine to leave the LSB noisy. In 
fact, the results show that if we copy the duplicate the entire 
pixel data, the system has a higher overall error. 
Algorithmically, we note that copying the previously used 
pixel may be fast and simple, but it will introduce horizontal 
smearing due to data duplication. This smearing affects the 
motion vector with duplicated data. In comparison, with noisy 
LSB (e.g. protect and copy only MSB from previous 
instruction), we leave the algorithm with statistical noise in the 
motion estimation algorithm, without throwing off the 
convergence. More specifically, the smearing effect from data 
duplication is more likely to indicate camera motion, while 
pixel noise (from LSB) would not. From this result, we can 
infer that the history buffer can be greatly simplified because 
we just need to store the upper MSB, while LSB can be noisy. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we explore the notion of computation noise 

and its statistical nature to arrive at an alternative approach for 
resiliency. We presented a very early design of a lightweight 
error checking and recovery mechanism to extend noise 
resiliency beyond the traditional “safe operating region” of the 
algorithm. We describe a microarchitecture design with results 
of how approximate computing can be extended with data 
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Figure 5: Pin Based Error Injection Framework Overview.

for statistical data collection. As such, the data collect time is
reduced a lot.

Error Injection Region The error is only injected to instruc-
tions that can run in the approximate mode. Computer vision
algorithms typically performs the computation on images or
matrices. Prior work[JW says: [?]] has shown computation re-
lated to matrices processing can be approximate. Thus we only
apply the approximate computing to such region, as shown in
the example code snippet in Figure 6. Although right now we
manually label instructions as approximate, prior work [13] on
hight level programming language for approximate computing
would also suit our framework.

for ( unsigned i = 0; i < height, i ++ ) {

for ( unsigned j = 0; j < width, j ++ ) {

// Approximate region: start noise injection

}

}

Figure 6: Example code snippet for approximate computing re-
gion.
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ing, video compression and navigation category. Those bench-
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Pyramid An image pyramid is a type of multi-scale signal
representation of the original image. It consists of a sequence
of copies of an original image in which both sample density
and resolution are decreased in regular steps, as shown in Fig-
ure 7. Each level of the pyramid images consists a Gaussian
and Laplace image. The bottom, or zero level of the pyramid,
G0, is equal to the original image. This is lowpass-filtered
and subsampled by a factor of two to obtain the next pyramid
level, G1. G1 is then filtered in the same way and subsampled
to obtain G2. Further repetitions of the filtersubsample steps
generate the remaining pyramid levels. Pyramid [1, 3] is very
important in computer vision area since it provides a common
framework for implementing highly efficient analysis algo-
rithms as well as an architecture for special purpose image
processing hardware.

Global Motion Estimation Global motion estimation
(GME) is widely used for video stabilization [14] and com-
pression [7]. GME benchmark implements the hierarchical
algorithm described in [2], as shown in Figure 7. The motion
estimation is performed on difference levels of pyramid im-
ages instead of the source image level, as shown in Figure 7.
Hierarchical approach adopts a coarse-fine refinement strat-
egy, i.e. the estimation is performed at the lower resolution
pyramid images first then higher resolution levels for better
accuracy. Thus the pyramid based approach is more computa-
tion efficient than algorithms processing the original image. In
Section 5, we will also show using multiple levels of pyramid
images makes the algorithm also more error resilient.

Map Search The map search algorithm adopts A⇤ algorithm
as described in [ says: []]
Map Search Explaination

Output Quality Metric For each benchmark, we have a
metric for deciding the quality of its result. For Pyramid, the
signal to noise ratio (SNR) is used. For GME, to derive the
quality metric, we first apply the estimated motion vector to se-
lected five points (four corners and one center). Then we apply
the ground truth motion vector to the same points. The result
quality is derived by calculating the Euclidean distance among
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value speculation. We show that with an understanding of the 
spatial, temporal, and kinematic data redundancy, we can 
arrive at a greatly simplified design, while maintaining 
algorithmic performance. 

Going forward, there is much more we can do as future 
work to extend the idea of noise as an architecture and circuit 
design parameter for data value approximation. Specifically, 
we would like to merge the approach with approximate 
computing concepts such as lower precision and loop 
perforation. With the computational noise approach, we would 
instead provide full precision data, but in presence of noise. 

Our intent is focused on showing what are the algorithmic 
performances given some controllable source of 
computational noise. We point to the idea that lightweight 
mechanisms could be afforded to maintain algorithmic 
performance. While our paper describes only a small fraction 
of the processor microarchitecture can operate in NTV, we 
expect to explore and expand into larger proportion of the 
chip. Our initial design using a history value buffers are 
offered as evaluation of possible architectural mechanisms, 
but other, smaller logic circuit could be used instead for data 
speculation. We are not at a point where we can generalize a 
circuit for data speculation. 

Furthermore, there are number of VLSI design rules that 
can be reconsidered because we are now able to leverage noise 
in the design parameter. For example, we can save power by 
lowering voltage and introduce crosstalk in interconnects, for 
example. We may even have non-symmetrically interconnect 
widths for a bus (e.g. purposefully lay out a network where the 
least significant bits – LSB – are narrower and thus noisy, to 
improve wiring density.  
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