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Abstract—Active Timing Margin (ATM) is a technology that
improves processor efficiency by reducing the pipeline timing
margin with a control loop that adjusts voltage and frequency
based on real-time chip environment monitoring. Although
ATM has already been shown to yield substantial performance
benefits, its full potential has yet to be unlocked. In this paper,
we investigate how to maximize ATM’s efficiency gain with
a new means of exposing the inter-core speed variation: fine-
tuning the ATM control loop. We conduct our analysis and
evaluation on a production-grade POWER7+ system. On the
POWERT7+ server platform, we fine-tune the ATM control loop
by programming its Critical Path Monitors, a key component
of its ATM design that measures the cores’ timing margins.
With a robust stress-test procedure, we expose over 200 MHz
of inherent inter-core speed differential by fine-tuning the per-
core ATM control loop. Exploiting this differential, we manage
to double the ATM frequency gain over the static timing
margin; this is not possible using conventional means, i.e. by
setting fixed <v, f> points for each core, because the core-
level <v, f> must account for chip-wide worst-case voltage
variation. To manage the significant performance heterogeneity
of fine-tuned systems, we propose application scheduling and
throttling to manage the chip’s process and voltage variation.
QOur proposal improves application performance by more
than 10% over the static margin, almost doubling the 6%
improvement of the default, unmanaged ATM system. Our
technique is general enough that it can be adopted by any
system that employs an active timing margin control loop.

Keywords-Active timing margin, Performance, Power effi-
ciency, Reliability, Critical path monitors

I. INTRODUCTION

Active Timing Margin (ATM) is a technique to improve
microprocessor power efficiency as transistor scaling comes
to its end. By dynamically setting the pipeline timing margin
according to the chip’s runtime environment, the timing
margin provisioned by ATM matches the pipeline’s real-
time needs; overprovisioning is reduced compared to the
conventional static timing margin model where a fixed
amount of margin is added to target worst-case conditions,
such as severe voltage or temperature variation [1]-[3]. To
trim down timing margin, ATM uses a control loop for
each core that monitors the pipeline’s cycle-level timing
margin consumption with canary circuits and tweaks the
chip’s voltage and frequency at fine granularity. Because
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Figure 1: Fine-tuning ATM exposes both process (P) and voltage
(V) variation, and improves frequency compared with the default
ATM config and the per-core <v, f> static margin setpoints.

of its lucrative efficiency improvements and amenity to
implementation, ATM has been adopted widely [4]-[11].
In this paper, we maximize ATM’s efficiency gain by
exploiting each core’s own silicon speed and each applic-
ation’s characteristics. ATM’s per-core configurable control
loop provides a new opportunity to expose the inter-core
speed variation and to derive more performance gain than
the conventional multicore process variation, i.e., calibrating
static frequency levels separately for each core [12]-[16].
In the conventional approach, the per-core <v, f> setting
relies on static margins and thus requires guarding against
worst-case voltage variation, such as the di/dt effect and
DC voltage drop across the chip’s power delivery path, each
of which can consume 3% of the Vjg [17]. But because
ATM can handle these adaptively, it gains performance by
exploiting the inherent inter-core variation in the processor.
In Fig. 1, we illustrate the performance enhancement and
heterogeneity exposed by “fine-tuning” the ATM control
loop for each core. On the tested POWER7+ platform, we
(re)configure ATM via its Critical Path Monitors (CPMs).
The CPM is the chip’s programmable canary circuit that
measures the timing margin [4], [18]. Interfaces similar to
the CPMs exist on other ATM systems for test-time calib-
ration of margin measurement accuracy and for configuring
margin reduction aggressiveness [9], [19], [20]; an example
is the Power Supply Monitor (PSM) on AMD processors [7].
Fig. 1 exposes the pros and cons of the different ap-



proaches. Starting with the baseline case where there is no
ATM mode in the chip, under a chip-wide static margin (i.e.,
first bar), all cores have a fixed frequency of 4.2 GHz.
Setting the static margin for each core (second bar) with
fixed <v, f> improves performance by exposing the fast
cores; we estimate the fastest cores can run around 4.5 GHz,
based on prior art’s voltage noise characterization [17].
Next, the default ATM (third bar) carefully programs each
CPM to provide uniform core performance, following the
conventional contract between processors and users. When
idle, all cores run near 4.6 GHz, higher than static margin’s
fastest cores because of ATM’s highly effective mitigation
of di/dt effects [4]. However, when high power workloads
are run, the induced DC voltage drop across the power
delivery grid can create long-term steady degradation of
the supply voltage delivered, eroding timing margin and
reducing ATM’s frequency gain [17], which lowers the
worst-case performance to around 4.4 GHz. Setting fixed
<v, f> points for each core requires that this worst-case
be guarded against, whereas ATM handles it adaptively and
frequency only suffers when power consumption is high.
Fine-tuning (fourth bar) at the per-core ATM control loop
level exposes similar inter-core speed variation as static
per-core <v, f> setpoints, but it provides much higher
performance under typical conditions because of ATM’s ad-
aptive margin provisioning capability. Fine-tuning ATM also
removes any margin left not trimmed in the default system,
which further pushes processor efficiency to the extreme. For
instance, when the chip is idle, power consumption and DC
voltage drop is minimal, pushing the fastest core to nearly
5 GHz, 10% higher than the fastest static margin core.
While fine-tuning the ATM control loop provides high
frequency gain, it exacerbates variability and induces per-
formance predictability issues. In the worst case, e.g., when
DC voltage drop is maximized while running eight high
power daxpy threads, the slowest core, which runs at
4.7 GHz under idle conditions, slows down to 4.5 GHz,
a 500 MHz drop from the fastest 5 GHz case. Thus,
application performance can vary widely, depending on the
core chosen for execution and any co-located workloads.
Fig. 2 shows the variation of SqueezeNet, a compute-
bound image classification inference task. Under the static
margin, the 4.2 GHz fixed frequency delivers consistent
inference latency of 80 ms regardless of co-running work-
loads. Under fine-tuned ATM, inference latency improves by
7.5% to 15% depending on workload schedules. The best
schedule, which puts SqueezeNet onto the fastest core
and leaves other cores idle, increases frequency to 4.9 GHz
and reduces latency to 68 ms, 2X the performance gain of the
worst schedule, which puts SqueezeNet onto the slowest
core and co-locates high power workloads with it.
Inspired by the benefits in Fig. 2, in this paper we detail
how to fine-tune ATM at the core level to robustly reveal
each core’s performance limit and to expose inter-core speed
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Figure 2: SqueezeNet inference latency on a POWER7+ core
under different timing margin settings. Aggressively fine-tuning
ATM, and co-locating it with “friendly” low-power applications
enhance performance.

differences. We perform extensive hardware measurement
to analyze ATM operating limits under different applica-
tion scenarios, which leads to a low-overhead solution for
deploying ATM systems with their highest speed at scale,
while delivering controllable application performance in the
presence of the exposed process and voltage variation. We
present a software solution to proactively fine-tune and man-
age ATM. In summary, we make the following contributions:

e We propose fine-tuning the ATM control loop at the
individual core level to automatically expose inter-core
speed variation and improve performance.

o We analyze the operating limits of ATM under various
conditions, based on which we propose a test-time
procedure to robustly fine-tune per-core ATM.

« We develop workload scheduling and throttling to con-
trollably boost application performance by over 10% in
the presence of significant speed variability.

The outline is as follows. Sec. II explains ATM and its
implementation on our POWER7+ experimental platform.
Sec. III describes how to fine-tune ATM to improve per-
formance and expose speed variation. Sec. IV-VI present
our analysis on fine-tuning ATM to its operating limits
under different application scenarios. Sec. VII introduces our
proposal to deploy and manage fine-tuned ATM systems for
predictable performance. Sec. VIII compares prior art and
Sec. IX concludes the paper.

II. ACTIVE TIMING MARGIN BACKGROUND AND SETUP

Microprocessors must ensure correct execution under
exceptional circumstances, such as big di/dt events or
extreme temperature conditions that significantly slow down
circuits [3], [23], [24]. The traditional static timing mar-
gin approach adds a fixed time buffer implemented as a
higher voltage which ensures that, even under exceptional
cases, the signals still propagate by the end of each clock
cycle. However, exceptional events occur very rarely, making
static margin unnecessary most of the time [25], [26].
Consequently, the excess voltage is usually wasted.
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Figure 3: In POWER7+, Critical Path Monitor (CPM), Digital
Phase Locked Loop (DPLL), and off-chip voltage controller work
synergistically to let ATM provide just enough margin [21].

ATM addresses the waste. ATM control adapts the timing
margin dynamically to meet the needs of the chip environ-
ment [3], [4], [6], [8], [10]. The buffered voltage in a static
margin is converted to either power savings (a lower voltage)
or performance enhancements (a higher frequency).

For the purposes of our ATM study, we use a two-
socket POWER7+ server. Each processor features eight
out-of-order cores. The server runs Red Hat 6.4 operating
system, and all workloads are compiled with GCC 4.8.5. We
study ATM on two eight-core POWER7+ processors. The
POWERT7+ supports efficiency management both in coarse-
grained dynamic voltage and frequency scaling (DVFS),
which adjusts p-states from 2.1 GHz to 4.2 GHz by con-
trolling V4 with a static timing margin, and in fine-grained
ATM that further tunes V4 and frequency around each p-
state. Each processor features eight out-of-order cores with
four-way simultaneous multi-threading (SMT) for 64 logical
cores. We conduct our study on both processors to sweep
more cores and identify trends across different chips.

Like other ATM processors, POWER7+’s ATM consists
of three parts: (1) the timing margin sensor, (2) the adaptive
frequency control loop, and (3) the overclocking/undervolt-
ing policy controller, as depicted in Fig. 3. We focus on the
first two parts and disable undervolting to convert ATM’s
reclaimed timing margin into frequency gain on each core.

Timing Margin Sensor is the foundation of ATM. It
monitors the excess timing margin either by directly measur-
ing the available slack in a clock cycle [22] or by measuring
circuit delay time [7]. It outputs integer measurements every
cycle to provide real-time chip monitoring. In practice, a set
of timing margin sensors are usually dispersed across the
chip to capture spatial variation of different parasitic effects,
such as temperature variation or core-focused di/dt effect.

In the POWER7+, the timing margin sensor is implemen-
ted as a Critical Path Monitor (CPM). A CPM mimics real
circuit delay with a set of synthetic paths and monitors the
timing slack after the synthetic paths complete execution.

There are five CPMs in each core, integrated inside the
instruction fetch unit, instruction scheduling unit, fixed point
unit, floating point unit, and last level cache (Fig. 3). The
worst of the five CPM measurements is reported every cycle.

Adaptive Frequency Control Loop is a loop that oper-
ates between the timing margin sensor and an agile clock
generator. Each cycle, the measured timing margin is sent
to the clock generator, which compares the margin against a
threshold and adjusts the clock frequency at short intervals.

An emergency timing event, such as a fast-occurring di/dt
effect, can drive the margin lower than the threshold (a
timing margin violation). In response, the clock generator
compensates by gating the clock for one cycle or—for a
lower penalty—by reducing the clock frequency. The round
trip time of the feedback loop must be less than several
cycles to deal with fast occurring voltage noise [10]. Under
typical conditions, the margin is higher than the threshold.

To allow room for flexibility and maximizing effective-
ness, the POWERT7+ features a control loop for every core.
It uses a digital phase-locked loop (DPLL) to slew frequency
at a fine granularity, enabling timely feedback [4], [27].

Off-chip Voltage Control determines whether to turn
ATM’s reclaimed margin into power savings via under-
volting or into higher performance via overclocking. Often
the goal is to reach a certain frequency target and con-
vert the remaining timing margin into power savings. The
POWERT7+ off-chip controller reads a 32 ms sliding window
average frequency of the slowest core of a chip and decides
how much V;; can be reduced for the entire chip without
hampering the user-specified frequency target.

We convert all of ATM’s reclaimed timing margin into
frequency and keep Vg unchanged, which bypasses the
restriction on undervolting wherein a chip’s worst-case core
limits the amount of undervolting. Overclocking allows each
core to independently adapt to its conditions and can fully
expose a chip’s inter-core speed differential, potentially
producing more performance benefit. We let ATM boost
each core’s frequency at Vyg 1.25 'V, the 4.2 GHz P-state.

III. FINE-TUNING CORE-LEVEL ACTIVE
TIMING MARGIN OPERATION

We explain how to fine-tune ATM operation in each
core to extract more margin and increase frequency. To
understand ATM’s limit when aggressively fine-tuning its
operation, we propose a systematic procedure to characterize
how the processor behaves under different scenarios. The
insights we gain when executing this procedure are instru-
mental for deploying fine-tuned ATM systems at scale.

A. Programming CPMs to Reconfigure Margin Reclamation

We configure the POWER7+’s Critical Path Monitors
(CPMs) to fine-tune ATM’s margin reclamation behavior.
By design, CPMs are programmable to set how aggressively
ATM trims the margin and, more importantly, to cover speed
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(b) Pre-set inserted delay of the CPMs in two POWER7+ chips.

Figure 4: (a) CPM’s inserted delay is a programmable offset that adjusts timing margin measurement by selecting the number of inverters
used [18], [22]. By default, it is pre-set by manufacturers to cover speed variation at different locations. (b) The wide variation of pre-set
inserted delays in the two tested POWER7+ chips indicates significant process variation (where POCO means Processor 0 Core 0).

variation and deliver uniform performance to users. We use
this interface to fine-tune each core’s ATM control loop.

Fig. 4a shows a CPM uses three stages to measure margin:
(1) inserted delay, (2) synthetic paths, and (3) an inverter
chain. The inserted delay is a configurable circuit. A user
can specify the number of inverters a signal passes through
to select its timing delay length. The synthetic path simulates
a pipeline circuit’s delay with a set of paths, including AND,
OR, and XOR gates and wires. The final inverter chain
quantifies the time left after the signal propagates past the
inserted delay and synthetic path by counting the number
of inverters a signal passes. The inverter count is a CPM’s
final output and is sent to the DPLL for clock adjustment.

Before a processor is shipped, each CPM’s inserted delay
is pre-set at test-time with a default value that serves as
extra “protection” for the control loop to function robustly.
The pre-set delay makes CPMs report less margin than they
could have, leaving some margin not trimmed as protection.
The pre-set delay also smooths out the speed differences
between different corners of a chip by adding more delay
to fast corners in order to fill the empty time after a circuit
finishes switching and adding less delay to slow corners.

Fig. 4b shows the preset inserted delays in each core of the
two POWERT7+ chips (we exclude CPMs in the LLC because
it lies in a different clock domain). Intuitively, each unit of
the delay represents some amount of timing. Under static
margin at 4.2 GHz, reducing the inserted delay by one step
lets the CPM detect one to three units more timing margin,
equivalent to the speed variation caused by 20-60 mV V4
difference [17], [18]. The magnitude of the delay shows the
amount of “protection” built into the default ATM system.
The pre-set inserted delays range from 7 to 20, nearly a 3X
range, indicating significant silicon speed variation.

We fine-tune ATM operation by re-programming CPMs’
inserted delays with smaller values, which makes the control
loop perceive more margin and generate a higher frequency.
To reduce the search space, we change all CPMs in each
core with the same step size. In the POWER7+, this is done
by sending specialized commands to the service processor.

Fig. 5 shows, for four example cores, how ATM converts
more margin into frequency as the CPM inserted delay is
reduced. The default delay (O steps of reduction) makes all
core run around 4.6 GHz, delivering uniform performance
because the pre-set delay smooths out speed variation. Pro-
gramming the inserted delay to a smaller value (higher delay
reduction) decreases the time to the end of the synthetic path,
leaving more margin to be counted by the inverter chain. The
DPLL loop harnesses the excess margin by overclocking. We
find reducing the inserted delay can safely push some cores’
frequency to over 5 GHz, a 20% improvement over the static
timing margin baseline.
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Figure 5: We fine-tune each core’s ATM control loop by reducing
the core’s CPM inserted delay, which makes the control loop
perceives more margin and automatically increases frequency.

B. Characterizing ATM Limits

To reliably use a fine-tuned ATM system’s performance
benefit, we follow a systematic methodology to analyze
ATM system’s operation limit under different scenarios.
Fig. 6 outlines our procedure. We analyze an ATM chip
on a per-core basis. An idle system is our starting point
for conducting our analysis; micro-benchmarks (uBench)
cover major paths in a core; and single-threaded benchmarks
representing real use cases. Our insights gathered in these
analyses serve as the foundation for devising a low-cost
automatic ATM fine-tuning procedure that helps enable
shipping and deploying fine-tuned ATM systems at scale.
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Figure 6: Our ATM characterization methodology iterates over each
core and follows a step-by step approach, going from the simplest
system idle scenario to the complex real-world workloads.

System Idle Running background operating system tasks,
an idle system imposes the least amount of stress on the
processor. And as such, understanding each core’s ATM
operating limits under system idle provides us with valuable
insight into inherent the core-to-core level differences.

Micro-benchmarks (uBench) Traditionally, micro-
benchmarks are used to measure the performance of
individual processor modules, such as the branch predictor,
floating point unit, and caches. For ATM fine-tuning,
micro-benchmarks’ serve to touch only one part of the
core, avoiding complex microarchitectural interactions. We
thus use uBench to conduct a more comprehensive analysis
of core-to-core microarchitecture level variation.

Realistic Workloads For the final step, we analyze the
system with complex applications from SPEC CPU 2017
and PARSEC. These benchmarks cover a wide spectrum of
program space in the real world and have diverse architecture
behavior [28], [29]; hence they can touch more corner-case
timing paths or create more active di/dt effects than uBench,
all of which threatens the safe execution of aggressively fine-
tuned ATM. The single-threaded workloads help identify
application-, chip-wide-, and core-level heterogeneity.

In each of the above setups, failure may occur as a result

of a timing violation, manifested as an abnormal application
termination (e.g., segmentation fault), silent data corruption
(SDC), or a system crash. For SDC related errors, we rely
on SPEC and uBench’s built-in result checking tools for
guaranteeing execution correctness. All these failures can
occur because either the CPM’s delay has become so short
that it does not capture real circuit delays or system noise
events, such as the di/dt effect, overwhelm the control
loop’s ability to respond in time. Because the effects that
cause ATM failure might be not fully deterministic, we
repeat the failure experiments in each setup multiple times to
produce a distribution of ATM operating limits. We expect
the distributions to be tight because timing violations are not
entirely random. The distributions provide insight into ATM
margin reclamation capabilities, so we study them in detail.

Our methodology progresses through increasing workload
complexity. We often need to roll back the CPM delay
setting that was successful in a previous, less complex setup
to a less aggressive point, reflecting a workload setup’s
unique impact on ATM’s operation. Although the worst-case
might determine practical ATM configurations for real ap-
plications, the middle point analysis provides useful insights
on what affects the fine-tuned ATM control loop’s operation.

IV. IDLE SYSTEM CHARACTERIZATION

Understanding ATM’s margin reclamation limits in an idle
system sets a starting point for further complex analysis.
With no application code running, the system exerts minimal
stress on ATM’s reconfigured control loop, enabling us to
use ATM to expose the silicon’s inherent maximum speed.

Running only the operating system, we build a distribution
of the most aggressive yet safe CPM configuration points for
each core, depicted in Fig. 7 by the amount of CPM delay
reduction from the chip’s default setting, along with the
resulting frequencies. As expected, the distributions are tight,
covering no more than two configurations. Each core’s idle
limit is the lowest (most conservative) CPM delay reduction
plotted, e.g. 9 in Fig. 7a. These are summarized in Table L.

The different core-to-core idle limits reveal lucrative per-
formance potential of fine-tuning ATM aggressively for each
core (Sec. IV-A), and the significant core-to-core perform-
ance variation (Sec. IV-B) which is partly caused by the
non-linearity in CPM measurement capability (Sec. IV-C).

A. Significant Performance Potential

For most cores, the inserted delay can be aggressively
reduced, making ATM’s control loop see more timing
margin for reclamation. As Fig. 7 shows, more than half
the cores (e.g., POCO and POC1) can tolerate reductions
of at least seven steps of CPM inserted delay, elevating
frequencies to over 5000 MHz: a 7% improvement over
default ATM’s 4600 MHz and a 20% improvement over
static margin’s 4200 MHz baseline, showing fine-tuned ATM
can substantially improve performance.
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Figure 7: The most aggressive CPM delay reduction that ensures system idle safety distributes over a narrow range (red bar, left y axis).
The lower bound of each core’s distribution is the core’s idle limit, usually entailing over 5000 MHz frequency (blue mark, right y axis).

\ POCO POC1 POC2 POC3 POC4 POC5 POC6 POC7 PICO PICI PIC2 PIC3 PIC4 PIC5 PIC6 PICT
idle limit 9 8 4 11 10 7 8 2 4 8 5 8 7 5 10 3
uBench limit 9 8 4 10 9 7 8 2 4 8 5 5 6 4 10 2
thread normal 8 7 4 9 8 6 7 2 3 7 5 4 5 3 8 2
thread worst 6 6 3 6 6 5 5 2 3 3 5 3 3 2 6 2

Table I: ATM reconfiguration limits under system idle, uBench, and real-world application. Data is collected on two eight-core (C)
POWERT7+ processors (P). ATM limits are reflected as the number of stepped reduced from CPM’s default inserted delay configuration.

B. Exposed Inter-core Frequency Variation

Programming the CPM to change ATM operation yields
different frequency levels for each core, despite the perform-
ance improvement. E.g., at the idle limit PIC2 runs at about
4850 MHz but POC3 achieves about 5200 MHz. Even within
a chip, there is a wide range (e.g., POC2 and POC3). The
core-to-core frequency variation is essential for application
performance management, which we discuss later.

The core to core differences are understood to be a
result of manufacturing process variations [15], [16], i.e.,
some core’s circuits are faster due to imperfection in the
lithography process. For instance, as Fig. 7 shows, POC3
can safely reduce its CPM delay by 11 steps, while POC7
can only mitigate its delay by two, reflecting the varying
amount of timing margin available for reclamation, which is
caused by the two cores’ speed difference.

However, because on the POWER7+ each core’s perform-
ance is unlocked via ATM control loop’s automatic harness
of available timing margin, the ATM control loop also plays
a critical role in the inter-core performance variation.

C. Nonlinearity of CPM Configuration

The CPM inserted delay’s configurable inverter chain is
designed to have linear timing delay graduation for timing
margin measurement. However, the manufacturing process
makes it have non-linear graduation when configured to
measure timing margin. The non-linearity magnifies the
inter-core performance heterogeneity.

The inserted delay’s non-linear configuration manifests as
significant idle limit variation between cores. Consider POC4
and P1C7, which are both able to increase frequency from
4600 MHz to 5100 MHz but do so with very different CPM
changes: POC4 reduces the delay by ten steps, while P1C7
only needs two steps. Hence, although the two cores have
similar excess timing margins, POC4’s CPM encodes smaller
timing delays in each step than P1C7.

Within each core, CPM’s non-linearity makes the timing
margin encoded by one CPM delay step vary. Fig. 5 shows
that P1C6’s frequency increases by over 200 MHz when
going from step zero to one, jumping from the baseline
4600 MHz to over 4800 MHz. But in going from step one to
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indicating the core’s idle limit is too aggressive and fails to capture some long delay paths in the core.

two, there is an almost negligible change in frequency. Sim-
ilarly, the frequency is nearly unchanged when increasing
the CPM delay reduction from step five to six for P1C3, but
reducing the delay by one additional step (i.e., going from
six to seven) increases the frequency by over 100 MHz.

As another example, in Fig. 7k, reducing P1C2’s CPM
delay by six is too aggressive and can crash the system;
rolling back its delay by one step ensures safety but at
the cost of 300 MHz. P1C1 (Fig. 7j) similarly needs its
CPM delay reduction rolled back by one step (from nine to
eight) for safe operation but at the cost of only 100 MHz.
Though P1C2 could operate safely at a higher frequency, the
large CPM jump forces the 300 MHz drop and amplifies the
differences between the two cores.

In summary, the non-linear configuration of the CPM and
ATM control loop demands that fine-tuning ATM operation
be carried out carefully on a per-core basis because no single
CPM configuration works uniformly for all cores.

V. MICRO-BENCH CHARACTERIZATION

While idle system characterization reveals insights on the
performance benefits and the inter-core variation of a fine-
tuned ATM multicore, it does not evaluate the system’s
behavior under stress from real-world applications. Before
using more complex applications, we use micro-benchmarks
(uBench) as a valuable tool that controls program behavior
to analyze individual processor components [30]. Because
uBench imposes more stress than idling, the CPM config-
uration tends to be more conservative, creating a practical
point for processor deployment in the real world.

A. Workload Selection

We evaluate system behavior under aggressive ATM re-
configuration using three uBench programs. These programs
collectively cover all main parts of the microarchitecture, as
well as the dispersed CPMs in a core.

We use coremark [31] to stress the core’s control,
branch, and integer units; daxpy to stress the floating point
unit; and stream [32] for its ability to generate cache
misses and exercise the load-store unit. Prior work has used
such benchmarks to exercise the functional units and validate
the ATM [4], [21]. We check the programs’ run results to

evaluate processor execution correctness. All incorrect runs
manifest as system crashes or abnormal application exits.

Using these benchmarks ensures we challenge a recon-
figured ATM by touching more paths than system idle.
Meanwhile, these uBench programs create little system
noise, especially the di/dt effect. They have controlled,
smooth program behaviors and avoid complex microarchi-
tectural activity such as periodic pipeline flush, which is
the root cause of workload-induced voltage droops [1], [2],
[25], [26], [33]. The di/dt effect is dangerous for aggress-
ively reconfigured ATM because its fast drooping voltage
can prevent the control loop from engaging in time [10],
resulting in application failure.

B. Why Some Cores Fail

We start the uBench characterization from the idle limit
because it is the point that sustains stable system state. If
this initial starting point fails, the CPM inserted delay is
rolled back to have a longer timing delay to make ATM
harness timing margin more conservatively until the pro-
gram runs correctly. We find most cores’ idle limits sustain
correct uBench execution, which indicates they can safely
accommodate the major paths activated by the instructions
used by uBench programs.

For the server’s two physical processors, uBench charac-
terization exposes six cores that fail for the three programs.
Fig. 8 shows the distributions of reintroduced delays for
these cores, using the “rollback steps” relative to the idle
limit, which reflects the stress impact from uBench program
execution compared with system idle. For those six cores,
rollback ranges from one to three steps and sustains all
uBench workloads.

All three programs, despite their different characteristics,
show similar behaviors on the six problematic cores. The
implication is that the microarchitecture blocks that limit
ATM fine-tuning are the common structures used by all
programs, such as instruction fetch and scheduling, rather
than specific modules stressed by each application (e.g., the
FP unit). We also find uBench limit sustains voltage and
power stress-test, which will be detailed later in this paper.
We therefore use the uBench limit as a reference point for
further characterization with realistic applications.
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Figure 9: x264 stresses ATM more heavily and needs a more
conservative CPM configuration compared to gcc, as indicated by
the larger CPM rollback that is required for x264 over gcc.

VI. REALISTIC WORKLOAD CHARACTERIZATION

To run real applications, today’s ATM systems add some
protection margin to CPM’s uBench limit configuration [4].
To conservatively guarantee execution correctness, the added
margin can be up to 50% of the static guardband. But this
leaves room for improvement as demonstrated by the 2X
frequency gain during our system idle characterization.

However, adding additional guardband as a conservative
precaution ignores the application-dependent behavior and
can waste valuable performance benefit. In this section, we
profile with a variety of integer and floating point workloads
from SPEC CPU 2017 and PARSEC 3.0 [34]. We use
these workloads because their result-checking tool provides
a convenient method for checking execution correctness.
Understanding per core ATM operating limits under these
heterogeneous workloads offer helpful insights for deploying
fine-tuned ATM chips in real-world use cases.

Fig. 9 shows x264 often requires significant CPM delay
rollback from the uBench limit, whereas gcc needs relat-
ively little, allowing ATM to more aggressively boost fre-
quency. The rollback reflects an application’s unique system
noise effects. Configuring ATM for the worst application
in all cases, e.g., x264, wastes ATM’s margin reclamation
potential when running more benign workloads. This is the
approach taken by today’s deployed ATM processors, which
still rely on a safety margin as large as 50% of the original
static guardband [4].

To get a complete picture of the behavior of aggressively
configured ATM cores on different workloads, we profile
CPM rollback from the uBench limit for all < app, core >
pairs in Fig. 10. We use the weighted average CPM roll-
back as it quantifies the application’s unique stress level.
Two applications may have quite different delay reduction
distributions even when they show the same lower bound in
their CPM delay profile.

From the individual rows in Fig. 10, we see that each
workload imposes a different amount of stress but does so
consistently across cores. For instance, x264 and ferret
needs much more conservative ATM setting than gcc and
leela, indicating these workloads exert higher pressure on
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Figure 10: Application’s average CPM delay rollback from the
core’s uBench limit. The top workloads stress ATM heavily and
need more delay rollback for less aggressive margin reclamation.

ATM’s control loop.

From the individual columns in Fig. 10, we see that
different cores exhibit varying levels of “robustness,” where
we define robustness as the immunity to CPM rollback
from the core’s CPM uBench limit. The cores on the right
of Fig. 10 have the highest robustness, requiring the least
rollback across all applications, indicating their ATM control
loops can deal with the system effects of any application. We
anticipate they will continue to be robust on untested applic-
ations since the profiled workloads already cover different
behaviors [28].

The reason for certain applications and cores being more
vulnerable after aggressive ATM fine-tuning is a combin-
ation of the core’s inherent speed and the running ap-
plication’s characteristics. We conducted a best-effort static
instruction analysis on the applications and concluded that
more detailed insight into the running instructions is needed
to predict each application’s best-fit CPM setting on each
core. For instance, gcc covers a much richer set of in-
structions than exchange?2, likely touching more corner
timing paths, yet stresses ATM much less. As another
example, x264 has similar performance counter profiles as
leela, but their rollback requirements differ substantially.
We therefore defer the root-cause analysis and the prediction
of applications’ heterogeneous CPM configuration to future
work and focus on the variations already exposed.

To summarize, in Table I we denote by thread-worst the
most conservative CPM configuration limit for all profiled
workloads. It represents the most severe application stress in
our profiling. We denote by thread-normal a more aggressive
setting that supports most medium and light applications.



VII. MANAGING A FINE-TUNED ATM SYSTEM

In this section, we discuss how to deploy and manage
a fine-tuned ATM system in the field in the presence
of significant variability. Fine-tuning improves application
performance because frequency is higher. However, pushing
ATM to its operating limit requires an execution correctness
guarantee, and the varying frequency levels of different cores
and application scenarios create an obstacle for the processor
in delivering a promised performance level to end users.
Hence, we discuss how to determine CPM settings for each
core to robustly expose variation and show how to schedule
and throttle co-running workloads to deliver predictable
performance for latency sensitive critical applications.

A. Deploying Fine-tuned ATM Configuration

The insights we gather from the operating limit study of a
fine-tuned ATM system under idle, micro-benchmarks, and
realistic workload scenarios are useful for understanding the
performance opportunity from exposed inter-core variability,
but the overhead of our procedure is high for finding a pro-
cessor’s fine-tuned configuration for real-world deployment.

Because programs have heterogeneous CPM settings on
different cores, one can try to predict each application’s
best CPM setting on each core. However, such a prediction
scheme demands perfect prediction accuracy because any
misprediction can lead to system failure or incorrect execu-
tion. Achieving this accuracy is difficult because it relies on
deep knowledge of a program’s di/dt behavior as well as the
circuit paths touched by the program, all of which derives
from the dynamic instruction streams and may incur high
overhead [26]. We leave CPM prediction for future work.

Rather than predict CPM settings, we propose a test-
time stress-test procedure to identify ATM fine-tuning limits
while guaranteeing correctness.' During test-time, we iterate
over each core and run worst-case workloads, such as a
di/dt stressmark [35], [36], power stressmark [37], and ISA
test suites to create high voltage noise and high operating
temperatures and to cover all potential circuit paths. The
combined stress-test finds each core’s limit ATM configur-
ation, providing a guarantee of correctness for any realistic
workload because, by definition, a stress-test pushes the
system beyond the requirements of any other workload.

In our work, we try our best to create a stress-test with a
voltage virus that repeatedly and synchronously throttles all
cores’ instruction issue rate to operate only one out of every
128 cycles while simultaneously running 32 daxpy threads.
The daxpy workloads create high power consumption,
raising chip power to 160 W and temperature to 70°C; the
issue throttling creates a synchronous power surge across
the chip, inducing concurrent di/d¢ effects from adjacent

I The approach and evaluation presented here is an example of the process
we recommend, and not meant to be literally the exact steps to follow. For
instance, the stressmarks we use in the paper are different from what we
use in production. Nonetheless, the general approach we discuss is useful.
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Figure 11: To ensure execution correctness, fine-tuning ATM goes
through worst-case stress-test during test time. Vendors can option-
ally roll back stress-test ATM configurations, providing additional
safety guarantee. Either way, speed variability is exposed.

cores, representing worst-case voltage noise [4], [10]. We
recognize that better power stressmarks can be constructed
using more systematic procedures [37], but we do not expect
power and temperature to be the limiting factors for ATM
operation because these are long-term effects and are well
within ATM control loop’s nanosecond-level response time.
Though the realistic workload characterization in Sec. VI
covers a variety of instructions, in practice, chip vendors
have tailored ISA verification suites that provide wider
coverage and execute in less time.

On the two POWER7+ processor chips we tested, the
thread worst CPM configurations sustain correct execution
under all our stressmarks. To provide additional correctness
guarantees, the vendor can optionally rollback the stress-
test-determined ATM limit by several steps.

Fig. 11 shows the core frequencies across the two
POWERT7+ chips after executing the above test-time pro-
cedure. At their limit, POC1 and POC7 have over 200 MHz
speed differential. Rolling back each core’s CPM from
the limit by one or two steps keeps the same inter-core
variation trend and provides an additional safety guarantee.
In the management scheme we propose, we will use the
limit thread-worst configuration, though the conclusions we
present and the scheme we propose can be applied to more
conservative (rolled back) configuration points.

B. Predicting Core Frequency

To manage ATM’s performance variability, we develop
a predictor that informs frequency and performance for a
candidate schedule. We develop this predictor by modeling
each core’s runtime average frequency f, as a linear function
of the transistors’ supply voltage, V;:,. Among different
dynamic effects, long-term stable effects such as temperature
variation and DC voltage drop caused by high power determ-
ines core frequency —infrequent, transient di/dt events are
handled transparently by the ATM control loop.

Because past research has shown that speed is only mod-
estly affected by temperature [3], we base our model strictly
on IR voltage drop. Subtracting the IR voltage drop, which
is proportional to current and hence power consumption,
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Figure 12: Single-threaded application performance can be pre-
dicted linearly with core frequency, and core frequency can be
modeled using chip power, following Eq. 1.

we derive a linear relationship between ATM’s dynamic
frequency and the chip’s total power consumption as shown
in Eq. 1. The value b represents a core’s static CPM setting,
while k' - P represents the dynamic variation, dominated by
the IR voltage drop.

f: k- ‘/chip =k- (van - RT)
P
=k-(Vopm — R- ——) (H

=—k'-P+0b

Fig. 12a shows the linear model fitted for each core’s fine-
tuned CPM configuration. The data points align with Eq. 1’s
predictions. Each additional watt degrades the frequency by
about two MHz. In practice, each core stores its frequency
prediction model and the model is indexed by the chip’s total
power consumption during job scheduling and runtime.

C. Delivering Predictable Performance

Frequency directly affects application performance.
Fig. 12b shows application performance scales linearly with
frequency, with different coefficients depending on the work-
load’s memory behavior. A memory-bound workload, such
as mcf, enjoys less performance improvement from higher
frequency compared with a compute-bound workload like
x264 because cache misses limits the compute throughput.
Thus, we build a performance predictor for each application,
using frequency as the input. In this way, thread performance
on each core can be inferred by the chip’s total power, using
each core’s frequency predictor as the intermediate step.

On a fine-tuned ATM system, each application’s perform-
ance depends on both the core it runs on as each core has dif-
ferent CPM configuration which leads to varying frequency
levels, and the applications running on other neighboring
cores, as all applications contribute to the chip’s total power
which in turn affects each core’s frequency through the DC
voltage drop on the shared power delivery path. For some
critical applications that the users are interested in, it
is crucial that they get mapped to the ATM fine-tuned cores
that are high performance and robust. Meanwhile, it is also
crucial that the co-located background applications are

Mem behavior Critical Background
resnet, vgg, mlp, gcc,
Intensive ferret, facesim, lu_cb,
fluidanimate streamcluster, etc.
squeezenet, blackScholes, x264,
Non-intensive seq2seq, babi, swaptions,
bodytrack, vips raytrace,

Table II: Classifying critical and background applications, based
on their memory subsystem interference behavior.

adequately managed so that the total chip power does not
exceed the level that hampers critical app’s core frequency.
To handle this issue, we propose a scheme to selectively
throttle background application performance to control
total chip power, and indirectly frees up frequency potential
for critical applications.

We use the applications in Table II for evaluation. The
critical workloads are user-facing and require high
performance for lower latency. They include deep learning
inference (CNN, RNN, and LSTM models), object detection,
real-time image processing, content similarity search, etc.
The background workloads can tolerate lower perform-
ance and include workloads such as stock price estimation,
3D image rendering, compression, compilation, and machine
learning training. For our work, we focus on the performance
issue caused by the ATM system’s shared power delivery
problem and excludes performance interference from the
memory subsystem which is a general issue for all mul-
ticores. Thus, we avoid co-locating two memory-intensive
workloads at the same time to simplify the problem.

Fig. 13 shows our scheme. It takes into account the core-
to-core performance and robustness variability caused by
process variation, and the inter-core frequency interference
caused by dynamic voltage variation on the power delivery
subsystem. First, the user selects how the operator would
like to set the different cores’ CPM configuration.

Under a typical situation, the default policy is to use the
chip’s ATM configuration found through the per-core stress-
test at test time, such as the thread-worst in Table 1. The
default policy provides good reliability guarantee through
the worst-case tests, and meanwhile provides high perform-
ance. On POWER7+, the critical and background
workloads all execute correctly under thread-worst. We
evaluate our scheduler using the default policy as it provides
a good trade-off between reliability and performance.

For higher performance, the user can select an “aggress-
ive” governor, which chooses an application’s most aggress-
ive CPM configuration that guarantees correct execution.
This can be done with per-application prediction or repet-
itive profiling of an application in a tier of testing servers
before shipping the application to production server clusters.
Using the core’s best-fit ATM configuration provides more
performance benefits at the risk of system failure. We put
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Figure 13: Managing a fine-tuned ATM system needs to integrate the per-app performance predictor and per-core frequency predictor, so
that critical application performance can be satisfied by using faster cores and maintaining an estimated chip power budget.

exploration on the “aggressive” governor to future work.

For higher robustness, the user can select a “conservative”
governor, which only schedules foreground workloads
onto robust cores picked by ATM characterization. The
robust cores are scarce and may not provide the highest
performance, but they have the highest guarantee of correct
execution. The conservative policy is best for unknown
applications or when application correctness is paramount.

The OS then automatically sets each core’s CPM setting
according to user-selected policy. The faster cores after CPM
reconfiguration are selected for running critical applica-
tion. In parallel with CPM reconfiguration, the scheme reads
user-specified QoS target for the critical application and
infers the chip power needed to meet the performance goal
using per-application performance predictor and per-core
frequency predictor. To meet the QoS goal, total chip power
under critical and co-running background workloads
cannot exceed the calculated power budget.

The manager subtracts the estimated power of the
critical workloads from the total chip power budget
to get the power envelope available for the co-running
background jobs. The background jobs can then be
scheduled to the same chip under this envelope by carefully
tuning their power consumption. On POWER7+ where V44
is shared for all cores, we adjust power consumption by
changing core frequency. Depending on the power envelope,
we can 1) allow workloads to use aggressive ATM that has
the highest frequency, 2) set cores to different DVFS states’
frequency levels or 3) use power-gating to disable cores.

D. Performance Improvement

We evaluate our solution(s) against the static margin and
the default ATM. Some customers turn off ATM for predict-
ability, so the static margin is one of the fair baselines we
compare with for evaluation. The system is running the stock
DVEFS OS governors that already strive to improve system
efficiency. Therefore, our results include that comparison
implicitly. Since ATM systems are still new and rare, there
is little other prior work to compare against directly.

Our evaluation is carried out when all cores are scheduled
to run an application. In practice, power gating idle cores

when not enough workloads are available can further free
up chip power and boost the performance of target work-
load [17]. For all our tests, die temperature is maintained
under 70°C, and no side effect on-chip cooling is observed.

Fig. 14 summarizes the performance benefit of managing
a fine-tuned ATM system. To highlight the frequency inter-
ference impact, we use one core to run critical applica-
tion, which suits many applications, such as LSTM and RNN
inference. We co-locate all critical and background
applications on processor 0 (PO) of our two-socket server.

Under static margin, the default DVFS governors make
POWER7+ processors clock at a fixed 4.2 GHz to run
applications, providing predictable but low performance.

The default ATM improves performance for all cores,
but not with the highest efficiency. An unmanaged system
ignores the sensitivity of core frequency to total chip power.
ATM may be indiscriminately activated on all cores, both
for critical and background workloads, which sig-
nificantly raises total chip power, eroding timing margin
and reducing all cores’ frequency, thereby diminishing the
critical application performance. This unmanaged sys-
tem still increases frequency due to ATM’s harnessed mar-
gin, but the improvement is restricted to 6.1% on average.

Fine-tuning the ATM control loop provides more fre-
quency gain, but an unmanaged system prevents the pro-
cessor from the maximum benefit. Compared with the de-
fault ATM, an unmanaged processor system may carelessly
assign the slowest core after CPM reconfiguration to a
critical job, limiting the peak performance that can be
achieved. The unmanaged system may also let all co-located
background workloads run under their highest frequency,
increasing total chip power and reducing critical work-
load frequency. However, in this scenario critical ap-
plications still enjoy 10.2% improvement over static margin
because fine-tuning ATM unlocks large frequency gains.

A managed ATM system can opt to maximize the
performance of critical applications. Specifically,
critical applications get assigned to the fastest cores,
and background application power is minimized by ap-
plying the lowest p-state. In this way, critical applica-
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Figure 14: Critical application performance co-located with background workloads under different settings, shown as < critical :
background > pairs. Aggressively fine-tuning ATM, together with low-power co-running background workloads, boosts performance
by 15.4% on average. With proper management, a 10% performance improvement goal is guaranteed for critical workloads by
throttling co-runner’s core frequency to main total chip power below budget.

tion frequency is maximized, at the cost of background
workload performance. On average, critical workload
performance improves by 15.2% on a real physical system.

Alternatively, a managed ATM system can opt to balance
critical and background jobs by letting critical
applications just meet their performance goal and max-
imizing background performance under that promise.
Supposing the user targets 10% performance improvement
for a critical workload over the static margin run, our
managed system then throttles background core frequen-
cies by the minimal amount to control total chip power,
letting the frequency of the core running the critical
workload reach the level that delivers target performance.

In Fig. 14 the performance of squeezenet, ferret,
vggl9, and fluidanimate exceeds the 10% improve-
ment target when the chip aims at maximizing their perform-
ance. However, their performance drops below the target
when the chip puts all cores into fine-tuned ATM states. A
balanced point can be obtained by controlling background
workload frequency. The frequency of co-located l1u_cb,
raytrace, swaptions, and x264 is set to 4.2 GHz.

In contrast, seqg2seq outperforms the 10% improvement
goal when its co-located st reamcluster runs under fine-
tuned ATM. This is because streamcluster consumes
little power even when the frequency is high. The ex-
tra available power budget can be exploited by swapping
streamcluster with a more power-hungry co-runner,
lu_cb, with core frequency properly throttled.

The other critical and background combinations
meet the QoS when ATM is aggressively fine-tuned for all
cores. The high-frequency gain of ATM fine-tuning provides
this benefit. For these cases, no core throttling is needed.

In summary, a system that is based on core-level ATM
fine-tuning and ATM-aware application power management
provides 5% to 10% steady performance improvement over
the original ATM system. This result is notable because the
improvement comes on a production-grade system where
even a 1% performance gain is considered significant.

VIII. RELATED WORK

Prior work exists on process variation, inter-core perform-
ance heterogeneity [12]-[16], [38], [39]. Our work exploits
ATM’s configurability to expose the variability and provides
more performance gain than previous static margin methods.

Timing margin has been studied in the past [25], [26],
[33], [40]-[43]. That work set out to understand and mitigate
voltage variation. Several works expanded the study to
multicore and GPUs [1], [2], [20], [23], [43]-[49]. These
works provided valuable insights on how to optimize static
margin, but few of them are adopted in real processors
because of the strict requirement in production systems.

Active Timing Margin (ATM) is adopted in today’s chips
to reduce margin [4]-[11], primarily focusing on its power
reduction benefits. Our work is the first to study ATM’s
performance variability on multicores, from both static pro-
cess and dynamic voltage variation. The knob we tune on
POWERT7+ is generally available for all ATM systems, thus
our insights have wide applicability for future multicores.

IX. CONCLUSION

As traditional optimization techniques are being ex-
hausted, processor designers are increasingly turning to more
exotic solutions such as Active Timing Margin (ATM) to
improve efficiency. Though already available in commercial
silicon, realizing ATM’s full alluring efficiency benefits
requires taming its inherent variability. In this paper, we
have (1) demonstrated that ATM can be aggressively fine-
tuned for higher performance and to expose variability;
(2) performed the first complete characterization of the inter-
core variation of ATM on multicores; and (3) proposed a
scheme to deploy fine-tuned ATM multicore and manage it
to offer enhanced and predictable performance. We believe
our work paves the way for deploying and managing ATM
processors at their full potential in a real environment.
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