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Abstract
Web computing is gradually shifting toward mobile devices,
in which the energy budget is severely constrained. As a
result, Web developers must be conscious of energy effi-
ciency. However, current Web languages provide develop-
ers little control over energy consumption. In this paper,
we take a first step toward language-level research to en-
able energy-efficient Web computing. Our key motivation is
that mobile systems can wisely budget energy usage if in-
formed with user quality-of-service (QoS) constraints. To
do this, programmers need new abstractions. We propose
two language abstractions, QoS type and QoS target, to cap-
ture two fundamental aspects of user QoS experience. We
then present GreenWeb, a set of language extensions that
empower developers to easily express the QoS abstractions
as program annotations. As a proof of concept, we develop
a GreenWeb runtime, which intelligently determines how
to deliver specified user QoS expectation while minimiz-
ing energy consumption. Overall, GreenWeb shows signif-
icant energy savings (29.2% ⇠ 66.0%) over Android’s de-
fault Interactive governor with few QoS violations.
Our work demonstrates a promising first step toward lan-
guage innovations for energy-efficient Web computing.

Categories and Subject Descriptors D.3.2 [Programming
Language]: Language Classifications–Specialized applica-
tion languages; D.3.3 [Programming Language]: Language
Constructs and Features–Constraints

Keywords Energy-efficiency, Web, Mobile computing

1. Introduction
Web computing is gradually shifting toward mobile devices.
As of 2014, mobile devices already generate more Inter-
net traffic than desktops, and the gap is exponentially grow-
ing [22]. The major challenge for mobile Web computing
is the mobile devices’ tight battery budget, which severely
limits sustained operation time and leads to user frustration.
Recent statistics shows that poor energy behavior is a top
reason that causes negative App reviews [1], and 55% of
mobile users would delete an App that exhibits heavy bat-
tery usage [27]. Mobile users are now aware of major energy
consumers through energy monitoring and diagnosis Apps.
For example, both Android and iOS provide built-in func-
tionality showing each application’s battery usage.

Because of the increasing user awareness, Web develop-
ers today must be conscious of energy efficiency. Current
programming language abstractions, however, provide de-
velopers few opportunities to optimize for energy efficiency.
Instead, energy optimizations are mostly conducted at the
hardware and OS level via techniques such as dynamic volt-
age and frequency scaling. Although effective from a sys-
tem perspective, the key limitation of these techniques is that
they are not aware of user quality-of-service (QoS) expecta-
tions and may lead to poor experience [57, 71, 73]. Failing
to deliver a desirable QoS experience can cause severe con-
sequences. For example, a 1-second delay in webpage load
time costs Amazon $1.6 billion annual sales lost [17].

Language Support In this paper, we present GreenWeb,
a set of Web language extensions defined as Cascading Style
Sheet (CSS) rules that allow Web developers to express user
QoS expectations at an abstract level. Based on programmer-
guided QoS information, the runtime substrate of GreenWeb
dynamically determines how to deliver the target QoS expe-
rience while minimizing the energy consumption.

To help Web developers easily express QoS information
in Web applications, our key insight is that user QoS expe-
rience can be sufficiently captured by two fundamental ab-
stractions: QoS type and QoS target. Intuitively, QoS type
characterizes whether users perceive QoS experience by in-



Web Applications

Web Languages

W
eb

 B
ro

w
se

r

Security
Rendering
Network

Input

GreenWeb APIs

GreenWeb Runtime

<core, frequency> frame latency

QoS Abstractions
(QoS type, QoS target)

Section 4

Section 5

Section 6

Section 7

Automatic Annotation 
(AutoGreen)Manual Annotation

Frame
Latency 
Tracking

Execution
Configuration

Prediction

Section 3

Commodity Hardware

Fig. 1: GreenWeb system overview. Enhancements to the existing
Web stack are shaded. Web applications annotated with GreenWeb
APIs provide QoS information to the GreenWeb runtime. Based
on the QoS information, the runtime exploits energy-delay trade-
off in commodity hardware to minimize energy while meeting Qos
expectations. The hardware also continuously provides feedback to
the GreenWeb runtime to enable adaptive optimizations.

teraction responsiveness or animation smoothness, and QoS
target denotes the performance level that is required to de-
liver a desirable user experience for a specific QoS type.
GreenWeb provides specific language constructs for express-
ing the two QoS abstractions and thus empowering Web de-
velopers to provide “hints” to guide energy optimizations.

Allowing programmers to annotate QoS information in
applications is both precise and efficient. It is precise be-
cause only developers have exact knowledge of code logic.
They can provide critical QoS type and target information
that is difficult for the runtime to infer. It is efficient because
it does not entail performance and energy overhead of run-
time detection. Such a design philosophy is similar to tra-
ditional pragma-based programming APIs such as OpenMP.
For example, the “omp for” pragma in OpenMP indicates
that the iterations in a for loop are completely independent
so that the runtime can safely parallelize the loop without the
need to check for correctness. Similarly, GreenWeb annota-
tions allow the Web runtime to perform “best-effort” energy
optimizations while still guaranteeing a satisfactory QoS ex-
perience without having to infer QoS information.

Design and Implementation Fig. 1 provides an overview
of the system. Web applications are annotated with GreenWeb
APIs to provide QoS information (i.e., QoS type and QoS
target) to the GreenWeb runtime. The GreenWeb runtime is
designed as a new Web browser component sitting alongside
existing modules. Annotation is conducted either manually
by developers or through an automatic annotation frame-
work we develop called AUTOGREEN.

While the GreenWeb language extensions do not man-
date any specific runtime implementation and can support
any optimization strategy for QoS-aware energy efficiency
in general, we specifically focus on leveraging the asymmet-

ric chip-multiprocessor (ACMP) hardware architecture [54,
68]. ACMP is long known to provide a wide performance-
energy trade-off space, and is already widely used in today’s
mobile systems [6, 16]. Based on the QoS information, the
GreenWeb runtime predicts the ideal ACMP configuration
that minimizes energy consumption while meeting specified
QoS expectations. The runtime also continuously monitors
hardware execution to enable adaptive optimizations.

We implement GreenWeb in the open-source Chromium
browser engine [7], which is directly used in Google’s
Chrome browser and is the core for many other popu-
lar Web browsers such as Opera and the Android default
browser. We evaluate GreenWeb on the ODroid XU+E
development board [24], which contains an Exynos 5410
System-on-chip (SoC) that is used in the Samsung Galaxy
S4 smartphone. Our results show that applications with
GreenWeb annotations achieve 29.2% ⇠ 66.0% energy sav-
ings with only small QoS violations comparing to Android’s
interactive governor, which is a common energy opti-
mization strategy for interactive use.

Contributions We make four contributions in the paper:

• We identify two programming abstractions of user QoS
experience, QoS type and QoS target, that are critical to
QoS-aware energy efficiency optimizations.

• We present GreenWeb, a set of language extensions that
allow developers to express the two QoS abstractions and
guide energy optimizations in mobile Web applications.

• We demonstrate one candidate design of a GreenWeb
runtime, which leverages the ACMP heterogeneous CPU
architecture that is already prevalent in today’s mobile
hardware and achieves significant energy savings over
current energy optimization strategies.

• We present AUTOGREEN, an automatic annotation frame-
work that improves developer productivity by applying
GreenWeb annotations without developers intervention.

We make our GreenWeb language specification, design,
and implementation as well as the AUTOGREEN framework
publicly available at: http://wattwiseweb.org/.

The rest of this paper is organized as follows. Sec. 2
introduces the background and describes the scope of the
Web that this paper discusses. Sec. 3 defines two abstrac-
tions that are critical to mobile user QoS experience, and
Sec. 4 describes the proposed GreenWeb language constructs
that express the two abstractions. Sec. 5 presents AUTO-
GREEN to demonstrate the feasibility of automatically ap-
plying GreenWeb annotations to a Web application. Sec. 6
presents a particular GreenWeb runtime design that lever-
ages the ACMP architecture. Sec. 7 quantifies the benefits
of a GreenWeb-enabled Web runtime. Sec. 8 discusses the
implications and limitations of the current design and imple-
mentation of GreenWeb. Sec. 9 puts GreenWeb in the broad
context of related work, and Sec. 10 concludes the paper.



2. Web: A Universal Application Platform
In this section, we first present the broad scope of the Web
applications we discuss in this paper. We then briefly intro-
duce Web languages and the Web browser runtime. Overall,
we show that the Web has become a cornerstone technol-
ogy in today’s mobile computing era. Its evolution is largely
driven by innovations made in programming languages and
runtime design. These observations motivate our effort on
GreenWeb that extends existing Web languages with new se-
mantics to enable energy efficiency optimizations.

Web Applications Web applications are applications de-
veloped using Web languages, including HTML, CSS, and
JavaScript. Originally, webpages running in a Web browser
were the only form of Web application. The scope of the
Web today has been greatly expanded beyond webpages to
a universal application development platform. The driving
force is Web’s “write-once, run-anywhere” feature that tack-
les the notorious device fragmentation issue [4]. Strategy
Analytics reported that by the year 2015 63% of all business
mobile applications are based on Web technologies [18].

Mobile system vendors are actively embracing Web tech-
nologies. Both iOS and Android provide developers APIs
that expose Web browser functionalities [5, 20]. This allows
developing “hybrid” applications that are internally based on
Web technologies, but are wrapped by a native shell. Such a
development strategy has been widely adopted by popular
mobile Apps such as Uber and Instagram [34]. In this paper,
the scope of Web application extends beyond webpages to
also include such hybrid applications.

Web Languages and Browser Runtime HyperText
Markup Language (HTML), Cascading Style Sheets (CSS),
and JavaScript are the three fundamental languages for Web
development. In a nutshell, HTML describes the structural
information of a Web application by building a Document
Object Model (DOM) tree [15], in which each node repre-
sents a Web application element. CSS describes an appli-
cation’s style information by declaring visual properties of
each DOM tree node. JavaScript specifies an application’s
dynamic behavior by defining callback functions to execute
when certain user interactions are triggered on DOM nodes.

To enable portability of Web applications, the Web browser
acts as a “virtual machine” or a runtime system layer that dy-
namically translates HTML, CSS, and JavaScript to different
platforms. Specifically, a Web browser typically consists of
a rendering engine that translates HTML and CSS, and a
JavaScript engine that executes JavaScript code.

Over the past two decades, language evolution and Web
runtime design have been constantly driving Web innova-
tions [28, 29]. As a result, current Web standards such as
HTML5 and CSS3 enable ever-richer functionalities, such
as offline storage, media playback, and geolocation, that are
the core in today’s mobile applications. Web language and
browser design innovations will continue to be the key en-
abler for next-generation Web computing.

Loading Tapping MovingInteraction:

Single Frame Single Frame /
Continuous Frames Continuous FramesUser perception:

Fig. 2: The LTM (Loading-Tapping-Moving) user-application in-
teraction model of mobile Web. LTM captures three primitive types
of interaction: page loading, finger tapping, and finger moving. We
use LTM as a framework to reason about user QoS experience.

3. QoS Abstractions for the Mobile Web
Expressing user QoS experience to the underlying system is
the key in QoS-aware energy efficiency optimizations. How-
ever, today’s Web languages do not allow expressing QoS in-
formation. Programmers need new abstractions. We propose
two abstractions, QoS type and QoS target, that capture two
fundamental aspects of user QoS experience in Web applica-
tions. Such QoS abstractions hide the complexity of the spe-
cific application implementation from underlying systems
while still providing enough details to guide energy opti-
mizations. This section introduces the abstractions, and the
next section (Sec. 4) describes our proposed language con-
structs that enable programmers to express the abstractions.

Abstracting user QoS experience requires us to first un-
derstand how users assess QoS experience in mobile Web
applications. To that end, we introduce a user-application in-
teraction model called LTM. LTM captures three fundamen-
tal user interactions in mobile Web applications (Loading-
Tapping-Moving) and gives us a framework for reasoning
about user QoS experience (Sec. 3.1). Based on the LTM
model, we propose the QoS type (Sec. 3.2) and QoS tar-
get (Sec. 3.3) abstractions. We discuss why they are nec-
essary and sufficient to express QoS information for QoS-
aware energy efficiency optimizations.

3.1 LTM Model of Mobile User Interaction
QoS experience is fundamentally linked with user-application
interactions. To systematically analyze user interactions in
mobile Web applications, we introduce a simple concep-
tual model called LTM, which captures three primitive user
interaction forms in mobile Web applications: loading appli-
cation page (L), tapping the display (T), and moving finger
on the display (M). Fig. 2 illustrates the LTM model.

The three interactions cover a majority of human-computer
interactions on mobile devices. This is because every appli-
cation requires a loading phase (L), and post-loading inter-
actions on mobile devices are mostly performed in the form
of finger tapping (T) or finger moving (M). Specifically, the
moving interaction could be manifested in various ways,
such as scrolling, swiping, or even drawing a picture.

Internally, each user interaction is translated to one or
more application event. For example, a tapping interaction is



often translated to a touchstart and a touchend event,
and a moving interaction can be translated to a scroll

event or a touchmove event depending on context. In
this paper, we focus on the following events that could be
triggered by LTM interactions on a mobile device: click,
scroll, touchstart, touchend, and touchmove.
We do not consider events specific to desktops (e.g., drag,
mouseover) that are generally not fired on mobile devices.

Each event is bound to a DOM node with a callback func-
tion, which is executed when the event is triggered on the
associated DOM node. The result of callback execution is
fed into the Web browser rendering engine, which eventually
paints the resulting frame(s) and updates the display. Frames
are what users perceive as application’s responses to their
interactions, and thus determine the QoS experience. In the
following subsections, we propose two abstractions for QoS
experience based on different frame characteristics.

3.2 QoS Type Abstraction
We define an abstraction called QoS type to capture differ-
ent ways that users interpret the QoS experience. Two ma-
jor QoS types exist: single and continuous. Intuitively, they
indicate whether the QoS experience is determined by the
“responsiveness” of a single frame or the “smoothness” of a
continuous sequence of frames, respectively. Let us use the
LTM model to elaborate on the two QoS types.

Single Some user interactions produce only a single
frame, which we call the response frame. The QoS type of
these interactions is “single,” indicating that user QoS expe-
rience is determined by the latency at which the response
frame is perceived by users [45]. For instance, imagine a
fingertap interaction (T) that opens a search box in a Web
application. Users perceive the effect of the fingertap when
the application displays a response frame—the frame with
the search box displayed. Web application loading process
(L) also falls in this category. This is because although there
are several intermediate frames being produced during the
loading process, user QoS experience is largely determined
by the latency of the “first meaningful frame” [30], which
indicates that a Web application is usable by users.

Under the “single” QoS type, an ideal energy-efficient
system would allocate just enough energy to produce the
single response frame and conserve energy afterwards. It is
worth noting that the system might not be completely idle
after the response frame is delivered. The system could still
perform work such as updating the browser cache, perform-
ing garbage collection, or rasterizing off-screen pixels. Such
“post-frame” work is not critical to user QoS experience and
could be executed in a low-power mode.

Continuous The other QoS type is “continuous,” corre-
sponding to interactions whose responses are not one single
frame but a sequence of continuous frames. User QoS expe-
rience is determined by the latency of each frame in the se-
quence rather than one specific frame as in the “single” case.
Ideally, an energy-efficient Web runtime would allocate just

Table 1: Interactions in mobile Web applications fall into three cat-
egories based on different QoS type and QoS target combinations.

QoS Type
QoS Target
(TI , TU )

Description
Inter-
action

Continuous (16.6, 33.3) ms
QoS experience is evaluated
by continuous frame latencies.

T, M

Single

(100, 300) ms
QoS experience is evaluated
by single frame latency. Users
expect short response period.

T

(1, 10) s
QoS experience is evaluated
by single frame latency. Users
expect long response period.

L, T

enough energy for each frame in the sequence and conserve
energy after all the frames are produced. Determining the ex-
act sequence of frames given an input event is a non-trivial
task and we discuss it in Sec. 6.4.

Continuous frames are often found in the form of an-
imations. The simplest form of animation is triggered by
finger moving (M) such as scrolling. Tapping (T) can also
cause a sequence of frames to be generated. For instance,
many Web applications provide a navigation button that dy-
namically expands when tapped and generates an animation.
More complex animations in Web applications can be con-
trolled by requestAnimationFrame (rAF) APIs [31]
and CSS animation/transition [9, 12].

Distinguishing between “continuous” and “single” is im-
portant. If an event callback triggers an animation but the
runtime treats its QoS type as “single”, the runtime would
optimize for only the first frame in the sequence, and thus
mis-operates for the remaining frames. On the other hand,
if an event produces only a single frame followed by some
“post-frame” work, a runtime (mistakenly) optimizing for
“continuous” frame latency would force the hardware to run
at the peak performance to execute the “post-frame” work
(with the intention of generating more frames), leading to
energy waste. Whether an event triggers a single frame or a
sequence of frames can not be determined a priori. In Sec. 4
we will introduce a set of language extensions that let devel-
opers explicit specify an event’s QoS type, through which
the runtime could be better informed in optimizations.

3.3 QoS Target Abstraction
Another critical QoS abstraction is QoS target, denoting the
performance level needed to deliver a certain QoS experi-
ence. We use frame latency as a natural choice for the per-
formance metric because frame updates dictate QoS experi-
ence. Specifically, we define frame latency as the delay from
when an event is initiated by a user to when its correspond-
ing frame(s) show on the display.

Two different QoS targets exist that are critical to user
experience: imperceptible target (T

I

) and usable target
(T

U

) [71]. Imperceptible target delivers a latency that is im-



Selector? { QoSDecl+ }
Element:QoS
CDecl | SDecl
onEventName-qos: continuous[, v, v]
onEventName-qos: SValue
single, short | long | [v, v]

GreenWebRule
Selector

QoSDecl
CDecl 
SDecl 

SValue

::=
::=
::=
::=
::=
::=

Element         DOM element
EventName    DOM event name

v    Integer value

Fig. 3: The syntax of GreenWeb language extensions.

perceptible/instantaneous to users. Achieving a performance
higher than T

I

does not add user perceptible value while
unnecessarily wasting energy. The usable target, in contrast,
corresponds to a latency that can barely keep users engaged.
Delivering a performance lower than T

U

may cause users to
deem an application unusable and even abandon it.

Single For interactions with the “single” QoS type, QoS
target depends on the complexity of the interaction [45]. For
interactions that are expected to finish quickly, user latency
tolerance is low. For instance, a fingertap that displays a
search box falls into this category, because displaying a
search box is inherently expected to finish “instantly.” For
these “lightweight” interactions, users feel the system is
responding instantly at 100 ms, and start thinking that the
system is not working after 300 ms [26]. Thus, 100 ms and
300 ms can be used as the T

I

and T

U

values, respectively.
In contrast, when users are aware of a computationally in-

tensive job being processed, they tend to have high tolerance
for latencies [61]. Psychological study shows that users can
subconsciously wait up to 1 second for a job to complete
while still staying focused on the current train of thought.
Once a job execution exceeds 10 seconds, user attentions are
distracted and cannot tolerate the delay [39, 58]. Therefore,
1 second and 10 seconds can be treated as the T

I

and T

U

values for “heavyweight” interactions, respectively.
Continuous For interactions with a “continuous” QoS

type, 60 and 30 frames per second (FPS) deliver a “seam-
less” and “just playable” user experience, respectively [42].
Thus, a performance level that guarantees 16.6 ms and
33.3 ms frame latency can be regarded as the impercepti-
ble and usable QoS target, respectively. It is worth noting
that the QoS target applies to each frame rather than an aver-
age latency. This is because human eyes are very sensitive to
frame variance. Tiny hitches in a high volume of frames can
cause a poor QoS experience and even headaches [21, 23].

User interactions fall into three distinct categories based
on the different QoS type and QoS target combinations as
listed in Table 1. Although the absolute values of QoS target
(T

I

and T

U

) in each category can vary slightly with user per-
ceptibility, their magnitudes differ significantly across cate-
gories (i.e., tens of milliseconds versus hundreds of millisec-
onds versus seconds). Thus, QoS target is an important ab-
straction to differentiate different performance requirements.

Table 2: Specifications of the GreenWeb APIs. Each API is a new
CSS rule specifying the QoS information when a particular event
is triggered on certain Web application element.

Syntax Semantics

E:QoS {
onevent-qos: continuous

}

As soon as onevent is triggered on
DOM element E, the application must
continuously optimize for frame latency.
Use the TI and TU values in Table 1 as
the default QoS target for all frames.

E:QoS {
onevent-qos: single,

short|

long

}

Once onevent is triggered on element
E, the application must optimize for the
latency of the single frame caused by
onevent. Users expext short (long)
latency. Use the TI and TU values in
Table 1 as the default QoS target.

E:QoS {
onevent-qos: continuous|

single,

ti-value,

tu-value

}

Explicitly specify TI (ti-value) and
TU values (tu-value) for QoS targets.
Note that both values must either appear
or be ommitted together.

4. GreenWeb Language Design
We now present GreenWeb, a set of Web language exten-
sions that lets application developers easily express the two
QoS abstractions as program annotations. We first describe
the design and specification of GreenWeb (Sec. 4.1). We then
present usage scenarios to demonstrate the expressiveness
and modularity of the GreenWeb design (Sec. 4.2).

4.1 QoS-Aware Web API Design
The GreenWeb APIs extend the current CSS language to
specify QoS type and QoS target information. We choose
CSS because its syntax and semantics naturally allow us to
select DOM elements and specify various characteristics.
The core of CSS is a set of style rules. Each style rule se-
lects specific Web application elements and sets their style
properties. A style rule expresses such semantics through
two language constructs: a selector, which selects spe-
cific Web application elements, and a set of style declara-
tions, which are hproperty, valuei pairs that assign value

to property. As an example, the following CSS rule h1

{font-weight: bold} selects all the h1 elements and
sets their font-weight property to bold.

Traditionally, CSS supports purely visual style proper-
ties such as fonts and colors. Recent development of CSS
(e.g., CSS3) lets developers express richer information such
as controlling animations [9] and adapting to different de-
vice form factors [14]. GreenWeb follows this spirit of CSS
language evolution and further expands the CSS semantics
scope to allow expressing user QoS related information.

Fig. 3 shows the GreenWeb syntax, and Table 2 lists the
semantics of each API. Intuitively, each GreenWeb API se-
lects an application element E, and declares CSS properties
to express the QoS type and QoS target information when
an event onevent is triggered on E. We now describe the



<html> <head>
  <style>
    div#example {
      width: 100px;
      transition: width 2s;
    }
    div#ex:QoS {
      ontouchstart-qos: continuous;
    }
  </style>
  <script>
    function animateExpand() {
      var node = document.getElementById(‘ex’)
      node.style.width="500px";
    }
  </script> </head>

  <body>
    <div id=“ex” ontouchstart=“animateExpand()”>
    </div>
    <!-- many elements -->
</body> </html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 4: Express the QoS type of ontouchstart event as “con-
tinuous,” and use the default TI and TU values.

<html> <head>
  <style>
    body:QoS {
      ontouchmove-qos: continuous, 20, 100;
    }
  </style>
  <script>
    var latestY = 0, ticking = false;
    function animateMove() {
      latestY = window.scrollY;
      if(!ticking)
        requestAnimationFrame(function() {
          ticking = false;
          /* Animation code omitted */
        });
      ticking = true;
    }
  </script> </head>

  <body ontouchmove=“animateMove()”>
    <!-- many elements -->
</body> </html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Fig. 5: Express the QoS type of ontouchmove event as “contin-
uous,” and use 20 ms and 100 ms as the new QoS targets.

details of the GreenWeb extensions.
Selector To decorate a CSS rule as specifying the QoS

information of an element, we define a new CSS pseudo-
class selector [10] “:QoS.” An element E is selected using
existing selectors, such as ID (#id) and Class (.class)
selectors, before applying the :QoS pseudo-class qualifier.
For example, div#intro:QoS selects the div element
with the ID intro before declaring QoS information.

Property QoS information is expressed as CSS prop-
erties in GreenWeb. We define a new CSS property called
onevent-qos, in which onevent is a DOM event that
GreenWeb supports. In its simplest form, onevent-qos
could be set to continuous (first rule in Table 2). The
semantics of declaring onevent-qos: continuous is
that as soon as onevent is triggered on element E, the Web
browser runtime must continuously optimize for frame la-
tency until the last relevant frame is generated.

To express the “single” QoS type, the onevent-qos

property accepts a list of two values separated by a comma,
one to indicate that the QoS type is single, and the other
to indicate whether users expect a short or long execution
period (second rule in Table 2). For instance, the decla-
ration onevent-qos: single, short expresses that
the runtime must optimize for the latency of the single frame
caused by onevent, and users expect short frame latency.

Developers do not have to specify the QoS target values;
the GreenWeb runtime will use the T

I

and T

U

values in
Table 1 as the default QoS target. However, we also provide
the flexibility for developers to overwrite the default QoS
targets. This is achieved by specifying absolute values of T

I

and T

U

(in milliseconds) after single or continuous,
as shown in the third rule in Table 2.

With the knowledge of new language constructs that the
GreenWeb introduces, we now examine a few common us-
age scenarios of the GreenWeb APIs.

4.2 Example Usage
The proposed QoS-aware GreenWeb APIs support a wide
range of Web application interaction patterns. We explore
different usages using two examples.

Animations via CSS Transition The first example in-
volves annotating events that achieve animation using a CSS
transition. A CSS transition lets developers specify the ini-
tial and end state of an animation and how long the tran-
sition takes, while leaving the transition implementation to
the Web browser [12]. Fig. 4 shows an example in which
the transition of the width property of a div element is
animated. The initial width property is set to 100px (line
4). The style declaration “transition: width 2s;”
at line 5 indicates that whenever the width property is reset,
the transition will begin and finish in 2 seconds. Later when
users click the <div> element, the animateExpanding
callback is executed (line 19), which sets the width prop-
erty to 500px, triggering the 2-second animation.

Application developers realize that user QoS experience
of the ontouchstart event is dictated by the anima-
tion smoothness. Using GreenWeb, developers could ex-
press such information by specifying that the QoS type of
ontouchstart event is “continuous” (lines 7-9). Without
further expressing the QoS targets, the default values of T

I

and T

U

(16.6 ms and 33.3 ms) are used.
Animations via rAF Another common way of achiev-

ing animation is through the requestAnimationFrame
(rAF) functions. Fig. 5 shows the code snippet. In a nutshell,
every time a user moves a finger, rAF is executed (if not
already) to register an anonymous callback function (line
12), which will get executed when the display refreshes (i.e.,
when a VSync signal [33] arrives) [21] to achieve animation.

Application developers realize that once move events
start, they trigger a sequence of continuous frames that de-



termine user QoS experience. In addition, the developers
believe that the specific animation in this application does
not require a high FPS. Therefore, they specify the QoS type
as “continuous” and overwrite the default QoS targets with
20 ms and 100 ms, respectively (lines 3-5).

Modular Design Discussion The GreenWeb API design
is modular in the sense that developers add QoS annotations
for an event independent of how the event callback is imple-
mented. In other words, the GreenWeb let QoS and function-
ality of Web programming be two separate concerns.

For example, although animations in the above two exam-
ples are implemented through different mechanisms (CSS
transition and rAF) and are triggered by different events
(ontouchstart and ontouchmove), developers sim-
ply express the QoS type as “continuous” without having
to understand the implementation details. One can imagine
that the modularity of the GreenWeb APIs would also al-
low annotating QoS information for functionalities that are
implemented by thirty-party libraries whose source code is
not available. Modularity is important for extending Web
languages because Web application implementations change
rapidly. The GreenWeb annotations can remain unchanged
as the application version evolves and can be removed with-
out interfering the rest of the application logic.

5. Automatic Annotation
To assist programmers in annotating a Web application with
QoS information, we provide a system called AUTOGREEN,
which automatically applies GreenWeb annotations. The
rationale behind designing AUTOGREEN is twofold. First,
some Web developers may not want to spend the extra effort
of manual annotation, such as for legacy applications. Sec-
ond, in complex Web applications with many DOM nodes
and events, manually going through all events could be cum-
bersome. In both cases, AUTOGREEN automatically finds
all the events and annotates them with the two QoS abstrac-
tions, enabling QoS-aware energy efficiency optimizations
without programmer intervention.

Fig. 6 gives an overview of AUTOGREEN. It consists of
three major phases: an instrumentation phase, a profiling
phase, and a generation phase. The instrumentation phase
first discovers all DOM nodes and their associated events
in an application, and instruments every event callback to
inject QoS detection code. With the instrumented applica-
tion, AUTOGREEN performs a profiling run of each event by
explicitly triggering its callback function. During the call-
back execution, the (injected) detection code checks for cer-
tain conditions to determine an event’s QoS type and QoS
target. After profiling, AUTOGREEN generates QoS annota-
tions and injects them back to the original code.

The detection code determines the QoS type of an event
as follows. An event’s QoS type is set to “continuous” if its
callback function triggers a jQuery animate() function,
a rAF, or a CSS transition/animation. Otherwise the QoS
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Application
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annotated
Application

HTML

JavaScript
Instrumentation Profiling

Callback
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Event
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Fig. 6: AUTOGREEN’s workflow to automatically annotate mobile
Web applications with GreenWeb APIs.

type is set to “single.” To detect animate() and rAF, we
overload their original functions and check in the overloaded
function. To detect CSS transition/animation, we register a
transitionend/animationend event [8, 11], which
if triggered indicates that a CSS transition/animation exists.
As a proof-of-concept prototype, our current implementation
does not yet support checking other ways of realizing anima-
tions, but could be trivially extended to do so by following a
similar detection procedure as described above.

AUTOGREEN uses the default QoS target values listed
in Table 1 for each detected QoS type. Particularly, for events
with a “single” QoS type, AUTOGREEN always assumes a
short duration. This is because AUTOGREEN does not un-
derstand the semantics of an event callback function and has
to make conservative decisions about the QoS target infor-
mation in favor of satisfying QoS over conserving energy.

6. GreenWeb Runtime Design
While GreenWeb APIs specify what QoS type and QoS
target that users expect, it is the job of the runtime substrate
to determine how user QoS expectations are satisfied in
an energy-efficient manner. We first state the problem that
GreenWeb runtime addresses (Sec. 6.1). We then describe
the general scheme that GreenWeb runtime uses (Sec. 6.2).
Finally, we discuss two critical components of the runtime
design (Sec. 6.3 and Sec. 6.4).

6.1 Problem Statement
In this paper, we choose to explore the runtime design by ex-
ploiting the ACMP hardware architecture [54, 68]. Alterna-
tively, a runtime system that performs optimizations purely
at the software level (e.g., selective resource loading [38]) or
at the SoC-level (e.g., use power-conserving colors [44] or
dynamic display resolution scaling [50]) is also possible.

The ACMP architecture consists of multiple cores with
different microarchitectures, such as out-of-order and in-
order. Each core has a variety of frequency settings. Dif-
ferent core and frequency combinations thus provide a
large trade-off space between performance and energy.
The objective of our ACMP-based GreenWeb runtime is
to find an ideal ACMP execution configuration (i.e., a
hcore, frequencyi tuple) such that the QoS target is sat-
isfied with minimal energy.

It is important to emphasize that the GreenWeb runtime
operates on a per-frame basis because frames are what ul-



timately dictate user perceivable experience as discussed in
Sec. 3.1. That is, if an event’s QoS type is “single,” the run-
time finds the ideal execution configuration for the single
frame associated with the event. If an event’s QoS type is
“continuous,” the runtime continuously identifies the ideal
execution configuration for each frame until all the frames
associated with the event are produced. All the associated
frames share the same QoS target of the event as enforced
by the GreenWeb API semantics shown in Table 2.

Given the problem statement, we now describe the gen-
eral scheme that the GreenWeb runtime uses in Sec. 6.2. We
then discuss two critical components of the runtime design.
Specifically, Sec. 6.3 discusses frame latency tracking that
enables optimization for any single frame, based on which
Sec. 6.4 discusses how to determine the associated frames
of an event, which allows optimizing for all the frames.

6.2 Execution Configuration Prediction
The key idea of identifying a frame’s ideal execution con-
figuration is to build a performance model and an energy
model. The models predict the latency and energy consump-
tion of a frame under any given core and frequency combi-
nation. With the two models, the GreenWeb runtime sweeps
all possible core and frequency combinations and selects the
one that satisfies the QoS target with minimal energy.

The energy model can be built based on the performance
model and the power consumption under different core and
frequency settings. We profile the different power consump-
tions statically and hard-code them into the runtime. In this
section, we explain the performance model.

We base the performance model on the classical DVFS
analytical model initially proposed by Xie et al. [70] and
used in many subsequent works [57, 69, 71]:

T = T

independent

+N

nonoverlap

/f (1)

in which T is the frame latency; f is the CPU frequency;
T

independent

is the time that is independent of f , which
primarily includes the GPU processing and main memory
access time; N

nonoverlap

is the number of CPU cycles that
do not overlap with T

independent

and scales with f .
Equ. 1 is a system of equations with two unknown vari-

ables T
independent

and N

nonoverlap

. We solve Equ. 1 by pro-
filing frame latencies twice, one at the maximum frequency
and one at the minimum frequency. Measuring frame latency
is non-trivial. It is performed by the latency tracking run-
time module, which we will discuss in Sec. 6.3. We build
performance models for big and little cores separately be-
cause different microarchitectures inherently have different
T

independent

and N

nonoverlap

characteristics.
The GreenWeb runtime uses measured frame latencies

as feedback information to fine-tune the prediction, similar
to the event-based scheduling [71]. If the previous predic-
tion leads to a frame latency that violates the QoS target
(i.e., under-predicts), the GreenWeb runtime increases the
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Fig. 7: The simplified view of frame lifetime in modern multi-
process/thread browsers. A frame starts when the browser process
receives an input event and ends when the frame is displayed and
the browser process is signaled. In between, an input event is pro-
cessed by different stages spread across multiple threads. Different
input events might interleave with each other.

frequency to the next available level or transitions the execu-
tion from the little core to the big core. The opposite adjust-
ment is applied when the model over-predicts. If the model
mispredicts consecutively more than a certain threshold, the
runtime initiates new profilings to recalibrate the model.

6.3 Frame Latency Tracking
Tracking frame latency is crucial to constructing the per-
formance and energy model. However, accurate frame la-
tency tracking is a nontrivial task, primarily because of the
complexities involved in generating a frame in modern Web
browsers. To the best of our knowledge, this is the first work
that describes tracking frame latencies in Web applications.
Most prior work either is concerned only with the callback
latency [40, 71], which, as we will show later, contributes
to only a portion of frame latency, or it considers logical la-
tency (e.g., the number of conditionals evaluated), which is
insufficient to construct the prediction models [64].

Accurately tracking frame latency requires us to under-
stand how a frame is processed internally by a Web browser.
Using Google Chrome browser as an example, Fig. 7 illus-
trates a typical frame lifetime, starting from when an input
event is received by the browser to when the frame is gen-
erated. Although we focus on Chrome, the execution model
is generally applicable to almost all modern Web browsers
such as Firefox, Safari, Opera, and Internet Explorer.

The browser process receives an input event and sends it
to the renderer process, which applies five processing stages
to produce a frame: callback execution, style resolution, lay-
out, paint, and composite [25]. In the end, the browser pro-
cess receives a signal indicating that the frame is produced.
To improve performance, the processing stages are spread
across two threads, and some portion of the composite stage
could be offloaded to GPU (not shown). Note that our perfor-
mance model in Equ. 1 captures the GPU processing time.

The key to latency tracking is to accurately attribute a
frame to its triggering input. Two complexities of the frame
generation process make frame attribution non-trivial. First,
different input events might be interleaved. For the example
in Fig. 7, Input 2 is triggered before Input 1 finishes. Naively
associating an input event with its immediate next frame in
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Fig. 8: Frame tracking algorithm. The key idea is to attach each in-
put event with a metadata (Msg in the code) that uniquely identifies
an input event and is propagated with the event. We use two colors
to represent metadata of two different events in this example.

this case would mistakenly attribute Frame 1 to Input 2.
Second, one frame might be associated with multiple in-

put events. This is because modern browsers generate a new
frame only when the display refreshes, i.e., a VSync signal
arrives (typically 60 Hz on a mobile device), to avoid screen
tearing [21, 33]. If multiple callback functions have been ex-
ecuted before a VSync arrives, their effects are batched and
cause only one frame. The batching is achieved through a
dirty bit. Each callback sets a dirty bit to indicate whether a
new frame is needed as a result of callback execution. Call-
backs from different inputs write to the same bit, but as long
as one callback sets the dirty bit, a new frame will be gener-
ated when the browser later receives a VSync signal.

We show the flow of our tracking algorithm in Fig. 8.
The key idea is to attach each input event with a piece of
metadata (Msg in the code) that is propagated with the event
throughout the entire processing pipeline. Each Msg is as-
signed with an ID that uniquely identifies an input (Part I).
To track batched input events, the dirty bit system is aug-
mented with a message queue, which stores Msg metadata
of all input events that access the dirty bit after the previous
VSync. All messages in the queue get propagated when the
VSync signal arrives (Part II). When the browser receives
the frame ready signal, it iterates through all the messages
propagated with the signal and calculates the frame latency
of each input based on their unique ID (Part III).

6.4 Associating Frames with Events
The GreenWeb runtime operates on a per-frame basis. That
is, after an event is triggered the runtime predicts the ideal
ACMP configuration of each frame until all the frames asso-
ciated with the event are produced. Therefore, it is important
to determine all the frames associated with an event as all the
associated frames share the same QoS target of the event.

Intuitively, an event’s associated frames refer to all the
frames that are generated because of the event being trig-
gered. Associating frames with events must be performed
at runtime because frames are dynamically generated as an
event is being processed. It is difficult (and theoretically im-
possible) for the Web runtime to determine a priori the as-
sociated frames immediately after an event is triggered. The
GreenWeb runtime leverages an event’s QoS type informa-
tion to calculate its associated frames on-the-fly as follows.

If an event’s QoS type is “single,” there is only one frame
associated with the event, and that is the frame directly
produced by the triggering event. In this case, the associated
frame can be determined by simply following the frame
latency tracking algorithm as discussed in Sec. 6.3.

If an event’s QoS type is “continuous,” calculating its as-
sociated frames is equivalent to forming a transitive closure
of all the frames from the root event. Recall from Sec. 6.3
that a frame goes through a set of processing stages spread
across different processes and threads before it is generated.
The runtime starts from the root event and follows all the
inter-process messages (e.g., IPC::Message in Chrome)
and inter-thread messages (e.g., PostTask in Chrome)
generated by the root event. The runtime adds all the frames
reacheable from the root event until no message is gener-
ated, at which time all the associated frames are found. The
found frames get the same QoS target of the event, based on
which the runtime predicts the ACMP configuration.

7. Evaluation
We first introduce our experimental setup (Sec. 7.1). We then
use a set of microbenchmarks to understand the effectiveness
of GreenWeb on invididual events that have different QoS
characteristics (Sec. 7.2). We present results on full interac-
tions consisting of a sequence of events in the end (Sec. 7.3).

7.1 Experimental Setup
Software Infrastructure We implement GreenWeb and its
runtime system in Google’s open-source Chromium browser
engine, which is used directly in the Chrome browser and
is the core of many other popular browsers, such as Opera
and Android’s default browser. Our implementation is based
on Chromium version 48.0.2549.0, which is the most recent
version at the time of our work. The modified Chromium
runs on unmodified Android version 4.2.2.

Hardware Platform We use the ODroid XU+E devel-
opment board [24], which contains an Exynos 5410 SoC that
is known for powering the Samsung Galaxy S4. The Exynos
5410 SoC contains a representative ACMP architecture com-
prising an energy-hungry high-performance (big) core clus-
ter and an energy-conserving low-performance (little) core
cluster. The big and little clusters can be individually dis-
abled and enabled. The big cores are ARM Cortex-A15 pro-
cessors that operate between 800 MHz and 1.8 GHz at a
100 MHz granularity. The little cores are ARM Cortex-A7
processors that operate between 350 MHz and 600 MHz at a
50 MHz granularity. The frequency switching and core mi-
gration overhead is 100 µs and 20 µs, respectively [71, 73].

Energy Measurement GreenWeb focuses on the pro-
cessor power consumption because the processor power has
been steadily increasing and has gradually become the most
significant power consumer in a mobile device compared to
other components such as the screen and radio [48].

We measure the processor power and energy consump-



tion on real hardware as follows. The ODroid XU+E devel-
opment board has built-in current sense resistors (10 m⌦) for
both the big and little cores. We use a National Instrument
DAQ Unit X-series 6366 to collect voltage measurements
at these sense resistors for the big and small CPU clusters
at a rate of 1,000 samples per second, and thereby derive
the power consumption. Energy consumption is computed
by multiplying power with real execution time (not the esti-
mated time from the timing prediction model).

Application Selection Table 3 shows the applications
we use for evaluation. We crawl them using HTTrack [19]
and host them on our Web server to enable annotations
(discussed later). We acknowledge that the network condi-
tion could be slightly better when accessing a local server.
However, we believe it has minimal impact because many
prior work has shown that computation dominates the per-
formance and energy consumption for today’s mobile Web
applications [51, 72, 73]. Overall, these applications cover
a wide range of domains such as news, utility, etc., and are
mostly among the top 200 websites as ranked by Alexa [2].

Baseline We compare GreenWeb with two baselines:
• Perf is the policy that always runs the system at the peak

performance, i.e., highest frequency in the big core in our
setup. It is the standard policy for interactive applications
to guarantee the best user QoS experience.

• Interactive is Android’s default interactive CPU
governor designed specifically for interactive usages. It
maximizes performance when the CPU recovers from
the idle state, and then dynamically changes CPU per-
formance as CPU utilization varies [3].

Usage Scenarios Real-world user study over one year
span from the LiveLab project [66] shows that mobile users
often have to interact with devices under different battery
conditions. Therefore, we evaluate GreenWeb under two pri-
mary usage scenarios based on battery status:
• “Imperceptible” represents scenarios in which the bat-

tery budget is abundant, and users expect high QoS ex-
perience. It corresponds to the imperceptible QoS expe-
rience discussed in Sec. 3.3. The imperceptible perfor-
mance threshold T

I

is used as the QoS target.
• “Usable” represents scenarios in which the battery budget

is tight and users could tolerate lower performance. It
corresponds to the usable QoS experience. The usable
performance threshold T

U

is used as the QoS target.
It is worth noting that Perf and Interactive behave the

same independently of the usage scenario. GreenWeb un-
der these two scenarios is denoted by GreenWeb-I and
GreenWeb-U, respectively, in the rest of the evaluation.

Reproducibility We repeat every experiment that we
study 3 times. Unless otherwise mentioned, the results we
report are the median of all runs. We find the run-to-run vari-
ations are usually about 5%, and do not affect our conclu-
sions. We use Mosaic [47], a UI-level record and replay tool,

Table 3: List of applications. “Time” indicates full interaction du-
ration. “Annotation” indicates percentage of events that are anno-
tated. “Events” indicates the amount of events triggered during full
interaction. Note: we only annotate and count events that are di-
rectly triggered by mobile user interactions as discussed in Sec. 3.1.
Applications marked with * are manually annotated because they
are developed using libraries that AUTOGREEN does not currently
support. Their annotation percentage numbers are estimated.

Micro-benchmarking Full Interaction
Application Interaction QoS Type QoS Target Time Events Annotation

BBC Loading Single (1, 10) s 0:86 60 20%⇤

Google Loading Single (1, 10) s 0:31 26 87.5%
CamanJS Tapping Single (1, 10) s 0:49 24 100%
LZMA-JS Tapping Single (1, 10) s 0:53 39 100%
MSN Tapping Single (100, 300) ms 0:59 126 51.2%
Todo Tapping Single (100, 300) ms 0:26 26 38.3%
Amazon Moving Continuous (16.6, 33.3) ms 0:36 101 33%⇤

Craigslist Moving Continuous (16.6, 33.3) ms 0:25 22 84.6%
Paper.js Moving Continuous (16.6, 33.3) ms 0:16 560 100%
Cnet Tapping Continuous (16.6, 33.3) ms 0:46 60 55.3%
Goo.ne.jp Tapping Continuous (16.6, 33.3) ms 0:16 23 51.8%
W3Schools Tapping Continuous (16.6, 33.3) ms 0:64 59 100%

to ensure consistent user interaction and to reduce human-
induced noise across different runs on the same application.

7.2 Microbenchmarking Results
To understand the effectiveness of GreenWeb on individual
events, we design a set of microbenchmarking experiments.
The goal is to exercise GreenWeb on various events that dif-
fer in interaction types (LTM), QoS type, and QoS target.
To better understand the behavior of GreenWeb during mi-
crobenchmarking, we compare it only against Perf, which
always has the highest energy and lowest QoS violation.

We construct the microbenchmark set by pairing each ap-
plication with one of the three primitive interactions (Load-
ing, Tapping, Moving). For each interaction, we manually
apply GreenWeb annotations. The QoS type and QoS tar-
get are determined by the authors visually observing the
effect of each interaction. The “Micro-benchmarking” cat-
egory in Table 3 shows details about each microbenchmark.
Half of the interactions have a QoS type of “single”, and
the other half have a QoS type of “continuous.” Overall, our
microbenchmarks cover user events that have different com-
binations of interaction types, QoS types and QoS targets.

Energy Savings Fig. 9a shows the energy consumption
of GreenWeb under both the imperceptible (GreenWeb-I)
and the usable (GreenWeb-U) usage scenarios. The results
are normalized to Perf. For the diverse set of interactions in
our microbenchmark, GreenWeb achieves an average 31.9%
and 78.0% energy saving under the two usage scenarios,
respectively. Overall, the energy savings under the usable
mode are higher than in the imperceptible mode because
the usable QoS target is lower, which allows GreenWeb to
leverage low energy ACMP configurations more often.
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Fig. 9: Microbenchmarking results. Energy numbers are normalized to Perf, which provides the best QoS and consumes the most energy.
QoS violations are presented as additional violations on top of Perf. GreenWeb-I and GreenWeb-U are GreenWeb under two usage scenarios.
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(b) QoS violation comparison under
the imperceptible usage scenario.
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(c) QoS violation comparison under
the usable usage scenario.

Fig. 10: Full interaction results. Energy savings are normalized to Perf. QoS violations are presented as additional violations on top of Perf.

The greatest energy savings in the imperceptible mode
come from events in the application Todo, CamanJS, and
LZMA-JS. All three events have a “single” QoS type, but
with different QoS targets (100 ms and 1 s). The frame com-
plexity of the three events is low relative to their QoS tar-
get such that GreenWeb can meet the QoS target using only
little core configurations. Perf wastes energy by constantly
using the big core with peak frequency. This suggests that
GreenWeb can adapt to events with different QoS targets.

For all events whose QoS type is “continuous,” we see
a large difference in energy savings between the imper-
ceptible and usable scenarios. This suggests that in gen-
eral GreenWeb must spend a substantial amount of time on
the big core in order to meet the imperceptible QoS target
(16.6 ms), but it can use little core configurations most of
the time to meet the usable QoS target (33.3 ms).

QoS Violation QoS violation is defined as the percent-
age by which a frame latency exceeds the QoS target. For
example, a frame latency of 200 ms leads to an 100% QoS
violation under a 100 ms QoS target. For events with a “con-
tinuous” QoS type, we report the geometric mean of all asso-
ciated frames. It is worth noting that although Perf behaves
the same under the two usage scenarios, its QoS violations
are different because the QoS targets are different.

Fig. 9b shows the QoS violation of GreenWeb on top
of Perf. On average, GreenWeb introduces 1.3% and 1.2%
more QoS violations than Perf under the imperceptible and
usable usage scenario, respectively. In the imperceptible

mode, three application events (MSN, LZMA-JS and BBC)
whose QoS type is “single” have relatively high QoS vio-
lations. The high QoS violation is primarily introduced by
GreenWeb’s profiling runs to construct the predictive mod-
els (see Sec. 6.2). For example, MSN’s interaction requires
peak performance to minimize QoS violations. GreenWeb
takes two profiling runs, one of which is using the minimum
frequency, to adapt to the peak performance. The minimal
frequency run causes significant QoS violations. In contrast,
events that have a “continuous” QoS type trigger a large
amount of frames. Therefore, the profiling overhead is ef-
fectively amortized, and their QoS violations are negligible.

Some events that have a “continuous” QoS type have rela-
tively high QoS violations under the usable mode. Outstand-
ing examples are W3School and Cnet. Our analysis shows
that most of the QoS violations come from frame complex-
ity surges in a continuous frame sequence. GreenWeb ag-
gressively scales down performance when the QoS target is
low, and did not always react to the sudden frame complexity
increase quickly. This suggests that the GreenWeb runtime
could be better enhanced to capture the pattern of frame fluc-
tuation in an event, potentially through offline profiling [57].

7.3 Full Interaction Evaluation
In this section, we perform a sequence of interactions on
each application, and evaluate the end-to-end behavior of
GreenWeb. Each sequence consists of a mix of LTM interac-
tions and contains events with different QoS types and QoS
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(a) Architecture configuration distribution for GreenWeb-I.
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(b) Architecture configuration distribution for GreenWeb-U.

Fig. 11: The architecture configuration distribution under the “imperceptible” (GreenWeb-I) and “usable” (GreenWeb-U) usage scenario.

targets. The “Full Interaction” category in Table 3 shows the
details of each interaction. On average, each interaction se-
quence triggers about 94 events and lasts about 43 s.

We acknowledge that there are alternative ways to in-
teract with each application. Thoroughly evaluating all the
representative interactions with each application involves a
large user study and is beyond the scope of this paper. How-
ever, we did perform our due diligence to make sure that the
chosen interaction for each application is representative.

Annotation Effort To annotate applications for full in-
teraction evaluation, we use a combination of AUTOGREEN
and manual annotation. We use AUTOGREEN because of
the large amount of events in each application. Automatic
annotation greatly improves productivity. However, AUTO-
GREEN does not always annotate QoS targets correctly be-
cause it conservatively assumes short response latency for
events with a “single” QoS type (see Sec. 5). Therefore, we
manually correct the QoS target for events that should have a
long response latency. The “Annotation” column in Table 3
shows that in the end we annotate over 50% of all events in
most applications. Unannotated events are not directly trig-
gered by mobile user interactions and therefore are not the
optimization target of GreenWeb, as discussed in Sec. 3.1.

Overall, it took authors about 5 ⇠10 minutes to annotate
each application with the combined manual and automatic
approach. While we are not familiar with each application’s
codebase, the annotation is not a labor-intensive process. We
expect the overhead to be even lower for experienced devel-
opers who are more familiar with their own applications.

Energy Savings Fig. 10a shows the energy consumption
of Interactive and GreenWeb’s two usage scenarios. The
results are normalized to Perf, and sorted in the ascending
order of GreenWeb-I. As compared to Interactive, GreenWeb
achieves on average 29.2% and 66.0% energy saving under
the imperceptible and usable usage scenarios, respectively.

Interactive consumes energy close to Perf across all ap-
plications, indicating that the Android Interactive gov-
ernor is almost always operating at the peak performance.
This is because user interactions, especially events with a
“continuous” QoS type, typically generate a large volume
of frames, which leads to high CPU utilization. Interactive
responds to the high CPU utilization by increasing CPU per-
formance. With the QoS knowledge provided by developers,
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Fig. 12: Execution configuration switching frequency under
GreenWeb-I and GreenWeb-U. Two configuration switching types
exist: CPU frequency switch (solid) and core migrations (stripe).

however, GreenWeb can identify execution configurations
that conserve energy while still meeting QoS requirements.

Architecture Configuration Distribution To better
understand the sources of energy savings of GreenWeb,
we examine the architecture configuration distribution of
GreenWeb under the imperceptible and usable usage sce-
nario shown in Fig. 11a and Fig. 11b, respectively. Bars with
darker colors indicate higher performance configurations.

We make two notable observations from the distribution
results. First, GreenWeb tends to bias toward big core (A15)
configurations much more often under the imperceptible sce-
nario (Fig. 11a) than under the usable scenario (Fig. 11b).
This observation confirms the result that GreenWeb-I has
less energy saving than GreenWeb-U. Second, the fact the
GreenWeb dynamically changes its execution configuration
under different QoS targets indicates that the GreenWeb
can adapt to different user QoS expectations while sav-
ing energy. In contrast, Interactive always adopts the same
scheduling policy independent of the user QoS expectation,
leading to energy waste. This observation indicates that an
ACMP architecture is beneficial in mobile Web, but the bur-
den is on the runtime system to intelligently leverage it.

Configuration Switching Frequency Complementary
to the distribution of architecture configuration, Fig. 12
shows the switching frequency of architecture configura-
tion in GreenWeb-I and GreenWeb-U. We decompose the
configuration switching into two categories: CPU frequency
change and core migration (between big and little clusters).
Thus, Fig. 12 is shown as a stacked bar plot where the fre-
quencies of both categories are stacked for each application.



We draw three conclusions from the switching frequency
statistics. First, GreenWeb introduces only modest configu-
ration switching (20% on average). Recall from Sec. 7.1 that
the CPU frequency switching and core migration incur over-
head only to the order of µs, much smaller than the QoS
target which is typically to the order of ms. Therefore, the
execution configuration has minimal performance impact.

Second, for most of applications GreenWeb-I incurs more
switchings than GreenWeb-U. This is unsurprising because
as compared to GreenWeb-U, GreenWeb-I optimizes for a
tighter QoS target, which is more sensitive to frame (phase)
variance and more vulnerable to frame performance mis-
prediction. In contrast, a more relaxed QoS target is more
robust against frame variance. Our results suggest that a bet-
ter frame performance predictor such as the profiling-guided
prediction [57] would be helpful in reducing the execution
configuration switching in the imperceptible mode.

Third, the CPU frequency change dwarfs core migra-
tions and dominates the configuration switching. Thus, fast
DVFS is desired. Our results suggest that a fast on-chip volt-
age regulator that is increasingly prevalent in server proces-
sors [37, 53] is also beneficial in mobile CPUs.

QoS Violation Fig. 10b and Fig. 10c show the QoS vio-
lation of Interactive and GreenWeb under the imperceptible
and usable scenarios, respectively. On average, GreenWeb
introduces 0.8% and 0.6% more QoS violations than Perf
under the imperceptible and usable scenarios, respectively.
The QoS violations are lower than in the microbenchmarks
because the interaction duration gets longer and the QoS vi-
olations caused by profiling runs are amortized.

Compared to Interactive, GreenWeb has similar, in some
cases fewer, QoS violations. Considering the significant en-
ergy savings, we conclude that the QoS-aware GreenWeb
system can use energy more wisely by being aware of user
QoS expectations. Overall, GreenWeb achieves better energy
efficiency than the QoS-agnostic Interactive scheme.

8. Discussion
Manual Annotation vs. Runtime Mechanism As an al-
ternative to receiving QoS annotations from developers, the
Web runtime could try to detect QoS information at runtime
without language hints. One strategy is to implement the ex-
act logic of AUTOGREEN within the Web runtime. There are
three major drawbacks of such a runtime-based approach.

First, implementing the QoS detection at runtime is not
scalable. For example, whenever the Web standard intro-
duces a new method of implementing animation (i.e., “con-
tinuous” QoS type) the browser runtime has to be extended
to support it. In contrast, with developers directly specifying
the QoS type the runtime can confidently optimize for the
“continuous” QoS type without having to know how an ani-
mation is implemented. Second, a pure runtime strategy can-
not precisely detect the QoS target information of an event
for exactly the same reason that AUTOGREEN cannot pre-

cisely detect QoS target. Third, detecting QoS at runtime
also introduces runtime performance and energy overhead
that could potentially offset the energy saving benefits.

Effectiveness in a Multi-application Environment The
ACMP-based GreenWeb runtime implementation presented
in this paper assumes that all CPU resources in a SoC are
available to the foreground Web application during schedul-
ing. We believe that this ACMP-based runtime design is
also applicable when multiple mobile applications are con-
currently consuming CPU resources. The reason is two-fold.

First, today’s ACMP systems have ample CPU resources,
e.g., four big and four small cores in the Exynos 5410 SoC
with each core cluster having DVFS capability. If there is
a background application occupying some CPU resources,
the GreenWeb runtime system will still have a large trade-
off space to schedule, although with fewer resources. Sec-
ond, today’s mobile SoCs are on the verge of supporting
fine-grained power management techniques such as per-
core DVFS using integrated voltage regulators (IVRs) [53].
Therefore, the scheduling space will become larger to further
accommodate concurrent applications in the near future.

Defense Against Mis-annotation One potential vul-
nerability of exposing GreenWeb hints to developers is that
developers might place hints that lead to inefficient system
decisions. For example, a developer could set every event’s
QoS target to an extremely low value, which causes the Web
runtime always to operate at the highest performance with
maximal energy consumption. Such a mis-annotation could
be introduced either inadvertently as a program energy bug
or intentionally as an adversarial attack.

The notion of user-agent intervention (UAI) [32] in the
Web community can be used to defend against such an is-
sue. In short, UAI contends that a Web platform should cor-
rect application behaviors that are deemed harmful or un-
desired. Most of today’s Web runtime systems have already
implemented plenty of UAI policies such as blocking ma-
licious third-party scripts or re-prioritizing resource loading
order under latency/bandwidth constraints. Similarly, a Web
runtime could adopt a GreenWeb-specific UAI policy. One
candidate is to specify an energy budget of any Web appli-
cation and ignores overly aggressive GreenWeb annotations
once the energy budget is consumed. We leave it as future
work to define, express, and implement such a UAI policy.

Composability of QoS Abstractions Although the QoS
type and QoS target abstractions are sufficient for express-
ing predominant QoS specifications on today’s mobile de-
vices, in the long term we will see new user interaction forms
(e.g., using visible light [55]) and new ways that users assess
QoS experience. Therefore, it is important to design “prim-
itive” QoS abstractions, based on which complex, higher-
level QoS abstractions can be easily composed.

The composability of QoS abstractions is critical because
enumerating every single possible kind of QoS experience in
a Web programming model is not scalable. Instead, the Web



programming model should ideally provide a QoS primitive
library that lets developers construct different QoS speci-
fications in a completely customized way. To achieve this
goal will likely involve extensively surveying future human-
computer interaction forms and new QoS specifications. We
leave it for the next phase of research.

9. Related Work
Language Support for Web Performance The Web com-
munity has a long tradition of providing language extensions
that allow developers to specify “hints” for browsers. The fo-
cus, however, has been primarily on performance optimiza-
tions. GreenWeb, to the best of our knowledge, is the first
Web language extension that specifically targets energy.

The most classical example of a performance hint is link
prefetch [46], which lets Web developers use an HTML tag
to specify that a particular link will likely be fetched shortly.
With such information, a Web browser could prefetch the
link when there are no on-demand network requests. An-
other example is the CSS willChange property [13],
which hints browsers about what visual changes to ex-
pect from an element so that the browser could perform
a computationally intensive task ahead of time. Similar to
willChange, GreenWeb introduces a new CSS property
onevent-qos, which allows providing QoS-related hints.

Energy Optimizations in Mobile Systems There have
been a few proposals on specific runtime systems that make
trade-off between user QoS and energy for mobile (Web)
applications. Zhu et al. leverage ACMP to improve the en-
ergy efficiency of webpage loading without violating cut-
off deadlines [73]. Event-based scheduling (EBS) trades off
event execution latency with energy consumption in mobile
Web applications [71]. Nachiappan et al. proposed to coor-
dinate different SoC components to improve the energy effi-
ciency of animation-based mobile applications [59, 60].

GreenWeb fundamentally differs from these prior pro-
posals because GreenWeb is not a particular runtime im-
plementation; rather it is a language extension design that
enables general QoS and energy trade-offs without posing
constraints on specific runtime implementations. GreenWeb
allows developers to express critical user QoS information,
and it is up to the runtime designers to decide how to best
deliver QoS in an energy-efficient manner.

In addition, with the programmer-assisted QoS hints from
GreenWeb previous Web runtimes can be better guided to
make a calculated trade-off between user QoS and energy.
For example, without QoS annotations EBS relies on run-
time measurement of event latency as a proxy for user QoS
expectations. If an event takes a long time to execute, EBS
“guesses” that it is an event for which users could naturally
tolerate a long latency and, thus, decides to reduce CPU fre-
quency. However, the measured latency is merely an artifact
of a particular mobile system’s capability such as its CPU
performance. GreenWeb annotations express inherent user

expectations and thus provide definitive QoS constraints.
Recent proposals on microarchitecture support for im-

proving the efficiency of event-driven Web applications at
the hardware level, such as ESP [41], EFetch [40], and We-
bCore [74], are complementary to our language-level work.

Another body of energy-related research focuses on diag-
nosing energy bugs and hogs in mobile applications. These
techniques either completely kill an energy-hungry applica-
tion [62] or require developers to improve manually the en-
ergy efficiency [49, 56, 63]. GreenWeb eases developers’ ef-
fort by automatically optimizing for energy efficiency.

Language Support for Energy Efficiency Language
support for energy efficiency has recently become a ma-
jor research thrust. Most work targets sensor-based applica-
tions and approximate computing whereas GreenWeb, to the
best of our knowledge, is the first to focus on Web applica-
tions. In addition, most previously proposed language sys-
tems require developers to annotate applications manually.
We show that GreenWeb annotations can be automatically
applied without programmer intervention. We now compare
GreenWeb with prior language proposals in greater detail.

Eon [67] provides language constructs that let develop-
ers express alternative program control flow paths and asso-
ciate energy states with control flows, based on which the
runtime selects control flow paths that are suitable given the
device energy level. Green [36] provides APIs that let devel-
opers specify multiple approximate versions of a function
and QoS loss constraints, which guide the runtime to save
energy without violating QoS. Both proposals rely on devel-
opers supplying alternative implementations, which is an op-
timization not immediately applicable to Web applications.
In the future, however, it would be interesting to evaluate
such an optimization strategy in the Web domain.

Energy Types [43] and EnerJ [65] take the language sup-
port for energy-efficiency a step further by designing gen-
eral type systems. Both work ensures sound and safe en-
ergy optimizations by enforcing static type checking. Both
type systems target imperative programming, and therefore
are not immediately applicable to Web programming which
is inherently declarative. In the future, however, it would be
interesting to study how to decorate DOM elements with dif-
ferent type qualifiers to guide the energy optimizations.

LAB [52] identifies latency, accuracy, and battery as
fundamental abstractions for improving energy efficiency
in sensor-based applications. Similarly, GreenWeb identi-
fies the QoS type and QoS target abstractions for enabling
energy-efficient Web applications.

10. Conclusion
As a promising first step, our work demonstrates language
innovations to enable energy-efficient Web computing. The
proposed GreenWeb language extensions effectively inte-
grate application developers into the energy optimization
loop by empowering them to express user QoS expectations



at an abstract level. With such developer-assisted “hints,” the
runtime can achieve significant energy savings.

GreenWeb language extensions do not pose constraints on
specific runtime implementations. Instead, GreenWeb pro-
vides a general way of making trade-offs between QoS and
energy consumption. In this paper, we demonstrate one par-
ticular implementation that leverages the big/little ACMP ar-
chitecture. It is also feasible to build a runtime leveraging
only a single big (or little) core capable of DVFS [35, 57].
In addition, one could implement a GreenWeb runtime us-
ing pure software-level techniques or leveraging SoC-level
knowledge. Having said this, the ACMP architecture is al-
ready widely adopted in today’s mobile SoCs shipped by
major vendors such as Samsung and Qualcomm [16]. We
expect our GreenWeb implementation to be readily applica-
ble on commodity mobile hardware.
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