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......Recent advances in cognitive

computing have brought widespread

excitement for various machine lear-

ning–based intelligent services, ranging

from autonomous vehicles to smart traf-

fic-light systems. To push such cognitive

services closer to reality, recent research

has focused extensively on improving

the performance, energy efficiency, pri-

vacy, and security of cognitive comput-

ing platforms.

Among all the issues, a rapidly rising

and critical challenge to address is the

practice of safe cognitive computing—

that is, how to architect machine lear-

ning–based systems to be robust against

uncertainty and failure to guarantee that

they perform as intended without causing

harmful behavior. Addressing the safety

issue will involve close collaboration

among different computing communities,

and we believe computer architects must

play a key role. In this position paper, we

first discuss the meaning of safety and

the severe implications of the safety issue

in cognitive computing. We then provide

a framework to reason about safety, and

we outline several opportunities for the

architecture community to help make

cognitive computing safer.

Safety in Cognitive
Computing Systems
Safety in cognitive computing is inher-

ently associated with the accuracy issue

in machine learning. Just as with any sys-

tem-level behavior, accuracy can be clas-

sified into two categories: average-case

and worst-case accuracy. The latter

determines a cognitive computing sys-

tem’s safety. Improving the worst-case

accuracy, however, is hard due to the

lack of interpretability in machine learn-

ing. Machine learning algorithms are

inherently stochastic approximations of

the ground truth.

Meaning of Safety
Most machine learning systems today

focus on the average-case accuracy. In

mature machine learning–based applica-

tion domains, such as image classifica-

tion, the average accuracy of well-trained

machine learning models could be 99

percent. However, just as datacenter

systems suffer from the long-tail latency

issue,1 machine learning systems suffer

from tail accuracy, in which a few

requests exhibit poor accuracy due to

uncertainties in the machine learning

models, and form a long accuracy tail dis-

tribution that is hard to curtail.

Tail accuracy leads to poor worst-case

accuracy guarantees. In mission-critical

systems, worst-case accuracy is known

to raise serious safety concerns. For

example, the autopilot system in a self-

driving car might be working ideally for

millions of miles, but it only takes one life-

threatening incident to cause significant

distrust in such autonomous systems.2

Worst-Case Accuracy
The issue of tolerating worst-case accu-

racy is not unique to the cognitive

computing domain. For instance, in the

aviation industry, engineers constantly

address the issue of safety. But there is

a notable difference between cognitive

systems and today’s prevalent aviation

systems that make it fundamentally hard

to guarantee safety in cognitive comput-

ing—that is, the system interpretability.

System interpretability means the

ability to rationalize and identify the root

cause of a system failure. From time to

time, the aviation industry suffers from

mid-air tragedies, but for every such trag-

edy, investigators can understand what

exactly went wrong, how to fix it, and,

most importantly, how to prevent such

incidents from happening again in the

future. This is because flight control is

based on interpretable control theory,

physics, and aerodynamics. For exam-

ple, in the case of Air France Flight 447,
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investigators were able to accurately

attribute the crash to an aerodynamic

stall, which was then attributed to the

mishandling of the pitot tubes being

obstructed by ice crystals. The whole

accident was a pivot point for the civil avi-

ation industry, leading to an overhaul of

how measurement devices are installed

and how pilots are trained to handle

instrument anomalies.3

In contrast, the same ability to find an

incident’s root cause and learn from it

cannot be said for cognitive systems

because, at least at present, we lack a

deep understanding of how and why

machine learning model works in the first

place. The lack of system interpretability

will only worsen as we begin to compose

many such systems together, effectively

increasing the system’s opaqueness. If

we cannot explain how each component

works, we cannot attribute the root

cause of a whole system failure to a par-

ticular component. For example, it is

unclear how we would improve a self-

driving car—a multicomponent system

involving several decision-making

stages—to prevent even the same inci-

dent that led to a particular crash from

recurring.

Bridging the Safety Gap
Safety in cognitive computing systems is

a multidisciplinary problem. However,

computer architects are no strangers to

building safe systems. We commonly

refer to it as “reliability.” For decades, the

computer architecture community has

managed to build highly resilient and fault-

tolerant architectures. For instance, we

guardband, or allocate a large operating

margin, to tolerate process, thermal, and

voltage variations.4 We have also estab-

lished fundamental redundancy-based

techniques, such as triple module redun-

dancy (TMR) and instruction duplication,

to detect and recover from errors.5

Resilient architectures and safe cog-

nitive systems share a similar goal: guar-

anteeing expected system behaviors in

the event of a failure. Therefore, archi-

tects have the unique opportunities to

transfer the experience of building resil-

ient architectures to building safe cogni-

tive computing architectures, and to

design new solutions to overcome new

safety challenges. To that end, we intro-

duce the notion of the safety gap—a

framework for computer architects to

reason about the safety issue in cogni-

tive computing.

The Safety Gap
A cognitive system’s safety gap refers

to the gap between the worst-case

accuracy guarantee that an oracle sys-

tem demands and the actual accuracy

that a particular implementation pro-

vides. The safety gap is the composition

of two gaps: learning and execution

(see Figure 1).

The learning gap refers to the gap

between the oracle and the best-trained

machine learning model. The learning gap

exists because even the best machine

learning model is likely not a perfect rep-

resentation of the objective reality, and

thus introduces error in certain scenarios.

For instance, an image classifier mistak-

enly recognizing a cat in an image as a

dog is the result of the learning gap. The

learning gap is typically introduced during

the model training stage.

Using reliability lingo, errors intro-

duced by the learning gap can be

regarded as a form of permanent (as

opposed to transient) faults caused by

design bugs. Therefore, they are not

amenable to traditional backward error-

recovery techniques (such as check-

pointing), nor to forward error-recovery

techniques (such as TMR or execution

duplication6).

The execution gap, on the other hand,

is introduced during the model execution

(inference) stage. The execution gap is

introduced in two forms. First, to improve

the performance and energy efficiency of

model inference, hardware architects

often build specialized accelerators that

rely on various optimizations, such as

weight compression, data quantization,

and static RAM fault injection.7,8 These

optimizations are unsafe because they

intentionally trade off accuracy with exe-

cution efficiency. Second, model execu-

tion could also suffer from traditional

reliability emergencies, such as memory

failures, circuit defects, and real-time vio-

lations.9,15 Overall, hardware execution

introduces additional sources of error,

exacerbating the worst-case accuracy.

To improve the safety of cognitive

computing, computer architects should

have two objectives. First, we must

ensure that in building hardware acceler-

ators, we do not introduce an execution

gap, while still providing the performance

and energy benefits of hardware special-

ization. Second, we must provide

vehicles that help improve model learn-

ing accuracy and thereby minimize the

learning gap.

To that end, we discuss a few poten-

tial directions under both objectives to

foster research in this emerging and

important topic. Broadly, our suggestions

involve tools, architecture-level design,

and principles that dictate accountable

system operation.

Oracle model

Best-trained machine
learning model 

Hardware-
accelerated machine

learning model

Learning
gap 

Execution
gap 

The safety gap

Figure 1. The safety gap in cognitive

computing.
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Avoiding the Execution Gap
We must build systems that provide the

performance and energy benefits of

hardware specializations with a minimal

execution gap.

Define safety semantics. In fault-toler-

ant systems, failure semantics are well-

established.11 Failure semantics dictate

how a system degrades gracefully and in

what expected manner if a failure occurs.

We need to define a similar set of safety

semantics at the architecture layer for

systems containing machine learning

accelerators. The semantics need to

specify which safety violations are toler-

able and intolerable, and how the system

degrades during a failure.

Build a safe whole out of less-safe parts.
Although one accelerator might intro-

duce the execution gap, an ensemble of

them might not.12 One promising

approach is to build a cluster of accelera-

tors in which some implement simple

models that are interpretable but provide

less average-case accuracy (for example,

linear regression, decision tree), while

others implement complex models that

are difficult to interpret but more accu-

rate on average (such as neural net-

works). Such a system improves the

worst-case accuracy by routing requests

to the simple models when they can be

interpreted as safe on simple models.

Combine control theory with machine
learning. It is promising to leverage

machine learning to take care of average-

case accuracy while relying on control

theory principles for worst-case accu-

racy.13 Computer architects have already

started using control theory to optimize

various architectural metrics, such as

performance and power.14 Accuracy is a

natural next step.

Minimizing the Learning Gap
We must investigate systems and archi-

tectural support that helps reduce the

learning gap.

Codesign machine learning algorithms
with hardware. The acceleration of

machine learning algorithms would let

algorithm designers quickly iterate ideas

and speed up the process of closing the

learning gap. The key is to codesign the

algorithm and the hardware. Although

most architecture research so far has pri-

marily focused on convolutional neural

networks (CNN), more focus should be

dedicated to understanding state-of-the-

art algorithms and learning techniques

beyond just CNNs.15

Profiling and debugging support. In

aviation systems, the flight data recorder

and cockpit voice recorder are critical in

assisting investigators to pinpoint the

root cause of an air crash. Similarly, we

need to provide extensive profiling and

debugging support to help system

designers understand instances where

the cognitive system does not perform

as we expect. We will make tradeoffs

between instrumentality and intrusive-

ness—that is, to balance between the

ability to collect as much relevant infor-

mation as we want and the amount of

perturbation introduced.

Hardware support for formal methods.
Formal methods will be ever-important in

providing safety guarantees in cognitive

computing. Hardware support is neces-

sary to enable practical formal verifica-

tion on large-scale machine learning

systems. The key is to realize that

machine learning is an application

domain that relies heavily on linear alge-

bra, and thus it is possible to specialize

the hardware support for formal verifica-

tion to maximize efficiency.

C ognitive computing is redefin-

ing how we perceive and inter-

act with the world. As engineers who

build systems, the responsibility

rests on us to design systems that

enable safe and robust cognitive

computing from the bottom up,

thereby pushing cognitive systems

one step closer toward widespread

usage. We hope that the perspec-

tives we have shared here will raise

the awareness of cognitive comput-

ing safety in the architecture com-

munity and foster meaningful

discussions that lead to new

research in building safe cognitive

computing. MICRO
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The Design and Evolution of Deep
Learning Workloads
ROBERT ADOLF
SAKETH RAMA
BRANDON REAGEN
GU-YEON WEI
DAVID BROOKS
Harvard University

......The past decade has witnessed

the reemergence of a connectionist

approach to solving several classes of

challenging artificial intelligence prob-

lems. This family of strategies is collec-

tively known as representation learning,

hierarchical learning, or, most popularly,

deep learning. The success of deep

learning, like many facets of cognitive

computing, is the result of a confluence

of progress in three separate areas,

rather than a single, monumental break-

through. These three areas include the

collection and curation of massive data-

sets, advances in machine learning algo-

rithms, and the ever-increasing power of

computational hardware. These three

phenomena form a virtuous cycle. Suc-

cess in one area facilitates growth in the

other two, along with increasing demand

for it. For instance, the landmark win of a

deep neural network at the ImageNet

Large Scale Visual Recognition Challenge

in 2012 was the result of a massive new

set of training data1 (two orders of mag-

nitude larger than its closest predeces-

sor), several clever novel modifications

to a many-layer convolutional neural net-

work,2 and use of high-performance

hardware (among the first to leverage

GPUs for deep learning).

That cognitive computing should be

characterized as much by data and hard-

ware as algorithms is not surprising: the

very definition involves learning by exam-

ple at scale. However, it does suggest

that carrying out research in this field is

perhaps unique, in that one cannot make

ample headway without considering all

three aspects. This multidimensional

constraint is felt keenly in the creation

and curation of representative workloads

for deep learning problems. Benchmarks

and proxy applications must strike a bal-

ance between simplicity and faithful

reproduction, accurately capturing all fun-

damental aspects of the programs they

represent while remaining easy to under-

stand, use, and transform. Doing this

across several axes is challenging, even

more so given the frenetic pace of inno-

vation and upheaval in the field. We

believe the right approach is first to

design workloads that capture the

unique aspects of deep learning models,

data, and implementations, and then to

embrace change and plan for continuous

evolution.

Design
Building good deep learning benchmarks

means getting three things right: choos-

ing the right models, respecting the

impact of data, and faithfully reproducing

unique implementation details. We
.................................................................
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present our case in the context of our

experience in designing Fathom, a set of

reference workloads for deep learning

(see Table 1).3

Models
The most visible decision for a workload

suite is the choice of which models to

include. In Fathom, we used three criteria

to select eight models from a wide array

of candidates: representativeness, diver-

sity, and impact. The first is clear: our

choices should reflect the best of what

the deep learning community has come

up with. Because there are many models

that could rightly claim this status, the

need to limit the size implies a need for

diversity; each model should bring some-

thing unique to the table. Finally,

“impact” reflects the degree to which a

particular technique has changed the

landscape of deep learning research. We

cannot predict the future of deep learning,

so we instead tried to choose methods

that have imparted fundamental lessons

to the work that came after—lessons that

will continue to be relevant even as sub-

sequent research builds on them.

Datasets
Data also plays a central role in machine

learning workloads, even for architects

and system designers. Although it is

true that some fundamental deep learn-

ing techniques (such as matrix math,

convolution, and backpropagation) are

somewhat agnostic to the values of

their inputs, the role of data is broader.

Many problem domains are heavily

affected by how their data is being

used. For instance, most supervised

learning problems have two different

operational modes: training, which

involves massive amounts of fixed data

and an emphasis on throughput, and

inference, which involves a stream of

unseen data and a lean towards latency.

The same model can exhibit different

computational characteristics depend-

ing on which environment it is used in.

Additionally, much of the research in

executing deep learning problems cen-

ters around exploiting features unique

to neural networks or a specific model

structure. Sparsity in weight values,

batchsize-convergence tradeoffs, and

the degree of downsampling in pooling

operations are just a few features that

depend heavily on the characteristics of

the inputs under consideration.

Implementation
Writing reference workloads involves a

balancing act between faithfully mim-

icking praxis while preserving ease of

use for researchers. One example of

this is the widespread adoption of high-

level programming frameworks such as

TensorFlow or Torch. These frame-

works provide two main benefits: they

abstract the underlying hardware inter-

face away from the programmer, and

they provide tested libraries of kernels

that act as a productivity multiplier.

They have changed the development

landscape, largely for the better, and it

is no longer possible to create a realistic

set of deep learning workloads without

taking them into account. All eight

Fathom models are written on top of

TensorFlow. On the other hand, no

such consensus has been reached on

the layout of learning models, the stag-

ing and preprocessing of data, or the

mechanisms that drive high-level con-

trol flow. It is common to see two

implementations of the same model

that are almost unrecognizable.

Because these choices are more a mat-

ter of taste than any fundamental prop-

erty of deep learning models, Fathom

imposed a standard structure and set of

interfaces over all its workloads. This

greatly simplified cross-model instru-

mentation, data collection, and experi-

mentation for its users.

Table 1. The Fathom workloads

Model Dataset Style Purpose and legacy

Seq2Seq WMT-15 Supervised, recurrent Direct language-to-language sentence translation. State-of-the-art

accuracy with a simple, language-agnostic architecture.

MemNet bAbI Supervised, memory network Facebook’s memory-oriented neural system. One of two novel

architectures that explore a topology beyond lattices of neurons.

Speech TIMIT Supervised, recurrent, full Baidu’s speech recognition engine. Proved purely deep-learned

networks can beat hand-tuned systems.

Autoenc MNIST Unsupervised, full Variational autoencoder. An efficient, generative model for feature learning.

Residual ImageNet Supervised, convolutional Image classifier from MSR Asia. Dramatically increased the depth of

convolutional networks. ILSVRC 2015 winner.

VGG ImageNet Supervised, convolutional, full Image classifier demonstrating the power of small convolutional filters.

ILSVRC 2014 winner.

AlexNet ImageNet Supervised, convolutional, full Image classifier. Watershed for deep learning by beating hand-tuned

image systems at ILSVRC 2012.

DeepQ Atari ALE Reinforcement, convolutional, full Atari-playing neural network from DeepMind. Super-human performance

on many Atari2600 games, without any preconceptions.
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EXPERT OPINION

.................................................................

6 IEEE MICRO



Evolution
Deep learning is a field in flux, and a work-

load suite designed for such an environ-

ment must have a plan for adapting.

Graceful evolution is an extension of good

design: the core principle is to understand

which aspects of a workload are intrinsic

and which are a product of the current

state of the art. For instance, although it’s

likely that the set of models included in

Fathom will change, their selection crite-

ria will not. One convenient way to under-

stand this idea is to look backwards at the

developments leading to the present—

that is, to understand what changes

Fathom would have had to weather had it

been released earlier.

Models
All but one of the current Fathom work-

loads were published since 2014, but

most have predecessors that would have

been replaced. For instance, DeepSpeech

was a breakthrough in pure deep learning

speech recognition, but many prior state-

of-the-art systems used a combination of

hidden Markov models and neural net-

works. The more interesting change

would have been the introduction of read-

write networks. Memory networks and

neural Turing machines both arrived in

2014, and while no work is built in a vac-

uum, it is unlikely Fathom would have had

something similar. The same is probably

true for reinforcement learning: the con-

cept has a long history, but it needed a

champion, DeepMind, to make it a core

theme in deep learning. Fathom would

probably have grown in size over the past

several years, in addition to needing to

replace its speech model. This is a trend

that is almost certain to continue. Even

now, it seems likely that additional advan-

ces in speech and language processing

will require both of Fathom’s recurrent

models to evolve, and new architectures

like binary-valued networks are on the

horizon.

Datasets
Surprisingly, most of Fathom’s current

datasets are relatively stable. ImageNet

has not seen radical changes since its

introduction, and MNIST and TIMIT have

long histories. The largest change would

have been the introduction of the Arcade

Learning Environment—the Atari emula-

tor used by Fathom’s DeepQ model.

Although ALE’s inputs are not substan-

tially different from older image datasets,

its use and integration are. Training and

inference with deep-Q learning is a sub-

stantially different beast because it

requires two-way, online communica-

tion. The underlying trend here is refresh-

ingly optimistic: datasets change

because deep learning is improving.

While ImageNet will probably remain in

Fathom, it seems likely that a new

source of visual data will augment it,

because recent models have surpassed

human performance. Additionally, it

seems likely that new datasets using

video, graphs, or mixed-mode inputs

could merit inclusion.

Implementation
Superficially, an older Fathom would

appear substantially different, because

TensorFlow was not made public until

late 2015. However, the use of high-level

frameworks has been a clear trend for

several years, so it is likely that Theano,

Caffe, or Torch would have been used

instead. All four frameworks share simi-

larity in their designs and interfaces. The

largest difference would have been the

effort required to implement some of the

models. Although today’s frameworks

are all converging on support for most of

the techniques Fathom uses, that was

not true three years ago. Many of the

primitives were implemented in only one

library, and most of the analysis tools

constructed to characterize the Fathom

workloads would have been substantially

more difficult. This is largely a result of

maturity. Modern deep learning frame-

works have larger user bases and more

developers, and most common opera-

tions are well-supported in all platforms.

Given this convergent evolution, it is

unlikely that Fathom will need to change

its implementation framework in the

future. On the other hand, Fathom is fac-

ing a clear need to adapt to another

trend: fixed-precision and packed arith-

metic. The use of non-floating-point

math and limited precision has been

known for decades, but most of the

work in deep learning has been focused

on improving accuracy, discovering new

models, and applying them to new prob-

lems. As deep learning applications are

deployed in mainstream scenarios, how-

ever, efficiency and speed have become

a central concern. Many frameworks

have introduced some form of packed

arithmetic, supported by vector instruc-

tions on CPUs and more recently by dou-

ble-speed, half-width operations on

GPUs. This trend is only increasing in

importance, and Fathom will need to

adopt some form of it to keep up.

D eep learning is a protean field,

and workloads for it must be liv-

ing projects. This is a challenge for

maintainers as well as researchers, but

it also reflects the success of the virtu-

ous cycle that drives it. Evolution

implies that all three facets—models,

data, and hardware—are still moving

forward in lockstep. Moreover, our

experience with Fathom suggests that

there are consistent principles under-

pinning the process that can guide the

requisite adaptation. We look forward

to the bright future of deep learning,

and we believe that accurate, practical,

and fluid workloads will continue to play

an important role in its progress. MICR O
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