
High-Performance and Energy-Efficient Mobile Web Browsing

on Big/Little Systems

Yuhao Zhu and Vijay Janapa Reddi

Department of Electrical and Computer Engineering
The University of Texas at Austin

yuhao.zhu@austin.utexas.edu, vj@ece.utexas.edu

Abstract

Internet web browsing has reached a critical tipping point.

Increasingly, users rely more on mobile web browsers to ac-

cess the Internet than desktop browsers. Meanwhile, webpages

over the past decade have grown in complexity by more than

tenfold. The fast penetration of mobile browsing and ever-

richer webpages implies a growing need for high-performance

mobile devices in the future to ensure continued end-user

browsing experience. Failing to deliver webpages meeting

hard cut-off constraints could directly translate to webpage

abandonment or, for e-commerce websites, great revenue loss.

However, mobile devices’ limited battery capacity limits the

degree of performance that mobile web browsing can achieve.

In this paper, we demonstrate the benefits of heterogeneous

systems with big/little cores each with different frequencies to

achieve the ideal trade-off between high performance and en-

ergy efficiency. Through detailed characterizations of different

webpage primitives based on the hottest 5,000 webpages, we

build statistical inference models that estimate webpage load

time and energy consumption. We show that leveraging such

predictive models lets us identify and schedule webpages us-

ing the ideal core and frequency configuration that minimizes

energy consumption while still meeting stringent cut-off con-

straints. Real hardware and software evaluations show that

our scheduling scheme achieves 83.0% energy savings, while

only violating the cut-off latency for 4.1% more webpages

as compared with a performance-oriented hardware strategy.

Against a more intelligent, OS-driven, dynamic voltage and

frequency scaling scheme, it achieves 8.6% energy savings

and 4.0% performance improvement simultaneously.

1. Introduction
Mobile web browsing is shifting the balance of Internet

traffic. Recent statistics indicate that users now spend 50.2% of
their time using the web browser [1], causing mobile Internet
traffic to surpass the amount of desktop Internet traffic in major
regions of the world [2]. The proliferation of mobile devices
and social networks is fueling this trend. Meanwhile, web
monetization (i.e., the average revenue per user) is still 5X
lower on mobile than desktop [1]. Media and advertisement
providers are harnessing this opportunity, and thus causing an
even-faster penetration of mobile web browsing.

Accompanying the critical mass of the mobile market is
the trend that webpages are becoming significantly more com-

plex and computationally intensive over the past decade. For
example, Fig. 1 shows the network transmission time and
content processing time for www.cnn.com over the past 11
years. We randomly pick one image from each year archived
by Internet Archive [3], and measure on a dual-core ARM
Cortex-A9 mobile processor connected to a 100Mb/s Ethernet.
The trend-line in the plot indicates a tenfold relative increase
in webpage computational intensity from the perspective of
compute versus network.

As the computational intensity of webpages increases, there
is growing concern over webpage loading time. A recent in-
vestigation concluded that users tend to abandon webpages
that do not load within a certain cut-off latency [4]. Related
statistics on e-commerce websites reveal that a 1-second delay
in webpage load could result in a $2.5 million loss in sales
per year [5]. The hard-constraint of cut-off latency implies a
need for high-performance mobile devices. However, energy
constraints limit us from achieving desktop-level compute
capability on mobile devices. Therefore, the challenge is to
ensure high performance while minimizing the energy con-
sumption. Owing to a large scheduling space, heterogeneous
systems with big/little cores each with DVFS capabilities en-
able a flexible trade-off between performance and energy.

In this paper, we demonstrate the benefits of big/little het-
erogeneous systems in achieving an ideal performance and
energy trade-off via scheduling. We harness the key insight
that different webpages contain strong variances in load time
and energy consumption. Leveraging this fact, we propose
webpage-aware scheduling, a mechanism that explores the
webpage variance and intelligently schedules webpages using
different core and frequency configurations for minimizing the
energy while still meeting the cut-off constraint.

Specifically, Fig. 2 shows the load time and energy con-
sumption of six hot webpages loaded on the Cortex-A9 at
1.2 GHz. We observe strong variances across the webpages.
For example, www.cnn.com takes approximately 6 seconds
to load while consuming 8.9 Joules of energy. In contrast,
www.craigslist.org takes less than 1 second to load
while consuming only 1.6 Joules of energy. Detailed charac-
terizations reveal that such variance is the result of inherent
variances of webpage primitives (e.g., HTML, CSS). Regres-
sion modeling techniques capture the inherent webpage vari-
ance, and let us estimate the webpage load time and energy
consumption under different core and frequency combinations.

1

4

3

2

1

0

Ti
m

e
(s

)

201020052000
Year

Trend line
for computation

Trend line
for network

 Computation
 Network

Fig. 1: Increasing computa-

tional intensity of webpages.

8000

6000

4000

2000

0

P
ag

e
Lo

ad
in

g
Ti

m
e

(m
s)

15

12

9

6

3

0

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Webpages
w

w
w

.1
63

.c
om

w
w

w
.c

nn
.c

om

w
w

w
.im

db
.c

om

w
w

w
.e

ba
y.

co
m

w
w

w
.fa

ce
bo

ok
.c

om

w
w

w
.c

ra
ig

sl
is

t.o
rg

 Webpage Loading Time
 Energy Consumption

Fig. 2: Load time and energy

consumption of webpages.

On the basis of the estimations, we predict the ideal execution
core and frequency for webpages and schedule them accord-
ingly to satisfy the cut-off constraint with the least energy. In
summary, we make the following contributions in this paper:

1. We explore the energy-delay trade-off of big/little systems
for mobile web browsing and demonstrate the potential
benefits (Sec. 4).

2. We identify the root cause of webpage variance by char-
acterizing and quantifying different aspects of webpage
primitives (Sec. 5).

3. We show that webpage load time and energy consumption
can be predicted via regression models (Sec. 6).

4. We demonstrate how to leverage a big/little system effec-
tively via the proposed webpage-aware scheduling (Sec. 7).

Measured hardware results, of a synthesized big/little system
based on the ARM Cortex-A9 and A8 processors, demon-
strate that as compared with a performance-oriented hardware
strategy, webpage-aware scheduling achieves 83.0% energy
savings, while only violating the cut-off latency for 4.1%
more webpages. Against a more intelligent OS-driven DVFS
strategy, webpage-aware scheduling achieves 8.6% energy
reduction while shortening load time by 4.0% on average.

2. Mobile Web Browsing

We explain what is important for end users during the mo-
bile web browsing experience (Sec. 2.1). Following that we
provide a brief overview of how a web browser works, and we
identify potential sources of computational intensity (Sec. 2.2).

2.1. The Mobile Web Browsing Experience

A neurological study conducted in 2010 by the CA Tech-
nologies concluded that poor web browsing experience can
lead to “web stress” that causes users to use a rival website
or abandon the transaction altogether [4]. Google engineers
measured this effect, stating that “a 400 ms delay leads to a
0.44% drop in search volume” [6]. With over 2.27 billion
Internet users in the world [7], this seemingly negligible drop
can translate to approximately 9.98 million unsatisfied users.

The most important criteria for mobile browsing experience
is the webpage load time. It is the primary cause of webpage
abandonment [5]. Statistics indicate that 47% of mobile web
consumers expect a webpage to load in 2 seconds or less, and
beyond that cut-off latency the rate drops by 6.7% for each

Server Parsing Style
Resolution Layout Paint Display

DOM

Style
Rules

JavaScript
Engine

User
Actions

Render
Tree

External events
Data flow
Internal execution

Data structures

External objects

Browser components

Fig. 3: Overview of the web browser architecture.

additional second. A 4 second webpage load time can translate
to a 25% increase in webpage abandonment [5].

Furthermore, in a world where mobile web-based e-
commerce is rapidly emerging as the new means of conducting
online sales, missing the cut-off load time can have signifi-
cant financial ramifications to institutions [1]. A recent study
concluded that an e-commerce website generating a revenue
of $100,000 per day stands to lose up to $2.5 million in sales
each year for every second of delay in webpage load [5].

2.2. The Web Browser Architecture

At the center of the web browser architecture is the render-
ing engine, which processes the webpage documents returned
from the server and displays them on the screen. After the
webpage is loaded, users can dynamically interact with the
webpage through JavaScript. In this paper, we focus only on
the rendering engine because it is the first determinant part of
the mobile web browsing experience. Dynamic webpage inter-
action is beyond the scope of this work, and we refer readers
to Sec. 8 for a discussion about JavaScript. Using Fig. 3, we
present an overview of the web browser architecture.

The rendering engine starts with parsing HTML and CSS
documents. HTML contains the text and overall skeleton of
a webpage through a combination of tags, each associated
with zero or more attributes. Along with parsing the HTML
file, the rendering engine dynamically constructs the DOM

(Document Object Model) tree data structure, in which each
node corresponds to a HTML tag, an attribute, or a section of
text. The DOM tree can be viewed as an abstract and concise
representation of the webpage structure.

Complementary to HTML, CSS determines the webpage’s
visual style information through a set of style rules, each with
a selector and a set of properties. Each rule is intended to
select one or a group of HTML tags to apply the properties.
During parsing, the rendering engine extracts CSS rules and
constructs the corresponding data structure.

Given the DOM tree and CSS rules, the style resolution mod-
ule determines the webpage’s style information (e.g. color,
font) by constructing the render tree. The render tree is the
visual representation of a webpage, with each node corre-
sponding to one visual element in the webpage. Thereafter,
the layout module operates on the render tree to calculate the
exact coordinates on the screen for each visual element. The
painting module then walks the render tree and calls graphic
libraries to perform the actual display of the webpage.

2

Despite the optimizations that web browsers perform to
improve style resolution, layout, and painting, they are still
the most time-consuming components [40]. The stages’ com-
putations inherently involve intensive tree operations that are
difficult to parallelize, underutilize the hardware resources,
and dissipate energy inefficiently [42, 45].

3. Experimental Setup

Platform(s) We use the Cortex-A9 mobile processor as
the big core. All big-core-related experiments are conducted
on the Pandaboard ES (rev. B1) running Ubuntu 12.04 with
Linux kernel version 3.2.14. It comes with a market-quality
OMAP 4460 system-on-chip (SoC) equipped with a dual-core
A9 processor manufactured on the 45 nm process node. The
A9 is a complex out-of-order four-wide superscalar core with
eight pipeline stages. It has 32 KB L1 I/D caches and a 512 KB
L2 cache. It can operate at 300 MHz, 700 MHz, 920 MHz
or 1.2 GHz, with a measured core voltage of 0.83 V, 1.01 V,
1.11 V or 1.27 V, respectively.

We choose a low(er)-power Cortex-A8 as the little core.
Little-core experiments are performed on the BeagleBoard-
xM development board (rev. C1) equipped with the DM 3730
SoC (OMAP3 series) that encapsulates an A8 core. The A8
processor is also manufactured on the 45 nm process node.
It is an in-order, dual-issue processor with 13 pipeline stages
and 32 KB I/D caches and a 256 KB L2 cache. It can operate
at 300 MHz, 600 MHz, or 800 MHz, with a measured core
voltage of 0.94 V, 1.10 V, or 1.26 V, respectively.

Webpages We consider the top 5,000 webpages in the
Internet ranked by www.alexa.com. These webpages cover
a wide distribution of website categories from business to
news, shopping, search engines, and so forth. Because a large
portion of these websites do not have a mobile version, for fair
comparison, we use the desktop version for all the webpages.

Load time Measurement We instrument Mozilla Fire-
fox 12.0’s rendering engine for measurements, eliminating the
browser’s bootstrap and shut-down effects. Since we study in-
dividual webpages, we do not consider the browser’s multitab
feature. To isolate and study each webpage’s behavior closely,
we disable the browser cache to avoid pollution of partially
cached webpage resources. Our measurement resolution is in
the order of microseconds.

In addition, motivated by Fig. 2, we focus only on computa-
tion and isolate network and disk overhead by downloading
the webpages and mapping them into RAMFS to keep the
entire working set in memory. In fact, previous work showed
that the cache can largely capture the working set, such that
the delay of network and I/O is greatly cushioned [32]. We
verify that but do not include the data due to space limitations.

Energy Measurement We built a power-sensing circuitry
(Fig. 4) using a sense resistor located before the off-chip volt-
age regulator module (VRM) [8] to measure the A9’s energy
consumption. Using National Instruments’ DAQ unit X-series
6366, we gather power measurements by simultaneously sens-

VRM

TPS62361

VIN
VINA

SW1
SW2

B3
B4

L23
2.6A C213

10uF

Dual Core
Cortex A9

MPU

A4
A1

Vin+

Vin-

NI DAQ 6366
(200KS/s/ch)

Channel 1

Channel 2

VDrop

SENSE+
SENSE-

VDDMPU

C210
4.7uF

Rsense

15mΩ

VBAT

50X

Fig. 4: Power measurement circuitry.

ing the voltage drop across a current shunt resistor of 15 mΩ,
as well as the VDD to the processor, both at a rate of 200,000
samples per second. We must keep an extremely small voltage
drop across the shunt resistor to preserve the original processor
current draw characteristics, so we use a Texas Instruments
INA199A1-A3EVM module with an INA199A1 current shunt
amplifier to achieve a gain of 50X. The resolution of our mea-
surement is 78 µV. We use a similar setup for measuring the
power of A8 in the DM 3730 SoC.

The run-to-run variance in the experimental measurement
setup is negligible. We verify the setup’s reproducibility by
measuring the load time and energy variance across 10 runs
for the benchmarked webpages. Variance is within 3%.

4. Motivation: Energy-Delay Trade-off

We aspire to answer a fundamental question: does web-
page loading benefit from big/little heterogeneous systems?
For example, can the processor lower the frequency for a
simple webpage to consume less energy but still respect the
cut-off constraint? Can a webpage originally scheduled on
the (energy-consuming) big core be migrated to the (energy-
saving) little core without violating the cut-off constraint?

On the basis of the detailed measurements and analysis on
the 5,000 webpages, we find that different webpages require
different core and frequency configurations to meet the latency
cut-off constraint while minimizing the energy. This suggests
that a heterogeneous system with both a big core and a little
core, each capable of performing DVFS, is strongly beneficial.

To demonstrate the benefits of such heterogeneous systems,
we measure the webpage load time and energy consumption of
all 5,000 hot webpages on the Cortex-A9 and A8 processors.
We sweep a total of seven configurations available on the
big and little cores, i.e., Cortex-A9 with four DVFS settings
and A8 with three DVFS settings, respectively. We begin our
analysis with four webpages that represent the general trends
that we observe, and we subsequently expand our analysis to
include the comprehensive set of all webpages.

Representative analysis Fig. 5 shows the energy versus
delay plots for the four representative webpages. Assuming
3 seconds as the cut-off latency for webpage load [9], the four
webpages have different ideal core and frequency configura-
tions to meet the cut-off while simultaneously minimizing the
energy consumption. For example, www.autoblog.com is

3

1.6

1.2

0.8

0.4

0.0

E
ne

rg
y

(J
)

3.02.01.00.0
Loading Time (s)

URL: www.baidu.com

A9 1.2 GHz
A9 920 MHz
A9 700 MHz
A9 350 MHz
A8 800 MHz
A8 600 MHz
A8 300 MHz

4

3

2

1

0

E
ne

rg
y

(J
)

6543210
Loading Time (s)

URL: www.adobe.com

6

5

4

3

2

1

0

E
ne

rg
y(

J)

9630
Loading Time (s)

URL: www.newegg.com

8

6

4

2

0

E
ne

rg
y

(J
)

15129630
Loading Time (s)

URL: www.autoblog.com

DVFS

B
ig
/L
itt
le

Fig. 5: Webpages have different ideal execution configurations to

meet the cut-off latency while consuming the least energy.

a complex website that has 4,235 nodes in the DOM tree, and
it therefore requires the highest frequency on the big core to
meet the cut-off latency. However, this configuration is over-
pumped for simpler websites such as www.newegg.com
with 3,152 DOM tree nodes. It only requires 700 MHz of the
big core. This suggests that some webpages can benefit from
different frequencies in each processor’s core.

In addition, some webpages can take advantage of schedul-
ing between big/little cores. If only the big core is available,
www.adobe.com can at best be loaded at 700 MHz. In-
stead, with the little core, the webpage can be loaded using
600 MHz, which still meets the cut-off latency but consumes
75% less energy than 700 MHz on the big core. Similarly,
www.baidu.com is a search engine website that has very
concise content with less than 1 KB of images. It only requires
the lowest frequency on the little core.

Comprehensive analysis We extend our analysis to the
full set of 5,000 webpages. Fig. 6 shows the distribution of
ideal core and frequency configurations for different cut-off la-
tencies, ranging from 1 second to 10 seconds at 1 second inter-
vals. Each region in Fig. 6 represents the portion of webpages
that are loaded at the corresponding architectural configuration
with minimal energy consumption while still meeting the cut-
off latency. We find a wide distribution of ideal configurations,
indicating the benefits of a flexible baseline architecture that
mixes big/little cores with different frequencies.

Assuming a tight 3 second cut-off latency [9], a single core
with a fixed frequency is insufficient for a wide spectrum of
webpages. The best single core with a fixed frequency is the
little core with 600 MHz. However, it can only load 40.2%
of the webpages within that latency constraint. Even a sin-

1.0

0.8

0.6

0.4

0.2

0.0

C
on

fig
ur

at
io

n
D

is
tri

bu
tio

n

10987654321
Cut-off Latency (s)

74
.4

%

40
.2

%87
.5

%

52
.6

%

 Big 1.2 GHz
 Big 920 MHz
 Big 700 MHz
 Big 350 MHz
 Little 800 MHz
 Little 600 MHz
 Little 300 MHz

Fig. 6: The distribution of ideal core and frequency configurations

under different cut-off latencies.

gle core (big or little) with varying frequencies is insufficient.
When we consider the little core with varying frequencies, only
74.4% of webpages can be loaded within the cut-off latency.
However, if we use a big core to load all the webpages, then
the 74.4% of webpages have suboptimal performance-energy
trade-off. Furthermore, a simple heterogeneous system with
both a big and little core but each with a fixed frequency may
also cause suboptimal performance-energy trade-off for some
webpages. Statistically, the best single-frequency configura-
tions are 700 MHz on the big core and 600 MHz on the little
core; yet, a heterogeneous system with only these two settings
leads to ideal scheduling for only 52.1% of the webpages.

Although 3 seconds is the typical cut-off latency on mobile
systems, we also study the sensitivity of the ideal configuration
distribution under other cut-off latencies. We find that varying
cut-off demands also call for a flexible baseline architecture.
As Fig. 6 shows, no one particular configuration consistently
performs well under varying cut-off latency requirements. For
example, although relaxed cut-offs favor the little core, it is
suboptimal for 87.5% of the webpages under a tight 1 second
constraint. Similarly, the big core, which performs very well
under tight cut-offs, is overpumped under more relaxed con-
straints; it is only needed for about 3% of webpages when the
cut-off latency is 10 seconds.

In summary, we find that different webpages require dif-
ferent ideal core and frequency settings to achieve the ideal
balance between performance and energy-efficiency. Varying
cut-off latencies also demand different ideal configurations.
Therefore, we conclude that different webpages can strongly
benefit from a versatile heterogeneous system consisting of
both big and little cores each capable of performing DVFS.

5. Webpage Characterization

The key to effectively harnessing a big/little system’s ben-
efits is to understand the root cause of load time and energy
consumption variance across different webpages. In this sec-
tion, we demonstrate that the root cause of webpage variance
arises from the inherent “webpage variance” in the structural
(HTML) and style (CSS) information.

4

1.0

0.8

0.6

0.4

0.2

0.0C
um

ul
at

iv
e

P
er

ce
nt

ag
e

(%
)

0.30.20.10.0
Tag Percentage(%)

(a) HTML tag cumulative distribution.

5x10
3

4

3

2

1

0

Ta

gs

3020100
30 Hottest Webpages

www.163.com

www.baidu.com

 a
 div
 li
 span
 img
 td
 p
 others

(b) HTML tag mix.

Fig. 7: HTML tag analysis.

We mine 5,000 hot webpages and apply a combination of
static profiling of real webpages and runtime measurement on
microbenchmarking webpages. Static profiling shows that dif-
ferent webpages have vastly different distributions of webpage
primitives. Runtime microbenchmarking reveals that different
webpage primitives have significantly different execution over-
head and energy consumption. Due to the space constraints,
we only show data for the 30 hottest webpages; still, webpage
variance is still strongly observable.

5.1. HyperText Markup Language (HTML)

The HTML document consists of tags and attributes, and
it is represented as a DOM-tree data structure that plays an
important role in webpage rendering. We characterize the tag,
attribute, and DOM tree separately.

Tags In a webpage, HTML tags describe a webpage’s
fundamental functionality. We study both the static and run-
time characteristics of HTML tags. Under static analysis, we
perform a cumulative distribution profiling of the HTML tag
usage and show the results in Fig. 7a. The y-axis represents
the cumulative percentage of tags that appear in a webpage.
The x-axis begins with the hottest tag and descends toward the
least-hot tag across all webpages. Only 10% of all HTML tags
(∼14) make up nearly 90% of the entire tag usage, indicating
the existence of strong “tag” locality across webpages. We
infer that web developers are used to utilize a few common
HTML tags.

To better understand how tags vary across different web-
pages, we perform tag-mix profiling, similar to conventional
instruction-mix profiling. In Fig. 7b webpages are sorted by
the total number of tags from left to right. We make three
important observations. First, a few tags are hot across all
webpages. We group the rest together into the “others” cate-
gory in the figure. Second, the number of tags varies signif-
icantly across webpages. For example, www.baidu.com,
which is the 5th hottest website, has only 126 tags, whereas
www.163.com, which ranks 28th, has 4,135 tags. Finally,
the hot tags are not always evenly hot in all webpages; for in-
stance, www.baidu.com does not have the <td> tag, which
is present in nearly all other webpages.

We conduct load time and energy microbenchmarking of
HTML tags to quantify the runtime behavior of different

Category Microbenchmark
Time (ms) Energy (mJ)

Abs. Norm. Abs. Norm.

Tag

h3 8.85 1.0 26.31 1.0

li 14.25 1.6 44.97 1.7

option 21.48 2.4 67.12 2.6

table 20.96 2.4 69.82 2.7

input 44.92 5.0 166.28 6.3

img 177.03 20.0 611.53 23.0

Attribute

cellspacing 17.30 1.0 63.45 1.0

border 23.46 1.4 81.87 1.3

bgcolor 28.05 1.6 97.86 1.5

background 337.18 19.0 1145.75 18.0

DOM tree
node count

1k 325.65 1.0 1103.98 1.0

2k 560.73 1.7 1897.46 1.7

4k 1017.19 3.1 3451.76 3.1

8k 2041.87 6.3 6903.21 6.3

Table 1: HTML Microbenchmarking Results

HTML tags. We choose a subset of hot tags that can be
visually seen in webpages. Each microbenchmark is a sim-
ple webpage repeating one particular HTML tag 100 times,
except the microbenchmark which only loads once a
Portable Network Graphics (PNG) image of 185 KB (average
image size per webpage as reported in [10]). By observing
differences in the load time and energy consumption between
microbenchmark webpages and a blank baseline webpage,
we compute the execution time and energy consumption as-
sociated with the particular HTML tag. We use the same
microbenchmarking methodology in the following characteri-
zation sections, unless stated as otherwise.

From the microbenchmarking results shown in the “tag” cat-
egory in Tbl. 1, we observe different execution overhead and
energy consumption from the different tags. For example, the
<input> tag used for inputting characters takes 5X execution
time compared to a simple <h3> header tag. The <input> tag
also consumes 6.3X more energy than the <h3> tag.

Attributes Auxiliary to HTML tags are attributes that
delimit the functionality of tags and specify extra informa-
tion for them. We perform similar static attribute profiling,
observing that the number of attributes varies significantly
across webpages. Of all the attributes, layout-related attributes
are the most important. They can lead to partial relayout of
the webpage, introducing extra computations. Fig. 8 shows
the distribution of the attributes that affect webpage layout.
We observe a wide distribution across webpages. The last 10
websites use fewer than 100 attributes to style the webpage.
Consequently, they are less intrusive to webpage rendering.

To quantify the intrusiveness of different layout-related at-
tributes to webpage rendering, we conducted microbenchmark-
ing. The “attribute” category in Tbl. 1 shows the representative
subset of the results. Except the background microbenchmark,
we use a webpage containing 5,000 1 × 1 HTML tables with-
out any attributes as the baseline. Each microbenchmark ap-
plies one particular layout-related attribute to the table, and
repeats it 1,000 times. The background microbenchmark loads

5

500

400

300

200

100

0

A

ttr
. I

nf
lu

en
ci

ng
 L

ay
ou

t

3020100
30 Hottest Webpages

 align
 border
 bgcolor
 background
 cellspacing
 cellpadding
 height
 width
 valign

Fig. 8: Distribution of attributes

that influence webpage layout.

12x10
3

10

8

6

4

2

0

D

O
M

 T
re

e
N

od
es

3020100
30 Hottest Webpages

www.baidu.com

www.huffingtonpost.co.uk

 DOM tree
 node count

Fig. 9: DOM tree node distribu-

tion.

a 185 KB PNG image as the webpage background and uses a
blank webpage as the baseline.

Similar to HTML tags, attributes also exhibit different exe-
cution overhead and energy consumption. For example, pro-
cessing the background attribute is 19X slower and 18X more
energy-consuming than processing 1,000 cellspacing attributes.

DOM Tree The DOM tree is semantically equivalent to
an HTML document. As described in Sec. 2.2, the rendering
engine operates on the DOM tree intensively for style resolu-
tion, layout, etc. Therefore, the DOM tree’s size is a strong
heuristic indicative of a webpage’s processing complexity.

Webpages have vastly different DOM-tree sizes in terms of
the number of DOM-tree nodes as shown in Fig. 9. We high-
light the difference in webpages’ DOM tree sizes by picking
two extreme cases (www.huffingtonpost.co.uk and
www.baidu.com). As the figure shows, the difference in
DOM tree size between the two webpages is over 1,200X.

We perform microbenchmarking to quantify the impact of
DOM-tree size on load time and energy consumption. We
vary the number of DOM-tree nodes in each microbench-
marking experiment, and we compare webpage load time and
energy consumption against a blank baseline webpage. The
“DOM-tree node count” category in Tbl. 1 shows the results.
Microbenchmarking shows that the execution time and energy
consumption increase with the number of DOM-tree nodes.
We observe a nearly linear relationship between DOM-tree
size and its rendering time and energy consumption.

We also study DOM-tree depth and the average fanout for
each node in the DOM tree. However, our analysis indicates
that those metrics have less significant impact on load time
and energy consumption than DOM-tree size.

5.2. Cascading Style Sheet (CSS)

CSS is at the center of the style resolution and layout mod-
ules. Most modern webpages heavily use CSS to specify rules
regarding how and where HTML tags should be presented in
a webpage. CSS rules use selectors to select HTML tags, and
can apply to them different properties such as color, format-
ting, floating preference, etc. We therefore characterize CSS
for both selectors and properties.

Selector The complexity associated with selector process-
ing comes primarily from two aspects: the total number of
selectors and the selection pattern of selectors. The number

Category Microbenchmark
Time (ms) Energy (mJ)

Abs. Norm. Abs. Norm.

Selector count

1k 9.09 1.0 20.76 1.0

2k 22.06 2.4 78.08 3.8

4k 54.14 6.0 182.56 8.8

8k 101.10 11.0 342.64 16.0

Selector pattern

pseudo selector 6.26 1.0 27.83 1.0

id selector 28.26 4.5 96.09 3.5

class selector 35.49 5.7 115.77 4.2

descendant selector 50.14 8.0 166.56 6.0

Property

color 78.04 1.0 271.23 1.0

display 93.05 1.2 323.76 1.2

width 242.22 3.1 843.07 3.1

float 272.68 3.5 938.58 3.5

Table 2: CSS Microbenchmarking Results

of CSS selectors is an important metric because theoretically
each CSS selector must be matched with each HTML tag to
determine the style information of the webpage, leading to
the computational complexity of O(#tags×#rules). We pro-
file the number of total CSS selectors and show the results in
Fig. 10. We observe a wide distribution of the selector count
across webpages, ranging from 2,959 to 29.

To understand the impact of the number of selectors, we
perform microbenchmarking. Each microbenchmark incre-
mentally doubles the number of selectors from 1,000 to 8,000.
As the “selector count” category in Tbl. 2 shows, the associated
execution time and energy consumption scale dramatically in-
crease as the number of selectors varies from 1,000 to 8,000.
This suggests the selector count’s significance.

In addition, the selection pattern of CSS selectors also has
a strong impact on selector processing. For example, some
patterns require traversing the DOM tree to identify the de-
scendancy relationship between HTML tags, whereas others
do not [11]. Fig. 10 shows the distribution of selection patterns.
We observe hot patterns such as class and descendant.

We further conduct microbenchmarking on different selec-
tion patterns. Each microbenchmarking webpage repeats a
particular pattern 1,000 times, and differs with a baseline that
does not have CSS rules. The “selector pattern” category in
Tbl. 2 reports the results. Depending on different patterns,
the execution time and energy consumption differ. For exam-
ple, a descendant pattern requiring DOM-tree traversing takes
8X processing time and consumes 6X energy compared to a
pseudo pattern that does not involve DOM-tree operation.

Property In addition to selectors, we also profile CSS
property usage. Fig. 11 shows the property distribution with
the seven hottest properties and all others grouped as “others”.
The CSS property usage in webpages is largely diversified
without any significantly hot properties. However, the number
of total properties is vastly different across webpages.

Our microbenchmarking results of CSS properties (with
each property repeated 1,000 times) is presented in the “prop-
erty” category in Tbl. 2. We observe noticeable execution time
and energy consumption differences between properties that

6

6000

5000

4000

3000

2000

1000

0

S

el
ec

to
r P

at
te

rn
s

3020100
30 Hottest Webpages

3000

2500

2000

1500

1000

500

0

 # S
elector

 class
 id
 descendant
 pseudo
 others

Fig. 10: CSS rule count and se-

lector pattern distribution.

1600

1200

800

400

0

P
ro

pe
rti

es
3020100

30 Hottest Webpages

 width
 color
 padding
 height
 background
 display
 margin
 others

Fig. 11: CSS property distribu-

tion.

only affect individual HTML tags (such as color) and proper-
ties affecting other nodes in the DOM tree (such as width and
float that affect positions of surrounding HTML tags).

6. Webpage Performance and Energy Modeling

The ability to predict webpage load time and energy con-
sumption is vital to leverage big/little systems for intelligent
scheduling. In this section, we demonstrate the feasibility of
such predictions through regression modeling. Building on
webpage characterizations described in the previous section,
we apply regression modeling that captures different aspects
of webpage characteristics and their interactions for predicting
webpage load time and energy consumption (Sec. 6.1). Our
models have a median prediction error rate of 5.7% and 6.4%
for load time and energy consumption, respectively (Sec. 6.2).

6.1. Model Derivation

A regression model is a mathematical function between a set
of predictors and a response. Within our context, the response
is either the webpage’s load time or energy consumption in
loading the webpage. The predictors are a set of webpage
characteristics. We also require a number of sampling obser-
vations to train the model. The linear regression is the basic
regression technique, and is the premise for advanced ones.
Therefore, we first provide fundamentals of linear regression
modeling. We then identify the predictors to the model and
obtain a set of sampling observations in order to derive the
linear model. After that, we describe how the different insights
gathered in the previous section on webpage characteristics
led us to refine the basic linear model.

Linear Regression Modeling The linear regression model
models the webpage’s load time and energy consumption (re-
sponses) as a linear combination of various webpage charac-
teristics (predictors), formulated as: y = β0 +∑

p
i=1 xiβi where

y denotes the response, x = x1, ...,xp denote p predictors, and
β = β0, ...,βp denote corresponding coefficients of each pre-
dictor. The least squares method is used to solve the regres-
sion model by identifying the best-fitting β that minimizes the
residual sum of squares (RSS) [33].

Predictors We first include the webpage primitives de-
scribed in the previous section as model predictors because
they show strong interwebpage differences, and as such have
a strong influence on the load time and energy consumption.

Category Model Predictors

Webpage primitive: HTML

Number of each tag

Number of each attribute

Number of DOM tree node

Webpage primitive: CSS

Number of rules

Number of each selector pattern

Number of each property

Content-dependent
Total image size

Total webpage size

Table 3: Model Predictors

In addition, we must also consider the impact of content-

dependent characteristics such as image size and the total size
of a webpage. These characteristics are coarse-grained metrics
that are independent from webpage structures but which influ-
ence the load time and energy of rendering. We summarize
these features in Tbl. 3. In total, we consider 376 predictors.

Obtaining Observations We require a number of sam-
pling observations to construct the regression models. We
obtain 2,500 sampling observations using the experimental
setup described in Sec. 3. We measure both webpage load
time and energy consumption simultaneously on the Cortex-
A9 processor running at 1.2 GHz.

Model Specification and Refinement We apply vari-
ous techniques to mitigate overfitting and capture predictor-
response nonlinearity to achieve high prediction accuracy. We
use R [12] and its glmnet and rms packages for all analysis.

We consider a large number of predictors (376) relative to
the number of observations (2,500). This is known to produce
predictions that result in overfitting [33]. We mitigate this, to
the first order, by eliminating predictors that are less correlated
to the response. We test the predictor/response correlation
strength by calculating the squared correlation coefficient (ρ2)
between each predictor variable and observed load time and
energy. Fig. 12a shows the seven most-correlated predictors.
For both load time and energy, we find the number of DOM
tree nodes (#nodes) is the most-correlated webpage primitive
because it heuristically captures the webpage structure’s com-
plexity. Also, both image size and the total webpage size are
also correlated because they capture the webpage content. We
only select predictors with ρ2 greater than 0.01.

We further minimize overfitting by pruning features that
are correlated to each other. We test the correlation across
predictors left after predictor strength test. The correlation
matrix is shown as a heatmap in Fig. 12b. The intensity of a
point in the heatmap is proportional to the magnitude of the
correlation coefficient between two predictors. The height of
the branches in the dendrogram quantifies this magnitude.

In general, we find two types of correlation: inherent cor-
relation and imposed correlation. Several HTML tags and
attributes are functionally defined symbiotically and most of-
ten used together, exemplifying the inherent correlation. For
example, the <form> tag describes a form in the webpage, and
the action attribute specifies where to submit the form. These

7

0.7

0.6

0.5

0.4

0.3

0.2

C
or

re
la

tio
n

st
re

ng
th

no

de
s

at
tr_

cl
as

s

at
tr_

hr
ef

ta
g_

a

ta
g_

di
v

to
t_

si
ze

im
g_

si
ze

 Load time
 Energy

(a) Predictor-response correlation. (b) Predictor self-correlation.

Fig. 12: Predictor correlations.

two predictors are almost synchronized with each other, sug-
gesting redundancy. Similar examples are the <a> tag and the
href attributes, which are defined to specify an external hyper-
text link. Some other predictors do not bear such an inherent
relationship, but web developers use them together to describe
related information, such as an image’s width and height. For
example, CSS properties height and width are highly correlated.
The descendant selector pattern and class selector pattern also
show heavy correlation for this reason.

Furthermore, it is unlikely that the true relationship between
the response and all predictors is strictly linear as assumed
by simple linear models. One effective method to model
nonlinearity is to fit data with restricted spline functions that
are piecewise polynomial functions but which force linear
fitting beyond the first and last knots [33].

6.2. Model Evaluation

To validate the model, we obtain 2,500 observations in
addition to the 2,500 observations used for deriving the model.
We incrementally evaluate the effect of various refinement
techniques described previously by comparing the accuracy
of three regression models. First, we evaluate a basic linear
regression (L) model that prunes less-significant predictors.
Second, we evaluate linear regression with regularization (R)
that further prunes predictors correlated with each other. Third,
we evaluate a restricted cubic spline-based (RCS) model using
pruned features, which captures the nonlinear relationship
between predictors and responses. Of all three models, RCS
performs best at predicting both load time and energy. We
show all three models for completeness of evaluation.

Performance model The basic linear regression model
(L) has a median and mean error rate of 25.8% and 32.8%,
respectively, indicating a less-desirable prediction. The
regularization-based model (R) reduces the median and mean
error rate to 11.5% and 13.6%, respectively, due to more ag-
gressive predictor pruning. Restricted cubic spline (RCS)
modeling predicts the best, with the median and mean error
rate of only 5.7% and 7.5% due to its capability of capturing
more complex relationships between predictors and responses.

0.60.50.40.30.20.10.0
Error

1.0

0.8

0.6

0.4

0.2

0.0

F(
er

ro
r)

 L
 R
 RCS

(a) Load time model.

0.60.50.40.30.20.10.0
Error

1.0

0.8

0.6

0.4

0.2

0.0

F(
er

ro
r)

 L
 R
 RCS

(b) Energy model.

Fig. 13: CDF of prediction errors.

We also assess the distribution or prediction errors. Fig. 13a
shows the results by presenting the cumulative distribution of
the error for three modeling methods. Each (x, y) point in the
graph corresponds to the portion of pages (y) that are at or be-
low a particular error rate (x). Owing to overfitting, L predicts
very accurately for a few webpages, but lacks the capability
to be generally applicable to a large range of webpages. As a
result, L can only predict 20.0% of the webpages within 10%
error. In contrast, R mitigates overfitting due to aggressive
pruning, and predicts 44.6% of the webpages within 10% error.
Finally, RCS further captures the nonlinear relationship, and
therefore can predict 73.0% of the webpages within 10% error,
and 94.0% webpages within 20% error.

Energy Model Similar to the load time model, the RCS-
based model performs the best, with the median error rate of
6.4% (mean of 8.2%), dropping from the median of 12.3%
and 27.1% for R and L, respectively. Fig. 13b shows the cumu-
lative distribution of the error for three modeling methods. For
reasons explained earlier, RCS can predict 70.0% of the web-
pages within 10% error (91.8% within 20% error), improving
from 41.7% and 18.7% of R and L, respectively.

7. Dynamic Webpage Scheduling

Building on the prediction models described previously, we
propose webpage-aware scheduling. The scheduler leverages
the benefits of a big/little system by intelligently scheduling
webpages for the ideal cut-off/energy trade-off (Sec. 7.1). Real
hardware and software measurements show that against a
performance-oriented hardware strategy, the webpage-aware
scheduler achieves 83.0% energy savings while violating the
cut-off latency for only 4.1% more webpages. Compared
with a more intelligent, on-demand OS DVFS scheduler, the
mechanism achieves an additional 8.6% energy savings along
with a 4.0% performance improvement (Sec. 7.2).

7.1. Webpage-Aware Scheduling

Scheduler During the parsing stage, which takes <1%
of the total execution time,1 the webpage-aware scheduler
extracts webpage characteristics, and feeds them into the pre-
diction models to estimate the webpage load time and energy

1Based on our profiling. Prior work has also observed similar results [40].

8

1.0

0.8

0.6

0.4

0.2

0.0

F(
Lo

ad
in

g
Ti

m
e)

1815129630
Loading Time (s)

 Big 1.2 GHz
 Big 920 MHz
 Big 700 MHz
 Big 350 MHz
 Little 800 MHz
 Little 600 MHz
 Little 300 MHz

Fig. 14: CDF of webpage load time under different configurations.

consumption under different core and frequency configura-
tions. On the basis of these predictions, the scheduler then
identifies the configuration (if possible) that meets the cut-off
latency with minimal energy consumption. If no such configu-
ration is found, the webpage is scheduled to the big core with
the highest frequency for the best possible performance.

Scheduling overhead We consider two major scheduling
overheads: prediction and configuration transitioning. Predic-
tion occurs very rapidly (< 3 milliseconds on the Cortex-A9
under 1.2 GHz). Moreover, prediction is interleaved with the
parsing stage of the rendering engine. As parsing in mod-
ern browsers is highly optimized (e.g., asynchronous with the
other processing), the prediction overhead is insignificant. On
the basis of our measurements, we assume a constant overhead
of 5 milliseconds.

Transitioning between hardware configurations involves
the penalty of migrating tasks between big/little cores and/or
frequency scaling overhead. The major overhead source of
task migration is context switch, i.e. (re)storing architecture
state such as register files and configuration registers, as well
as warming up the private L1/L2 caches (assuming cache
coherency between the last-level cache (LLC) of big and little
cores). We assume a constant overhead of 20 milliseconds
for state (re)storing per context switch, as indicated for the
ARM big.LITTLE system [13]. For private cache warmup
penalty, prior work shows that performance often improves
when private LLCs of big and little cores are powered on
together [30]. Thus, we ignore the warmup penalty. Also, prior
work suggested that the power overhead of task migration is
< 0.75% [46]. Thus, we do not consider the additional energy
consumption of our scheduling mechanism.

For frequency scaling, we assume 0.3 milliseconds as the
overhead. The Linux kernel uses this value on both the Cortex-
A9 and A8 systems. This value takes into account both hard-
ware (i.e., voltage regulator module switching frequency) and
software overhead (i.e., privilege-level switching overhead for
the frequency change request). In our evaluation, since we do
not know which configuration the web browser is currently
running in, we conservatively consider both the configuration
transitioning overhead and the frequency scaling overhead at
every scheduling point.

OS WS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scheduler

F(
E

ne
rg

y
S

av
in

g
Pe

r W
eb

pa
ge

)

(a) Distribution of per webpage en-

ergy saving against the baseline.

200

150

100

50

0

V

io
la

te
d

W
eb

pa
ge

s

Perf. OS WS
Scheduler

(b) Number of webpages that load un-

der the strict cut-off latency of 3 sec-

onds.

Fig. 15: Evaluation of different scheduling strategies.

7.2. Evaluation

Energy savings We compare the webpage-aware schedul-
ing mechanism against an intelligent synthesized OS scheduler
that performs on-demand DVFS on a heterogeneous system.
The OS scheduler scales the frequency during a webpage load
based on simple heuristics of system utilization [31, 49]. It
samples the CPU usage at a certain period and scales up the
frequency if the average CPU usage in the previous sampling
period is above a preset threshold, and vice versa. Because
no Linux scheduler can yet perform heterogeneous schedul-
ing across big/little cores, we synthesize such a scheduler
by running the webpages under the “on-demand” cpufreq-
governor [14] on the big core and the little core, individually,
and then choose the better result.

We compare the two scheduling techniques with a baseline
strategy that consistently yields the best performance. We
determine such a baseline by assessing the performance of
all the different core and frequency configurations. Fig. 14
shows the cumulative distribution of webpage load time under
each configuration. Each (x, y) point in the figure represents
the portion of webpages (y) loaded within a certain delay (x).
The big core with the peak frequency (1.2 GHz) achieves the
best overall performance. It can load 96.5% of the webpages
within 3 seconds. As the frequency and core capability de-
grade, fewer webpages can be loaded within the same cut-off
latency. Therefore, we choose the big core (A9) with its peak
frequency (1.2 GHz) as the high-performance baseline.

We evaluate the same 2,500 webpages that we used to assess
the accuracy of the regression models. Assuming a 3 second
cut-off latency, Fig. 15a shows the boxplot of per-webpage
energy savings under the webpage-aware and OS schedulers
against the high-performance mode. Both schedulers achieve
significant energy savings over the high-performance baseline,
with a (geometric) average of 83.6% and 83.0%, respectively.
This is because both schedulers can schedule webpages to the
lower power core or lower frequency.

The webpage-aware scheduler has a denser energy-saving
distribution toward 100% than the OS scheduler. This indi-
cates that generally the webpage-aware scheduler achieves

9

higher energy savings. Fig. 16a shows the histogram of per-
webpage relative energy of the webpage-aware scheduler to
the OS scheduler. The webpage-aware scheduler saves energy
for about 80% of the webpages. There are several webpages
that are misscheduled onto the big core that could have met
the cut-off latency with the little core. These webpages con-
sume much higher energy under the webpage-aware sched-
uler than the OS scheduler (>2X in Fig. 16a). On average,
the webpage-aware scheduler reduces energy consumption by
8.6% compared with the OS scheduler.

Performance impact Both the OS scheduler and the
webpage-aware scheduler trade performance for better energy
savings compared with the performance mode. We evaluate
their behaviors more critically using the number of webpages
that violate the cut-off latency under their operations. This
data is shown in Fig. 15b. The performance mode violates only
3.5% of the webpages with a 3 second cut-off latency because
it always operates at peak computational capability. Both of
the software schedulers perform slightly worse. Our mecha-
nism, the webpage-aware scheduler, results in 7.6% violations,
which is only 0.6% worse than the OS scheduler. However,
on (geometric) average, our mechanism loads webpages 4.0%
faster than the OS scheduler.

Cut-off sensitivity To assess the webpage-aware scheduler
under variable user demands and mobile device conditions, we
also experiment with different cut-off latencies. For example,
when the end user requests faster webpage load at 2 seconds,
the mechanism achieves 7.3% energy savings over the OS
scheduler while violating 4% fewer webpages. In a battery
conservation mode where performance is less critical and the
cut-off latency is relaxed to 10 seconds, the webpage-aware
scheduler achieves 11.8% energy savings compared with the
OS scheduler while exceeding the cut-off latency for only
0.02% webpages in total. We conclude that the webpage-
aware scheduler is flexible to changing user requirements.

Prediction Accuracy Scheduling effectiveness relies on
the load time and energy prediction accuracy. We study the im-
pact of the prediction accuracy by comparing webpage-aware
scheduling with an Oracle scheduler that assumes perfect pre-
diction under the 3 second cut-off latency. There are two types
of misprediction: overprediction causes webpages to load on a
more powerful configuration that consumes more energy than
the ideal one but does not cause cut-off violation; underpredic-
tion loads webpages on a weaker configuration that consumes
less energy but violates the cut-off constraint. Our models
lead to 10% overprediction and 4.1% underprediction. Com-
pared with the Oracle scheduler, the webpage-aware scheduler
results in 4.1% cut-off violation but “conserves” 9.7% energy.

Analysis The advantage of the webpage-aware scheduler
lies in its awareness of the webpages characteristics and the
cut-off latency. As a result, it predicts and chooses a proper,
albeit fixed, configuration for each webpage. In contrast, the
OS scheduler’s DVFS decision is based on the system uti-
lization, which has no direct correlation with the webpage

0.6

0.5

0.4

0.3

0.2

0.1

0.0

F(
w

eb
pa

ge
s)

3.02.01.00.0
Normalized Energy

(a) Relative energy of the webpage-

aware scheduler against the OS

scheduler.

0.7 0.8 0.9 1
Normalized Energy

0.9

0.6

0.3

0.0

F(
w

eb
pa

ge
s)

(b) Relative energy of the integrated

scheduler against the webpage-

aware scheduler.

Fig. 16: Distribution of per-webpage energy comparisons.

characteristics/cut-off latency and is sensitive to other system
activities. Therefore, it may lead to a suboptimal performance-
energy trade-off or even miss the cut-off constraint.

For example, when loading www.newegg.com (top-right
in Fig. 5) under the OS scheduler, we find that the CPU usage
on the big core reaches above 95% for around 40% of the time
and (unnecessarily) incurs peak frequency (i.e. 1.2 GHz).
When in fact, the big core with 720 MHz chosen by the
webpage-aware scheduler is sufficient to meet the 3-second
cut-off latency, achieving 20% energy savings compared with
the OS scheduler in our experiments.

However, the flexibility to scale the frequency while loading
a webpage sometimes allows the OS scheduler to exploit the
marginal value of energy, i.e. a slight increase in energy
(through frequency scaling) can bring the webpage back within
the cut-off latency that would have been missed if the webpage
were loaded using a lower frequency.

For example, www.autoblog.com (top-left in Fig. 5)
when loaded under 920 MHz (on the big core) just surpasses
the 3-second deadline by 0.1 seconds, but has to fall back using
1.2 GHz under the webpage-aware scheduler. At 1.2 GHz, the
webpage loads in only 1.8 seconds but consumes 37% more
energy than 920 MHz. However, under the OS scheduler,
our statistics show that the OS boosts the frequency above
920 MHz for only around 20% of the time, and finishes the
load in 2.7 seconds. Compared with the webpage-aware sched-
uler that runs at 1.2 GHz for this webpage, the OS scheduler
in this case saves 20% energy, effectively exploiting the high
marginal value of energy.

Discussion For complete evaluation, we also assess an
integrated scheduler that combines the webpage-aware sched-
uler with OS DVFS. The purpose is to exploit the potentially
high marginal value of energy via OS DVFS, but bound the
DVFS space to avoid frequencies that are unnecessarily high
(wasting energy) or low (missing the cut-off latency).

Specifically, the webpage-aware scheduler first restricts the
OS DVFS scheduling space to two frequencies: a lower fre-
quency that just meets the cut-off constraint and a upper fre-
quency that just misses the constraint. Given the two fre-

10

quencies, the webpage-aware scheduler tries to ensure that
the cut-off latency can still be met by further tuning the per-
centage of time spent in either frequency. In practice, we set
the scaling_max_freq and scaling_min_freq of the Linux cpufreq-
governor to the lower and upper frequency, respectively. We
set the up_threshold to control when to promote to the higher
frequency [14]. For example, for www.autoblog.com
(top-left in Fig. 5), the OS DVFS on the big core would only
operate on 1.2 GHz and 920 MHz. Because 920 MHz is nearly
able to hit the deadline, only a small portion of the webpage
load must be run in the upper frequency.

Fig. 16b shows, under a 3 seconds cut-off constraints, the
histogram of per webpage relative energy of the integrated
scheduler to the webpage-aware scheduler. The integrated
scheduler consistently out-performs the webpage-aware sched-
uler with 3.0% average energy savings (up to 30%). We leave
the full integration and detailed comparison for future work.

8. Related Work

JavaScript JavaScript is important in webpages. However,
we believe it is a closely related, yet separate and distinct
problem from webpage load. JavaScript code is most often
executed after the webpage is loaded. Google recommends
that, to improve performance (especially in mobile browsing),
all JavaScript processing should be deferred until the web-
page load finishes [15]. Proposals that speculatively process
JavaScript [16, 38, 43] further separate JavaScript from web-
page load. In addition, as pointed out in [47], a large portion of
JavaScript code is either computationally intensive [17, 18] or
an intensive stress on the memory management system. They
require optimizations on the Just-In-Time (JIT) engine, pro-
gramming model, or the garbage collector (GC) [28, 34, 39],
all of which are beyond the scope of our work. Thus, our
focus and mechanism in this paper are largely independent of
JavaScript execution and its browser engine performance.

Web Browser Performance Optimization Current re-
search proposals focus on parallelizing browser-specific tasks,
such as parsing, CSS selection, etc. [24, 36, 40, 41]. Although
such parallelized algorithms can achieve speedups ranging
from 4X to 80X for various browsing tasks, they typically
do not scale well beyond four cores/threads, leading to unac-
ceptable energy inefficiency. Thus, we believe that while the
parallelization methodology has potential in desktop comput-
ing, it is less favorable for mobile web browsing.

Another portion of web performance optimization focuses
on improving the execution model of the web browser through
asynchronous/multiprocess rendering, resource prefetching,
smarter browser caching, etc. [19, 20, 37, 38, 50]. We focus on
per-webpage processing, which can be incorporated with the
improvement of the overall web browser architecture.

Web Browser Energy/Power Optimization Thiagara-
jan et al. [48] break the web browser’s energy consumption
into coarser-grained elements, such as CSS and Javascript
behavior, and identify a few system- and application-level op-

timizations to improve the energy consumption of mobile web
browsing. The optimizations they recommend, such as reorga-
nizing JavaScript files and removing unnecessary CSS rules,
are orthogonal and complementary to our webpage prediction
and scheduling work. Other works analyze the power/energy
consumption of the entire smartphone [26, 29, 44], whereas
we focus on improving the energy-efficiency of the mobile
processor in response to the demand for high-performance.
SiChrome [25] maps the critical executions of the browser into
hardware to improve EDP, and is orthogonal to our work.

Single ISA Heterogeneous Scheduling Our webpage
scheduling technique, based on big/little cores with the aid of
DVFS, is an example of utilizing single-ISA heterogeneous
systems for optimizing the performance versus energy trade-
off [35]. Nvidia’s Kal-El [21] is a single-ISA heterogeneous
system that integrates four high-frequency cores with one low-
frequency core. ARM’s proposed big.LITTLE system [13]
contains a high-performance Cortex-A15 processor and a
lower-performance but extremely energy-efficient Cortex-A7
processor. Without the availability of the big.LITTLE system,
in this paper we use the Cortex-A9 and A8 to synthesize such
a system, and show its advantage in high-performance and
energy-efficient mobile web browsing. Our prediction-based
scheduling technique is similar to other recent heterogeneous
scheduling proposals, such as PIE [30]. However, instead of
relying on (micro)architecture- and system-level statistics for
prediction, we capture the complex behavior of webpage char-
acteristics using regression modeling, and accurately predict
the webpage load time and energy consumption.

Web Browser Workload Characterization Gutier-
rez et al. [32] perform microarchitecture-level characterization
of the Android browser using 11 websites. We treat webpages,
rather than the web browser, as the workload. Moreover, we
mine 5,000 hot webpages to identify and quantify the inher-
ent variance in webpages more rigorously, and correlate the
webpage variance to the difference in webpage load time and
energy. Butkiewicz et al. [27] take a similar approach, charac-
terizing the complexity of different webpages. They construct
a model for webpage load time considering server and network
effects. Instead, we consider both load time and energy usage
on the client side of mobile web browsing, and we perform
webpage-aware scheduling on a heterogeneous system using
even more fine-grained prediction models.

9. Discussion

We see a wide range of future applications for our webpage-
aware approach. First, web developers can use our predictive
models to reduce the rate of webpage abandonment by improv-
ing their webpage load time. Google provides webpage perfor-
mance optimization techniques and microbenchmarking web-
pages to evaluate the different optimization techniques [22,23].
Complementary to that, web developers can further rely on
our predictive models to gather quantitative and fine-grained
optimization results before deployment.

11

Second, our work is the first step in the process of integrat-
ing prediction and scheduling techniques into a mobile device
with significant room for improvement. We can readily extend
our scheme for system-level predictions with a more compre-
hensive and holistic understanding of the interactions among
the different web browser components, such as the networking
module, browser cache/database, etc. Including the features
of HTML5 is also a topic for further improvement.

Finally, our approach is a heuristic for feedback-directed
optimization. Future mobile web browsers can continuously
optimize their execution based on the unique characteristics
of a webpage or even a web application and their user require-
ments. We envision that such a browser will behave like a
traditional runtime system that continuously coordinates its
hardware resources for a specific optimization objective, not
only limited to energy efficiency that this paper demonstrates.

10. Conclusion
We propose webpage-aware scheduling for high-

performance and energy-efficient mobile web browsing. It
is a new mechanism that dynamically matches the under-
lying heterogeneous hardware resources to webpages with
diversified characteristics. Through detailed characterization
of webpage variance, we apply regression modeling to
predict webpage load time and energy consumption. Such
predictive models allow the scheduler to identify the ideal
core and frequency configurations for webpages to minimize
the energy consumption under latency cut-off constraints.
Real hardware and software measurements show that, on
average, webpage-aware scheduling achieves 83.0% energy
savings, while only violating the cut-off latency for 4.1%
more webpages compared with a performance-oriented
hardware strategy. Compared with a production-level OS
DVFS scheduler, it achieves 8.6% energy savings and 4.0%
performance improvement.

References
[1] KPCB 2012 Internet Trends. http://goo.gl/aXbVs
[2] KPCB 2012 Top Mobile Internet Trends. http://goo.gl/p8zU1
[3] Wayback Machine Internet Archive. http://archive.org/web/web.php
[4] CA Technologies: “It’s offcial: web stress is bad for business”.

http://goo.gl/G2hwU
[5] Kissmetrics: “How loading time affects your bottom line”.

http://goo.gl/kosva
[6] Google: “The Google gospel of speed”. http://goo.gl/hsZnF
[7] World Internet Usage Statistics News and World Population Stats.

http://goo.gl/L8hG
[8] Pandaboard ES Rev B1 Schematic. http://goo.gl/biFQX
[9] RD2: “The three second rule”. http://goo.gl/pynBl

[10] Google: “Web mertics: size and number of resources”. http:
//goo.gl/FWdNp

[11] W3C: CSS Selectors. http://www.w3.org/TR/CSS2/selector.html
[12] R software. http://www.r-project.org
[13] Big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7.

http://goo.gl/7mgbL
[14] Linux CPUFreq Governor. http://goo.gl/MzpYR
[15] Google: “Defer parsing of JavaScript”. http://goo.gl/csWrR
[16] Web Workers. http://goo.gl/nejxO
[17] SunSpider JavaScript benchmark. http://goo.gl/Z52lw
[18] V8 Benchmark Suite - version 7. http://goo.gl/mALWo

[19] WebKit2. http://trac.webkit.org/wiki/WebKit2
[20] Mozilla: “Speculative parsing in firefox”. http://goo.gl/tJlRk
[21] NVidia: Variable SMP - A Multi-Core CPU Architecture for Low

Power and High Performance. http://goo.gl/uWZJ1
[22] Google: “Web performance best practices”. http://goo.gl/WlOnF
[23] Google: “Tutorials: make the web faster”. http://goo.gl/CLHY0
[24] C. Badea, M. R. Haghighat, A. Nicolau, and A. V. Veidenbaum, “To-

wards parallelizing the layout engine of firefox,” in Proc. of USENIX
HotPar, 2010.

[25] V. Bhatt, N. Goulding-Hotta, Q. Zheng, J. Sampson, S. Swanson, and
M. B. Taylor, “Sichrome: Mobile web browsing in hardware to save
energy,” DaSi: First Dark Silicon Workshop, 2012.

[26] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “The model is not
enough: understanding energy consumption in mobile devices,” in
Poster session of HotChip, 2012.

[27] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding web-
site complexity: measurements, metrics, and implications,” in Proc. of
IMC, 2011.

[28] T. Cao, T. Gao, S. M. Blackburn, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in Proc. of ISCA, 2012.

[29] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proc. of USENIX ATC, 2010.

[30] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proc. of ISCA, 2012.

[31] D. Grunwald, C. B. Morrey, III, P. Levis, M. Neufeld, and K. I. Farkas,
“Policies for dynamic clock scheduling,” in Proc. of OSDI, 2000.

[32] A. Gutierrez, R. Dreslinski, A. Saidi, C. Emmons, N. Paver, T. Wenisch,
and T. Mudge, “Full-system analysis and characterization of interactive
smartphone applications,” in Proc. of IISWC, 2011.

[33] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning. Springer, 2009.

[34] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram, “Parallel
programming for the web,” in Proc. of USENIX HotPar, 2012.

[35] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in Proc. of MICRO, 2003.

[36] D. Lin, N. Medforth, K. S. Herdy, A. Shriraman, and R. Cameron,
“Parabix: Boosting the efficiency of text processing on commodity
processors,” in Proc. of HPCA, 2012.

[37] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas,
“Pocketweb: instant web browsing for mobile devices,” in Proc. of
ASPLOS, 2012.

[38] H. Mai, S. Tang, S. T. King, C. Cascaval, and M. Pablo, “A case for
parallelizing web pages,” in Proc. of USENIX HotPar, 2012.

[39] M. Mehrara, P.-C. Hsu, M. Samadi, and S. Mahlke, “Dynamic paral-
lelization of javascript applications using an ultra-lightweight specula-
tion mechanism,” in Proc.of HPCA, 2011.

[40] L. A. Meyerovich and R. Bodik, “Fast and parallel webpage layout,”
in Proc. of WWW, 2010.

[41] ——, “Ftl: Synthesizing a parallel layout engine,” in Eucopean Con-
ference on Object-Oriented Program in Conjunction with PLDI, 2012.

[42] L. A. Meyerovich, T. Mytkowicz, and W. Schulte, “Data parallel pro-
gramming for irregular tree computations,” in Proc. of HotPar, 2011.

[43] J. Mickens, J. Elson, J. Howell, and J. Lorch, “Crom: Faster web
browsing using speculative execution,” in Proc. of NSDI, 2010.

[44] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
in Proc. of EuroSys, 2012.

[45] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proc. of PLDI, 2011.

[46] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proc. of ISCA, 2009.

[47] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn, “Jsme-
ter: Characterizing real-world behavior of javascript programs,” in
Technical Report MSR-TR-2009-173, Microsoft Research, 2009.

[48] N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh,
“Who killed my battery?: analyzing mobile browser energy consump-
tion,” in Proc. of WWW, 2012.

[49] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proc. of OSDI, 1994.

[50] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching for web
browsers,” in Proc. of WWW, 2010.

12

