ML Runtimes

D. Richins, et al., “Missing the Forest for the Trees: End-to-End AI Application Performance in Edge Data Centers,” in International Symposium on High Performance Computer Architecture (HPCA), 2020.Abstract

Artificial intelligence and machine learning are experiencing widespread adoption in the industry, academia, and even public consciousness. This has been driven by the rapid advances in the applications and accuracy of AI through increasingly complex algorithms and models; this, in turn, has spurred research into developing specialized hardware AI accelerators. The rapid pace of the advances makes it easy to miss the forest for the trees: they are often developed and evaluated in a vacuum without considering the full application environment in which they must eventually operate. In this paper, we deploy and characterize Face Recognition, an AI-centric edge video analytics application built using open source and widely adopted infrastructure and ML tools. We evaluate its holistic, end-to-end behavior in a production-size edge data center and reveal the “AI tax” for all the processing that is involved. Even though the application is built around state-of-the-art AI and ML algorithms, it relies heavily on pre- and post-processing code which must be executed on a general-purpose CPU. As AI-centric applications start to reap the acceleration promised by so many accelerators, we find they impose stresses on the underlying software infrastructure and the data center’s capabilities: storage and network bandwidth become major bottlenecks with increasing AI acceleration. By not having to serve a wide variety of applications, we show that a purpose-built edge data center can be designed to accommodate the stresses of accelerated AI at 15% lower TCO than one de-rived from homogeneous servers and infrastructure. We also discuss how our conclusions generalize beyond Face Recognition as many AI-centric applications at the edge rely upon the same underlying software and hardware infrastructure.

M. Halpern, B. Boroujerdian, T. Mummert, E. Duesterwald, and V. J. Reddi, “One Size Does Not Fit All: Quantifying and Exposing the Accuracy-Latency Trade-off in Machine Learning Cloud Service APIs via Tolerance Tiers,” in Proceedings of the 19th International Symposium on Performance Analysis of Systems and Software (ISPASS), 2019.Abstract

Today's cloud service architectures follow a “one size fits all” deployment strategy where the same service version instantiation is provided to the end users. However, consumers are broad and different applications have different accuracy and responsiveness requirements, which as we demonstrate renders the “one size fits all” approach inefficient in practice. We use a production grade speech recognition engine, which serves several thousands of users, and an open source computer vision based system, to explain our point. To overcome the limitations of the “one size fits all” approach, we recommend Tolerance Tiers where each MLaaS tier exposes an accuracy/responsiveness characteristic, and consumers can programmatically select a tier. We evaluate our proposal on the CPU-based automatic speech recognition (ASR) engine and cutting-edge neural networks for image classification deployed on both CPUs and GPUs. The results show that our proposed approach provides a MLaaS cloud service architecture that can be tuned by the end API user or consumer to outperform the conventional “one size fits all” approach.

M. S. Louis, et al., “Towards Deep Learning using TensorFlow Lite on RISC-V,” Third Workshop on Computer Architecture Research with RISC-V (CARRV). 2019.Abstract

Deep neural networks have been extensively adopted for a myriad of applications due to their ability to learn patterns from large amounts of data. The desire to preserve user privacy and reduce user-perceived latency has created the need to perform deep neural network inference tasks on low-power consumer edge devices. Since such tasks often tend to be computationally intensive, offloading this compute from mobile/embedded CPU to a purposedesigned "Neural Processing Engines" is a commonly adopted solution for accelerating deep learning computations. While these accelerators offer significant speed-ups for key machine learning kernels, overheads resulting from frequent host-accelerator communication often diminish the net application-level benefit of this heterogeneous system. Our solution for accelerating such workloads involves developing ISA extensions customized for machine learning kernels and designing a custom in-pipeline execution unit for these specialized instructions. We base our ISA extensions on RISC-V: an open ISA specification that lends itself to such specializations. In this paper, we present the software infrastructure for optimizing neural network execution on RISC-V with ISA extensions. Our ISA extensions are derived from the RISC-V Vector ISA proposal, and we develop optimized implementations of the critical kernels such as convolution and matrix multiplication using these instructions. These optimized functions are subsequently added to the TensorFlow Lite source code and cross-compiled for RISC-V. We find that only a small set of instruction extensions achieves coverage over a wide variety of deep neural networks designed for vision and speech-related tasks. On average, our software implementation using the extended instructions set reduces the executed instruction count by 8X in comparison to baseline implementation. In parallel, we are also working on the hardware design of the inpipeline machine learning accelerator. We plan to open-source our software modifications to TF Lite, as well as the micro-architecture design in due course.

T. - W. Chin, C. - L. Yu, M. Halpern, H. Genc, S. - L. Tsao, and V. J. Reddi, “Domain-Specific Approximation for Object Detection,” IEEE Micro, vol. 38, no. 1, pp. 31–40, 2018. Publisher's VersionAbstract

In summary,

our contributions are as follows: • We investigate DSA and characterize the effectiveness of category-awareness. • We conduct a limit study to understand the benefit of applying approximation in a perframe manner with category-awareness (category-aware dynamic DSA). • We present the challenges of harnessing DSA and a proof-of-concept runtime.

M. Halpern, T. Mummert, M. Novak, E. Duesterwald, and V. J. Reddi, “The Case for Node Multi-Versioning in Cognitive Cloud Services: Achieving Responsiveness and Accuracy at Datacenter Scale,” Workshop on Cognitive Architectures (CogArch). 2016.Abstract

Cognitive cloud services seek to provide end-users with functionalities that have historically required human intellect to complete. End-users expect these services to be both responsive and accurate, which pose conflicting requirements for service providers. Today’s cloud services deployment schemes follow a “one size fits all” scale-out strategy, where multiple instantiations of the same version of the service are used to scale-out and handle all end-users. Meanwhile, many cognitive services are of a statistical nature where deeper exploration yields more accurate results but also requires more processing time. Finding a single service configuration setting that satisfies the latency and accuracy requirements for the largest number of expected end-user requests can be a challenging task. As a result, cognitive cloud service providers are conservatively configured to maximize the number of enduser requests for which a satisfactory latency-accuracy tradeoff can be achieved. Using a production-grade Automatic Speech Recognition cloud service as a representative example to study, we demonstrate the inefficiencies of this single version approach and propose a new service node multi-versioning deployment scheme for cognitive services instead. We present an oracle-based limit study where we show that service node multi-versioning can provide a 2.5X reduction in execution time together with a 24% improvement in accuracy over a traditional single version deployment scheme. We also discuss several design considerations to address when implementing service node multi-versioning.