Publications by Year: 2021

2021
B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas, and V. J. Reddi, “Accelerating Robot Dynamics Gradients on a CPU, GPU, and FPGA,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2335-2342, 2021. IEEE VersionAbstract
Computing the gradient of rigid body dynamics is a central operation in many state-of-the-art planning and control algorithms in robotics. Parallel computing platforms such as GPUs and FPGAs can offer performance gains for algorithms with hardware-compatible computational structures. In this letter, we detail the designs of three faster than state-of-the-art implementations of the gradient of rigid body dynamics on a CPU, GPU, and FPGA. Our optimized FPGA and GPU implementations provide as much as a 3.0x end-to-end speedup over our optimized CPU implementation by refactoring the algorithm to exploit its computational features, e.g., parallelism at different granularities. We also find that the relative performance across hardware platforms depends on the number of parallel gradient evaluations required.
PDF
M. Lam, et al., “ActorQ: Quantization for Actor-Learner Distributed Reinforcement Learning,” in ICLR, Hardware Aware Efficient Training Workshop at ICLR 2021, Virtual, May 7, 2021.Abstract
In this paper, we introduce a novel Reinforcement Learning (RL) training paradigm, ActorQ, for speeding up actor-learner distributed RL training. ActorQ leverages full precision optimization on the learner, and distributed data collection through lower-precision quantized actors. The quantized, 8-bit (or 16 bit) inference on actors, speeds up data collection without affecting the convergence. The quantized distributed RL training system, ActorQ, demonstrates end to end speedups of > 1.5 × - 2.5 ×, and faster convergence over full precision training on a range of tasks (Deepmind Control Suite) and different RL algorithms (D4PG, DQN). Finally, we break down the various runtime costs of distributed RL training (such as communication time, inference time, model load time, etc) and evaluate the effects of quantization on these system attributes.
PDF Poster
M. Buch, Z. Azad, A. Joshi, and V. J. Reddi, “AI Tax in Mobile SoCs: End-to-end Performance Analysis of Machine Learning in Smartphones,” in 2021 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS '21, Virtual, Stony Brook, NY, March 28-30, 2021. IEEE VersionAbstract
Mobile software is becoming increasingly feature rich, commonly being accessorized with the powerful decision making capabilities of machine learning (ML). To keep up with the consequently higher power and performance demands, system and hardware architects add specialized hardware units onto their system-on-chips (SoCs) coupled with frameworks to delegate compute optimally. While these SoC innovations are rapidly improving ML model performance and power efficiency, auxiliary data processing and supporting infrastructure to enable ML model execution can substantially alter the performance profile of a system. This work posits the existence of an AI tax, the time spent on non-model execution tasks. We characterize the execution pipeline of open source ML benchmarks and Android applications in terms of AI tax and discuss where performance bottlenecks may unexpectedly arise.
PDF
D. Richins, et al., “AI Tax: The Hidden Cost of AI Data Center Applications,” ACM Transactions on Computer Systems (TOCS), vol. 37, no. 1-4, pp. 1-32, 2021. ACM Digital Library VersionAbstract
Artificial intelligence and machine learning are experiencing widespread adoption in industry and academia. This has been driven by rapid advances in the applications and accuracy of AI through increasingly complex algorithms and models; this, in turn, has spurred research into specialized hardware AI accelerators. Given the rapid pace of advances, it is easy to forget that they are often developed and evaluated in a vacuum without considering the full application environment. This article emphasizes the need for a holistic, end-to-end analysis of artificial intelligence (AI) workloads and reveals the “AI tax.” We deploy and characterize Face Recognition in an edge data center. The application is an AI-centric edge video analytics application built using popular open source infrastructure and machine learning (ML) tools. Despite using state-of-the-art AI and ML algorithms, the application relies heavily on pre- and post-processing code. As AI-centric applications benefit from the acceleration promised by accelerators, we find they impose stresses on the hardware and software infrastructure: storage and network bandwidth become major bottlenecks with increasing AI acceleration. By specializing for AI applications, we show that a purpose-built edge data center can be designed for the stresses of accelerated AI at 15% lower TCO than one derived from homogeneous servers and infrastructure.
PDF
V. J. Reddi, G. Diamos, P. Warden, P. Mattson, and D. Kanter, “Data Engineering for Everyone,” 2021. arXiv VersionAbstract
Data engineering is one of the fastest-growing fields within machine learning (ML). As ML becomes more common, the appetite for data grows more ravenous. But ML requires more data than individual teams of data engineers can readily produce, which presents a severe challenge to ML deployment at scale. Much like the software-engineering revolution, where mass adoption of open-source software replaced the closed, in-house development model for infrastructure code, there is a growing need to enable rapid development and open contribution to massive machine learning data sets. This article shows that open-source data sets are the rocket fuel for research and innovation at even some of the largest AI organizations. Our analysis of nearly 2000 research publications from Facebook, Google and Microsoft over the past five years shows the widespread use and adoption of open data sets. Open data sets that are easily accessible to the public are vital to accelerate ML innovation for everyone. But such open resources are scarce in the wild. So, can we accelerate data set creation and enable the rapid development of open data sets, akin to the rapid development of open-source software? Moreover, can we develop automatic data set generation frameowrks and tools to avert the data scarcity crisis?
PDF
M. Mazumder, C. Banbury, J. Meyer, P. Warden, and V. J. Reddi, “Few-Shot Keyword Spotting in Any Language,” in INTERSPEECH 2021, Virtual, Brno, Czech Republic, 2021. arXiv VersionAbstract
We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F1 score of 0.75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages. This embedding model also generalizes to new languages. We achieve an average F1 score of 0.65 on 5-shot models for 260 keywords sampled across 13 new languages unseen by the embedding model. We investigate streaming accuracy for our 5-shot models in two contexts: keyword spotting and keyword search. Across 440 keywords in 22 languages, we achieve an average streaming keyword spotting accuracy of 85.2% with a false acceptance rate of 1.2%, and observe promising initial results on keyword search.
PDF
B. P. Duisterhof, et al., “Learning to Seek: Autonomous Source Seeking with Deep Reinforcement Learning Onboard a Nano Drone Microcontroller,” 2021. arXiv VersionAbstract
Fully autonomous navigation using nano drones has numerous applications in the real world, ranging from search and rescue to source seeking. Nano drones are wellsuited for source seeking because of their agility, low price, and ubiquitous character. Unfortunately, their constrained form factor limits flight time, sensor payload, and compute capability. These challenges are a crucial limitation for the use of source-seeking nano drones in GPS-denied and highly cluttered environments. Hereby, we introduce a fully autonomous deep reinforcement learning-based light-seeking nano drone. The 33-gram nano drone performs all computation on-board the ultra-low-power microcontroller (MCU). We present the method for efficiently training, converting, and utilizing deep reinforcement learning policies. Our training methodology and novel quantization scheme allow fitting the trained policy in 3 kB of memory. The quantization scheme uses representative input data and input scaling to arrive at a full 8-bit model. Finally, we evaluate the approach in simulation and flight tests using a Bitcraze CrazyFlie, achieving 80% success rate on average in a highly cluttered and randomized test environment. Even more, the drone finds the light source in 29% fewer steps compared to a baseline simulation (obstacle avoidance without source information). To our knowledge, this is the first deep reinforcement learning method that enables source seeking within a highly constrained nano drone demonstrating robust flight behavior. Our general methodology is suitable for any (source seeking) highly constrained platform using deep reinforcement learning. Code & video: https://github. com/harvard-edge/source-seeking
PDF
S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. J. Reddi, “Robomorphic computing: a design methodology for domain-specific accelerators parameterized by robot morphology,” Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, pp. 674-686, 2021.Abstract
Robotics applications have hard time constraints and heavy computational burdens that can greatly benefit from domain-specific hardware accelerators. For the latency-critical problem of robot motion planning and control, there exists a performance gap of at least an order of magnitude between joint actuator response rates and state-of-the-art software solutions. Hardware acceleration can close this gap, but it is essential to define automated hardware design flows to keep the design process agile as applications and robot platforms evolve. To address this challenge, we introduce robomorphic computing: a methodology to transform robot morphology into a customized hardware accelerator morphology. We (i) present this design methodology, using robot topology and structure to exploit parallelism and matrix sparsity patterns in accelerator hardware; (ii) use the methodology to generate a parameterized accelerator design for the gradient of rigid body dynamics, a key kernel in motion planning; (iii) evaluate FPGA and synthesized ASIC implementations of this accelerator for an industrial manipulator robot; and (iv) describe how the design can be automatically customized for other robot models. Our FPGA accelerator achieves speedups of 8× and 86× over CPU and GPU when executing a single dynamics gradient computation. It maintains speedups of 1.9× to 2.9× over CPU and GPU, including computation and I/O round-trip latency, when deployed as a coprocessor to a host CPU for processing multiple dynamics gradient computations. ASIC synthesis indicates an additional 7.2× speedup for single computation latency. We describe how this principled approach generalizes to more complex robot platforms, such as quadrupeds and humanoids, as well as to other computational kernels in robotics, outlining a path forward for future robomorphic computing accelerators.
PDF